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Abstract We define the Haagerup property in the general context of countable
groupoids equipped with a quasi-invariant measure. One of our objectives is to com-
plete an article of Jolissaint devoted to the study of this property for probability
measure preserving countable equivalence relations. Our second goal, concerning
the general situation, is to provide a definition of this property in purely geometric
terms, whereas this notion had been introduced by Ueda in terms of the associated
inclusion of von Neumann algebras. Our equivalent definition makes obvious the
fact that treeability implies the Haagerup property for such groupoids and that it is
not compatible with Kazhdan property (T).

1 Introduction

Since the seminal paper of Haagerup [14], showing that free groups have the (now
so-called) Haagerup property, or property (H), this notion plays an increasingly im-
portant role in group theory (see the book [10]). A similar property (H) has been
introduced for finite von Neumann algebras [12, 11] and it was proved in [11] that
a countable group Γ has property (H) if and only if its von Neumann algebra L(Γ )
has property (H).

Later, given a von Neumann subalgebra A of a finite von Neumann algebra M, a
property (H) for M relative to A has been considered [9, 24] and proved to be very
useful. It is in particular one of the crucial ingredients used by Popa [24], to provide
the first example of a II1 factor with trivial fundamental group.

A discrete (also called countable) measured groupoid (G,µ) with set of units
X (see Sect. 2.1) gives rise to an inclusion A ⊂ M, where A = L∞(X ,µ) and M =
L(G,µ) is the von Neumann algebra of the groupoid. This inclusion is canonically
equipped with a conditional expectation EA : M → A. Although M is not always a
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finite von Neumann algebra, there is still a notion of property (H) relative to A and
EA (see [31]). However, to our knowledge, this property has not been translated in
terms only involving (G,µ), as in the group case. A significant exception concerns
the case where G = R is a countable equivalence relation on X , preserving the
probability measure µ , i.e. a type II1 equivalence relation [17].

Our first goal is to extend the work of Jolissaint [17] in order to cover the general
case of countable measured groupoids, and in particular the case of group actions
leaving a probability measure quasi-invariant. Although it is not difficult to guess the
right definition of property (H) for (G,µ) (see Definition 6.2), it is more intricate
to prove the equivalence of this notion with the fact that L(G,µ) has property (H)
relative to L∞(X ,µ).

We begin in Sect. 2 by introducing the basic notions and notation relative to
countable measured groupoids. In particular we discuss the Tomita-Takesaki theory
for their von Neumann algebras. This is essentially a reformulation of the pioneering
results of P. Hahn [15] in a way that fits better for our purpose. In Section 3 we
discuss in detail several facts about the von Neumann algebra of the Jones’ basic
construction for an inclusion A ⊂ M of von Neumann algebras, assuming that A is
abelian. We also recall here the notion of relative property (H) in this setting.

In Sects. 4 and 5, we study the relations between positive definite functions on
our groupoids and completely positive maps on the corresponding von Neumann
algebras. These results are extensions of well known results for groups and of results
obtained by Jolissaint in [17] for equivalence relations, but additional difficulties
must be overcome. After this preliminary work, it is immediate (Sect. 6) to show
the equivalence of our definition of property (H) for groupoids with the definition
involving operator algebras (Theorem 6.1).

Our main motivation originates from the reading of Ueda’s paper [31] and con-
cerns treeable groupoids. This notion was introduced by Adams for probability
measure preserving countable equivalence relations [1]. Treeable groupoids may
be viewed as the groupoid analogue of free groups. So a natural question, raised
by C.C. Moore in his survey [21, p. 277] is whether a treeable equivalence relation
must have the Haagerup property. In fact, this problem is solved in [31] using ope-
rator algebras techniques. In Ueda’s paper, the notion of treeing is translated in an
operator algebra framework regarding the inclusion L∞(X ,µ) ⊂ L(G,µ), and it is
proved that this condition implies that L(G,µ) has the Haagerup property relative
to L∞(X ,µ).

Our approach is opposite. For us, it seems more natural to compare these two
notions, treeability and property (H), purely at the level of the groupoid. Indeed, the
definition of treeability is more nicely read at this level: roughly speaking, it means
that there is a measurable way to endow each fibre of the groupoid with a structure
of tree (see Definition 7.2). The direct proof that treeability implies property (H) is
given in Sect. 7 (Theorem 7.3).

Using our previous work [6] on groupoids with property (T), we prove in Sect. 8
that, under an assumption of ergodicity, this property is incompatible with the
Haagerup property (Theorem 8.2). As a consequence, we recover the result of Jolis-
saint [17, Proposition 3.2] stating that if Γ is a Kazhdan countable group which



The Haagerup property for discrete measured groupoids 3

acts ergodically on a Lebesgue space (X ,µ) and leaves the probability measure µ

invariant, then the orbit equivalence relation (RΓ ,µ) has not the Haagerup prop-
erty (Corollary 8.4). A fortiori, (RΓ ,µ) is not treeable, a result due to Adams and
Spatzier [2, Theorem 18] and recovered in a different way by Ueda.

This text is an excerpt from the survey [7] which is not intended to publication.

2 The von Neumann algebra of a measured groupoid

2.1 Preliminaries on countable measured groupoids

Our references for measured groupoids are [8, 15, 26]. Let us first introduce some
notation. Given a groupoid G, we denote by G(0) its unit space and by G(2) the
set of composable pairs. The range and source maps from G to G(0) are denoted
respectively by r and s. The corresponding fibres are denoted respectively by Gx =
r−1(x) and Gx = s−1(x). Given a subset A of G(0), the reduction of G to A is the
groupoid G|A = r−1(A)∩s−1(A). Two elements x,y of G(0) are said to be equivalent
if Gx ∩Gy 6= /0. We denote by RG this equivalence relation. Given A ⊂ G(0), its
saturation [A] is the set s(r−1(A)) of all elements in G(0) that are equivalent to some
element of A. When A = [A], we say that A is invariant.

A Borel groupoid is a groupoid G endowed with a standard Borel structure such
that the range, source, inverse and product are Borel maps, where G(2) has the Borel
structure induced by G×G and G(0) has the Borel structure induced by G. We say
that G is countable (or discrete) if the fibres Gx (or equivalently Gx) are countable.

In the sequel, we only consider such groupoids. We always denote by X the set
G(0) of units of G. A bisection S is a Borel subset of G such that the restrictions of r
and s to S are injective. A useful fact, consequence of a theorem of Lusin-Novikov,
states that, since r and s are countable-to-one Borel maps between standard Borel
spaces, there exists a countable partition of G into bisections (see [19, Theorem
18.10]).

Let µ be a probability measure on on X = G(0). We define a σ -finite measure ν

on G by the formula ∫
G

F dν =
∫

X

(
∑

s(γ)=x
F(γ)

)
dµ(x).

We say that µ is quasi-invariant if ν is equivalent to it image ν−1 under γ 7→ γ−1.
In other terms, for every bisection S, one has µ(s(S)) = 0 if and only if µ(r(S)) = 0.
This notion only depends on the measure class of µ . We set δ = dν−1

dν
. Whenever

ν = ν−1, we say that µ is invariant.
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Definition 2.1 A countable (or discrete) measured groupoid1 (G,µ) is a countable
Borel groupoid G with a quasi-invariant probability measure µ on X = G(0).

Examples 2.2 (a) Let Γ y X be a (right) action of a countable group Γ on a stan-
dard Borel space X , and assume that the action preserves the class of a probability
measure µ . Let G = X oΓ be the semi-direct product groupoid. We have r(x, t) = x
and s(x, t) = xt. The product is given by the formula (x,s)(xs, t) = (x,st). Equipped
with the quasi-invariant measure µ , (G,µ) is a countable measured groupoid. As a
particular case, we find the group G = Γ when X is reduced to a point..

(b) Another important family of examples concerns countable measured equiva-
lence relations. A countable Borel equivalence relation R ⊂ X ×X on a standard
Borel space X is a Borel subset of X ×X whose equivalence classes are finite or
countable. It has an obvious structure of Borel groupoid with r(x,y) = x, s(x,y) = y
and (x,y)(x,z) = (x,z). When equipped with a quasi-invariant probability measure
µ , we say that (R,µ) is a countable measured equivalence relation. Here, quasi-
invariance also means that for every Borel subset A ⊂ X , we have µ(A) = 0 if and
only if the measure of the saturation s(r−1(A)) of A is still 0.

The orbit equivalence relation associated with an action Γ y (X ,µ) is denoted
(RΓ ,µ).

A general groupoid is a combination of an equivalence relation and groups.
Indeed, let (G,µ) be a countable measured groupoid. Let c = (r,s) be the map
γ 7→ (r(γ),s(γ)) from G into X ×X . The range of c is the graph RG of the equi-
valence relation induced on X by G. Moreover (RG,µ) is a countable measured
equivalence relation. The kernel of the groupoid homomorphism c is the isotropy
bundle.

A reduction (G|U ,µ|U ) such that U is conull in X is called inessential. Since we
are working in the setting of measured spaces, it will make no difference to replace
(G,µ) by any of its inessential reductions.

2.2 The von Neumann algebra of (G,µ)

If f : G → C is a Borel function, we set

‖ f‖I = max

{∥∥∥∥∥x 7→ ∑
r(γ)=x

| f (γ)|

∥∥∥∥∥
∞

,

∥∥∥∥∥x 7→ ∑
s(γ)=x

| f (γ)|

∥∥∥∥∥
∞

}
.

Let I(G) be the set of functions such that ‖ f‖I < +∞. It only depends on the measure
class of µ . We endow I(G) with the (associative) convolution product

( f ∗g)(γ) = ∑
γ1γ2=γ

f (γ1)g(γ2) = ∑
s(γ)=s(γ2)

f (γγ
−1
2 )g(γ2) = ∑

r(γ1)=r(γ)
f (γ1)g(γ−1

1 γ).

1 In [8], a countable measured groupoid is called r-discrete. Another difference is that we have
swapped here the definitions of ν and ν−1.
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and the involution f ∗(γ) = f (γ−1).
We have I(G) ⊂ L1(G,ν)∩L∞(G,ν) ⊂ L2(G,ν), with ‖ f‖1 ≤ ‖ f‖I . Therefore

‖·‖I is a norm on I(G), where two functions which coincide ν-almost everywhere
are identified. It is easily checked that I(G) is complete for this norm. Moreover
for f , g ∈ I(G) we have ‖ f ∗g‖I ≤ ‖ f‖I‖g‖I . Therefore (I(G),‖·‖I) is a Banach
∗-algebra.

This variant of the Banach algebra I(G) introduced by Hahn [15] has been con-
sidered by Renault in [28, p. 50]. Its advantage is that it does not involve the Radon-
Nikodym derivative δ .

For f ∈ I(G) we define a bounded operator L( f ) on L2(G,ν) by

(L( f )ξ )(γ) = ( f ∗ξ )(γ) = ∑
γ1γ2=γ

f (γ1)ξ (γ2). (2.1)

We have ‖L( f )‖ ≤ ‖ f‖I , L( f )∗ = L( f ∗) and L( f )L(g) = L( f ∗g). Hence, L is a
representation of I(G), called the left regular representation.

Definition 2.3 The von Neumann algebra of the countable measured groupoid
(G,µ) is the von Neumann subalgebra L(G,µ) of B(L2(G,ν)) generated by L(I(G)).
It will also be denoted by M in the rest of the paper.

Note that L2(G,ν) is a direct integral of Hilbert spaces :

L2(G,ν) =
∫ ⊕

X
`2(Gx)dµ(x).

We define on L2(G,ν) a structure of L∞(X)-module by ( f ξ )(γ) = f ◦ s(γ)ξ (γ),
where f ∈ L∞(X) and ξ ∈ L2(G,ν). In fact L∞(X) is the algebra of diagonalizable
operators with respect to the above disintegration of L2(G,ν).

Obviously, the representation L commutes with this action of L∞(X). It follows
that the elements of L(G,µ) are decomposable operators ([13, Theorem 1, p. 164]).
We have L( f ) =

∫ ⊕
X Lx( f )dµ(x), where Lx( f ) : `2(Gx) → `2(Gx) is defined as in

(2.1), but for ξ ∈ `2(Gx).
Let Cn = {1/n ≤ δ ≤ n}. Then (Cn) is an increasing sequence of measurable

subsets of G with ∪nCn = G (up to null sets). We denote by In(G) the set of elements
in I(G) taking value 0 outside Cn and we set I∞(G) = ∪nIn(G). Obviously, I∞(G)
is an involutive subalgebra of I(G). It is easily checked that I∞(G) is dense into
L2(G,ν) and that L(G,µ) is generated by L(I∞(G)).

The von Neumann algebra L∞(X) is isomorphic to a subalgebra of I∞(G), by
giving to f ∈ L∞(X) the value 0 outside X ⊂ G. Note that, for ξ ∈ L2(G,ν),

(L( f )ξ )(γ) = f ◦ r(γ)ξ (γ).

In this way, A = L∞(X) appears as a von Neumann subalgebra of M.
Obviously, the pair A⊂M only depends on the measure class of µ , up to unitary

equivalence.
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We view I(G) as a subspace of L2(G,ν). The characteristic function 1X of X ⊂G
is a norm one vector in L2(G,ν). Let ϕ be the normal state on M defined by

ϕ(T ) = 〈1X ,T 1X 〉L2(G,ν).

For f ∈ I(G), we have ϕ(L( f )) =
∫

X f (x)dµ(x), and therefore, for f ,g ∈ I(G),

ϕ(L( f )∗L(g)) = 〈 f ,g〉L2(G,ν). (2.2)

Lemma 2.4 Let g be a Borel function on G such that δ−1/2g = f ∈ I(G) (for in-
stance g ∈ I∞(G)). Then ξ 7→ ξ ∗ g is a bounded operator on L2(G,ν). More pre-
cisely, we have

‖ξ ∗g‖2 ≤ ‖ f‖I‖ξ‖2.

Proof. Straightforward. ut

We set R(g)(ξ ) = ξ ∗g. We have L( f )◦R(g) = R(g)◦L( f ) for every g ∈ I∞(G)
and f ∈ I(G). We denote by R(G,µ) the von Neumann algebra generated by
R(I∞(G)).

Lemma 2.5 The vector 1X is cyclic and separating for L(G,µ), and therefore ϕ is
a faithful state.

Proof. Immediate from the fact that L( f ) and R(g) commute for f ,g ∈ I∞(G), with
L( f )1X = f and R(g)1X = g, and from the density of I∞(G) into L2(G,ν). ut

The von Neumann algebra L(G,µ) is on standard form on L2(G,ν), canoni-
cally identified with L2(M,ϕ) (see (2.2)). We identify M with a dense subspace of
L2(G,ν) by T 7→ T̂ = T (1X ). The modular conjugation J and the one-parameter
modular group σ relative to the vector 1X (and ϕ) have been computed in [15].
With our notations, we have

∀ξ ∈ L2(G,ν), (Jξ )(γ) = δ (γ)1/2
ξ (γ−1)

and
∀T ∈ L(G,µ), σt(T ) = δ

itT δ
−it .

Here, for t ∈ R, the function δ it acts on L2(G,ν) by pointwise multiplication and
defines a unitary operator. Note that for f ∈ L(G,µ), we have δ itL( f )δ−it = L(δ it f ).
In particular, σ acts trivially on A. Therefore (see [30]), there exists a unique faithful
conditional expectation EA : M → A such that ϕ = ϕ ◦EA, and for T ∈ M, we have

ÊA(T ) = eA(T̂ ),

where eA is the orthogonal projection from L2(G,ν) onto L2(X ,µ). If we view the
elements of M as functions on G, then EA is the restriction map to X . The triple
(M,A,EA) only depends on the class of µ , up to equivalence.

For f ∈ I(G) and ξ ∈ L2(G,ν) we observe that
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(JL( f )J)ξ = R(g)ξ = ξ ∗g with g = δ
1/2 f ∗. (2.3)

3 Basic facts on the module L2(M)A

We consider, in an abstract setting, the situation we have met above. Let A ⊂ M
be a pair of von Neumann algebras, where A = L∞(X ,µ) is abelian. We assume
the existence of a normal faithful conditional expectation EA : M → A and we set
ϕ = τµ ◦EA, where τµ is the state on A defined by the probability measure µ . Recall
that M is on standard form on the Hilbert space L2(M,ϕ) of the Gelfand-Naimark-
Segal construction associated with ϕ . We view L2(M,ϕ) as a left M-module and a
right A-module. Identifying2 M with a subspace of L2(M,ϕ), we know that EA is
the restriction to M of the orthogonal projection eA : L2(M,ϕ)→ L2(A,τµ).

For further use, we make the following observation

∀m ∈ M,∀a ∈ A, m̂a = Ja∗Jm̂ = m̂a = mâ. (3.4)

Indeed, if S is the closure of the map m̂ 7→ m̂∗ and if S = J∆ 1/2 = ∆−1/2J is its polar
decomposition, then every a ∈ A commutes with ∆ since it is invariant under σϕ .
Then (3.4) follows easily. Note that (2.3) gives a particular case of this remark.

3.1 The commutant 〈M,eA〉 of the right action

The algebra of all operators which commute with the right action of A is the von
Neumann algebra of the basic construction for A⊂M. It is denoted 〈M,eA〉 since it is
generated by M and eA. The linear span of {m1eAm2 : m1,m2 ∈ M} is a ∗-subalgebra
which is weak operator dense in 〈M,eA〉. Moreover 〈M,eA〉 is a semi-finite von Neu-
mann algebra, carrying a canonical normal faithful semi-finite trace Trµ (depending
on the choice of µ), defined by

Trµ(m1eAm2) =
∫

X
EA(m2m1)dµ = ϕ(m2m1).

(for these classical results, see [18], [23]). We shall give more information on this
trace in Lemma 3.4 and its proof. We need some preliminaries.

Definition 3.1 A vector ξ ∈ L2(M,ϕ) is A-bounded if there exists c > 0 such that
‖ξ a‖2 ≤ cτµ(a∗a)1/2 for every a ∈ A.

We denote by L2(M,ϕ)0, or L 2(M,ϕ), the subspace of A-bounded vectors. It
contains M. We also recall the obvious fact that T 7→ T (1A) is an isomorphism

2 When necessary, we shall write m̂ the element m ∈ M, when viewed in L2(M,ϕ), in order to
stress this fact.
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from the space B(L2(A,τµ)A,L2(M,ϕ)A) of bounded (right) A-linear operators T :
L2(A,τµ) → L2(M,ϕ) onto L 2(M,ϕ). For ξ ∈ L 2(M,ϕ), we denote by Lξ the
corresponding operator from L2(A,τµ) into L2(M,ϕ). In particular, for m ∈ M, we
have Lm = m|L2(A,τµ )

. It is easy to see that L 2(M,ϕ) is stable under the actions of

〈M,eA〉 and A, and that LT ξ a = T ◦Lξ ◦a for T ∈ 〈M,eA〉, ξ ∈L 2(M,ϕ), a ∈ A.
For ξ ,η ∈ L 2(M,ϕ), the operator L∗

ξ
Lη ∈ B(L2(A,τµ)) is in A, since it com-

mutes with A. We set 〈ξ ,η〉A = L∗
ξ

Lη . In particular, we have 〈m1,m2〉A = EA(m∗
1m2)

for m1,m2 ∈M. The A-valued inner product 〈ξ ,η〉A = L∗
ξ

Lη gives to L 2(M,ϕ) the
structure of a self-dual Hilbert right A-module [22]. It is a normed space with respect
to the norm ‖ξ‖L 2(M) = ‖〈ξ ,ξ 〉A‖

1/2
A . Note that

‖ξ‖2
L2(M) = τµ(〈ξ ,ξ 〉A)≤ ‖ξ‖2

L 2(M).

On the algebraic tensor product L 2(M,ϕ)�L2(A) a positive hermitian form is
defined by

〈ξ ⊗ f ,η ⊗g〉=
∫

X
f g〈ξ ,η〉A dµ.

The Hilbert space L 2(M,ϕ)⊗A L2(A) obtained by separation and completion is
isomorphic to L2(M,ϕ) as a right A-module by ξ ⊗ f 7→ ξ f . Moreover the von Neu-
mann algebra B(L 2(M,ϕ)A) of bounded A-linear endomorphisms of L 2(M,ϕ) is
isomorphic to 〈M,eA〉 by T 7→ T ⊗ 1. We shall identify these two von Neumann
algebras (see [22], [29] for details on these facts).

Definition 3.2 An orthonormal basis of the A-module L2(M,ϕ) is a family (ξi) of
elements of L 2(M,ϕ) such that ∑i ξiA = L2(M,ϕ) and

〈
ξi,ξ j

〉
A = δi, j p j for all i, j,

where the p j are projections in A.

It is easily checked that LξiL
∗
ξi

is the orthogonal projection on ξiA, and that these
projections are mutually orthogonal with ∑i LξiL

∗
ξi

= 1.
Using a generalization of the Gram-Schmidt orthonormalization process, one

shows the existence of orthonormal bases (see [22]).

Lemma 3.3 Let (ξi) be an orthonormal basis of the A-module L2(M,ϕ). For every
ξ ∈L 2(M,ϕ), we have (weak* convergence)

〈ξ ,ξ 〉A = ∑
i
〈ξ ,ξi〉A〈ξi,ξ 〉A. (3.5)

Proof. Indeed

〈ξ ,ξ 〉A = L∗
ξ

Lξ = L∗
ξ
(∑

i
LξiL

∗
ξi
)Lξ = ∑

i
(L∗

ξ
Lξi)(L

∗
ξi

Lξ ) = ∑
i
〈ξ ,ξi〉A〈ξi,ξ 〉A.

ut

Lemma 3.4 Let (ξi)i∈I be an orthonormal basis of the A-module L2(M,ϕ).
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(i) For every x ∈ 〈M,eA〉+ we have

Trµ(x) = ∑
i

τµ(〈ξi,xξi〉A) = ∑
i
〈ξi,xξi〉L2(M). (3.6)

(ii) span
{

Lξ L∗η : ξ ,η ∈L 2(M,ϕ)
}

is contained in the ideal of definition of Trµ and
we have, for ξ ,η ∈L 2(M,ϕ),

Trµ(Lξ L∗η) = τµ(L∗η Lξ ) = τµ(〈η ,ξ 〉A). (3.7)

Proof. (i) The map U : L2(M,ϕ) = ⊕iξiA → ⊕i piL2(A) defined by U(ξia) = pia
is an isomorphism which identifies L2(M,ϕ) to the submodule p(`2(I)⊗ L2(A))
of `2(I)⊗ L2(A), with p = ⊕i pi. The canonical trace on 〈M,eA〉 is transfered to
the restriction to p

(
B(`2(I))⊗A

)
p of the trace Tr⊗ τµ , defined on T = [Ti, j] ∈

(B(`2(I)⊗A)+ by (Tr⊗ τµ)(T ) = ∑i τµ(Tii). It follows that

Trµ(x) = ∑
i

τµ((UxU∗)ii) = ∑
i
〈ξi,xξi〉L2(M) = ∑

i
τµ(〈ξi,xξi〉A).

(ii) Taking x = Lξ L∗
ξ

in (i), the equality Trµ(Lξ L∗
ξ
) = τµ(〈ξ ,ξ 〉A) follows from

Equations (3.5) and (3.6). Formula (3.7) is deduced by polarization. ut

3.2 Compact operators

In a semi-finite von Neumann algebra N, there is a natural notion of ideal of compact
operators, namely the norm-closed ideal I (N) generated by its finite projections
(see [24, Sect. 1.3.2] or [25]).

Concerning N = 〈M,eA〉, there is another natural candidate for the space of com-
pact operators. First, we observe that given ξ ,η ∈L 2(M,ϕ), the operator Lξ L∗η ∈
〈M,eA〉 plays the role of a rank one operator in ordinary Hilbert spaces: indeed, if
α ∈L 2(M,ϕ), we have (Lξ L∗η)(α) = ξ 〈η ,α〉A. In particular, for m1,m2 ∈ M, we
note that m1eAm2 is a “rank one operator” since m1eAm2 = Lm1L∗m∗

2
. We denote by

K (〈M,eA〉) the norm closure into 〈M,eA〉 of

span
{

Lξ L∗η : ξ ,η ∈L 2(M,ϕ)
}
.

It is a two-sided ideal of 〈M,eA〉.
For every ξ ∈L 2(M,ϕ), we have Lξ eA ∈ 〈M,eA〉. Since

Lξ L∗η = (Lξ eA)(Lη eA)∗

we see that K (〈M,eA〉) is the norm closed two-sided ideal generated by eA in
〈M,eA〉. The projection eA being finite (because Trµ(eA) = 1), we have

K (〈M,eA〉)⊂I (〈M,eA〉).
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The subtle difference between K (〈M,eA〉) and I (〈M,eA〉) is studied in [24,
Sect. 1.3.2]. We recall in particular that for every T ∈I (〈M,eA〉) and every ε > 0,
there is a projection p ∈ A such that τµ(1− p) ≤ ε and T JpJ ∈ K (〈M,eA〉) (see
[24, Proposition 1.3.3 (3)]).3

3.3 The relative Haagerup property

Let Φ be a unital completely positive map from M into M such that EA ◦Φ = EA.
Then for m ∈ M, we have

‖Φ(m)‖2
2 = ϕ(Φ(m)∗Φ(m))≤ ϕ(Φ(m∗m)) = ϕ(m∗m) = ‖m‖2

2.

It follows that Φ extends to a contraction Φ̂ of L2(M,ϕ). Whenever Φ is A-
bimodular, Φ̂ commutes with the right action of A (due to (3.4)) and so belongs
to 〈M,eA〉. It also commutes with the left action of A and so belongs to A′∩〈M,eA〉.

Definition 3.5 We say that M has the Haagerup property (or property (H)) relative
to A and EA if there exists a net (Φi) of unital A-bimodular completely positive maps
from M to M such that

(i) EA ◦Φi = EA for all i ;
(ii) Φ̂i ∈K (〈M,eA〉) for all i ;

(iii) limi ‖Φi(x)− x‖2 = 0 for every x ∈ M.

This notion is due to Boca [9]. In [24], Popa uses a slightly different formulation.

Lemma 3.6 In the previous definition, we may equivalently assume that Φ̂i ∈
I (〈M,eA〉) for every i.

Proof. This fact is explained in [24]. Let Φ be a unital A-bimodular completely
positive map from M to M such that EA ◦Φ = EA and Φ̂ ∈I (〈M,eA〉). As already
said, by [24, Proposition 1.3.3 (3)], for every ε > 0, there is a projection p in A
with τµ(1− p) < ε and Φ̂JpJ ∈K (〈M,eA〉). Thus we have pΦ̂JpJ ∈K (〈M,eA〉).
Moreover, this operator is associated with the completely positive map Φp : m ∈
M 7→ Φ(pmp), since

(pΦ̂JpJ)(m̂) = pΦ̂(m̂p) = pΦ̂(m̂p) = pΦ̂(mp) = Φ̂(pmp).

Then, Φ ′ = Φp +(1− p)EA is unital, satisfies EA ◦Φ ′ = EA and still provides an ele-
ment of K (〈M,eA〉). This modification allows to prove that if Definition 3.5 holds
with K (〈M,eA〉) replaced by I (〈M,eA〉), then the relative Haagerup property is
satisfied (see [24, Proposition 2.2 (1)]). ut

3 In [24], K (〈M,eA〉) is denoted I0(〈M,eA〉.
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3.4 Back to L2(G,ν)A

We apply the facts just reminded to M = L(G,µ), which is on standard form on
L2(G,ν) = L2(M,ϕ). This Hilbert space is viewed as a right A-module: for ξ ∈
L2(G,µ) and f ∈ A, the action is given by ξ f ◦ s.

It is easily seen that L 2(M,ϕ) is the space of ξ ∈ L2(G,ν) such that x 7→
∑s(γ)=x |ξ (γ)|2 is in L∞(X). Moreover, for ξ ,η ∈L 2(M,ϕ) we have

〈ξ ,η〉A = ∑
s(γ)=x

ξ (γ)η(γ).

For simplicity of notation, we shall often identify f ∈ I(G) ⊂ L2(G,ν) with the
operator L( f ).4 For instance, for f ,g ∈ I(G), the operator L( f )◦L(g) is also written
f ∗g, and for T ∈B(L2(G,µ)), we write T ◦ f instead of T ◦L( f ).

Let S ⊂ G be a bisection. Its characteristic function 1S is an element of I(G) and
a partial isometry in M since

1∗S ∗1S = 1s(S), and 1S ∗1∗S = 1r(S).

Let G =tSn be a countable partition of G into Borel bisections. Another straight-
forward computation shows that (1Sn)n is an orthonormal basis of the right A-
module L2(M,ϕ).

By Lemma 3.4, for x ∈ 〈M,eA〉+ we have

Trµ(x) = ∑
n
〈1Sn ,x1Sn〉L2(M).

In particular, whenever x is the multiplication operator m( f ) by some bounded non-
negative Borel function f , we get

Trµ(m( f )) =
∫

G
f dν . (3.8)

4 From completely positive maps to positive definite functions

Recall that if G is a countable group, and Φ : L(G)→ L(G) is a completely positive
map, then t 7→ FΦ(t) = τ(Φ(ut)u∗t ) is a positive definite function on G, where τ

is the canonical trace on L(G) and ut , t ∈ G, are the canonical unitaries in L(G).
We want to extend this classical fact to the groupoid case. This was achieved by
Jolissaint [17] for countable probability measure preserving equivalence relations.

Let (G,µ) be a countable measured groupoid and M = L(G,µ). Let Φ : M → M
be a normal A-bimodular unital completely positive map. Let G =tSn be a partition

4 The reader should not confuse L( f ) : L2(G,ν) → L2(G,ν) with its restriction L f : L2(A,τµ ) →
L2(G,ν).
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into Borel bisections. We define FΦ : G → C by

FΦ(γ) = EA(Φ(1Sn)◦1∗Sn)◦ r(γ), (4.9)

where Sn is the bisection which contains γ .
That FΦ does not depend (up to null sets) on the choice of the partition is a

consequence of the following lemma.

Lemma 4.1 Let S1 and S2 be two Borel bisections. Then

EA(Φ(1S1)◦1∗S1
) = EA(Φ(1S2)◦1∗S2

)

almost everywhere on r(S1∩S2).

Proof. Denote by e the characteristic function of r(S1∩S2). Then e∗1S1 = e∗1S2 =
1S1∩S2 . Thus we have

eEA(Φ(1S1)◦1∗S1
)e = EA

(
Φ(e∗1S1)◦ (1∗S1

∗ e)
)

= EA
(
Φ(e∗1S2)◦ (1∗S2

∗ e) = eEA(Φ(1S2)◦1∗S2
)e.

ut

We now want to show that FΦ is a positive definite function in the following
sense. We shall need some preliminary facts.

Definition 4.2 A Borel function F : G → C is said to be positive definite if there
exists a µ-null subset N of X = G(0) such that for every x /∈N, and every γ1, . . . ,γk ∈
Gx, the k× k matrix [F(γ−1

i γ j)] is non-negative.

Definition 4.3 We say that a Borel bisection S is admissible if there exists a constant
c > 0 such that 1/c ≤ δ (γ)≤ c almost everywhere on S.

In other terms, 1S ∈ I∞(G) and so the convolution to the right by 1S defines a
bounded operator R(1S) on L2(M,ϕ), by (2.3).

Lemma 4.4 Let S be a Borel bisection and let T ∈ M. We have 1̂S ◦T = 1S ∗ T̂ .
Moreover, if S is admissible, we have T̂ ◦1S = T̂ ∗1S.

Proof. First, we observe that 1̂S ◦T = 1S ◦T (1X ) = 1S ∗ T̂ .
On the other hand, given f ∈ I(G), we have L( f )(1̂S) = f ∗ 1S. So, if ( fn) is a

sequence in I(G) such that limn L( fn) = T in the strong operator topology, we have

T̂ ◦1S = T (1̂S) = lim
n

L( fn)(1̂S) = lim
n

fn ∗1S

in L2(G,ν). But, when S is admissible, the convolution to the right by 1S is the
bounded operator R(1S). Noticing that limn

∥∥∥ fn− T̂
∥∥∥

2
= 0, it follows that

T̂ ◦1S = lim
n

fn ∗1S = T̂ ∗1S.
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ut

Lemma 4.5 Let T ∈ M, and let S be an admissible bisection. Then

1S(γ)EA(T ◦1S)(s(γ)) = 1S(γ)EA(1S ◦T )(r(γ))

for almost every γ .

Proof. We have

(T̂ ◦1S)(x) = ∑
γ1γ2=x

T̂ (γ1)1S(γ2) = T̂ (γ−1
2 )

whenever x ∈ s(S), where γ2 is the unique element of S with s(γ2) = x. Otherwise
(T ◦1S)(x) = 0.

On the other hand,
(1̂S ◦T )(x) = T̂ (γ−1

1 )

whenever x ∈ r(S), where γ1 is the unique element of S with r(γ1) = x. Otherwise
(1̂S ◦T )(x) = 0. Our statement follows immediately. ut

Lemma 4.6 FΦ is a positive definite function.

Proof. We assume that FΦ is defined by equation (4.9) through a partition under
admissible bisections. We set Si j = S−1

i S j =
{

γ−1γ ′ : γ ∈ Si,γ
′ ∈ S j

}
. Note that 1∗Si

∗
1S j = 1Si j . Morever, the Si j are admissible bisections. We set

Zi jm =
{

x ∈ r(Si j ∩Sm) : EA(Φ(1Si j)◦1∗Si j
)(x) 6= EA(Φ(1Sm)◦1∗Sm)(x)

}
and Z = ∪i, j,mZi jm. It is a null set by Lemma 4.1.

By Lemma 4.5, for every i there is a null set Ei ⊂ r(Si) such that for γ ∈ Si with
r(γ) /∈ Ei and for every j, we have

EA(Φ(1Si j)◦1∗S j
◦1Si)(s(γ)) = EA(1Si ◦Φ(1Si j)◦1∗S j

)(r(γ))

We set E = ∪iEi. Let Y be the saturation of Z∪E. It is a null set, since µ is quasi-
invariant.

Let x /∈ Y , and γ1, . . . ,γk ∈ Gx. Assume that γ
−1
i γ j ∈ S−1

ni
Sn j ∩ Sm. We have

r(γ−1
i γ j) = s(γi) /∈ Y since r(γi) = x /∈ Y . Therefore,

FΦ(γ−1
i γ j) = EA(Φ(1Snin j

)◦1∗Sn j
◦1Sni

)(s(γi)).

But γi ∈ Sni with r(γi) = x /∈ Y , so

EA(Φ(1Snin j
)◦1∗Sn j

◦1Sni
)(s(γi)) = EA(1Sni

◦Φ(1Snin j
)◦1∗Sn j

)(r(γi)).

Given λ1, . . . ,λk ∈ C, we have
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k

∑
i, j=1

λiλ jFΦ(γ−1
i γ j) = EA

( k

∑
i=1

(λi1Sni
)◦Φ(1∗Sni

◦1Sn j
)◦

k

∑
j=1

(λ j1Sn j
)∗

)
(x)≥ 0.

ut

Obviously, if Φ is unital, FΦ takes value 1 almost everywhere on X .

Proposition 4.7 We now assume that Φ is unital, with EA ◦Φ = EA and Φ̂ ∈
K (〈M,eA〉). Then, for every ε > 0, we have

ν({|FΦ |> ε}< +∞.

Proof. Let (Sn) be a partition of G into Borel bisections. Given ε > 0 we choose
ξ1, . . . ,ξk,η1, . . . ,ηk ∈L 2(M,ϕ) such that∥∥∥∥∥Φ̂ −

k

∑
i=1

LξiL
∗
ηi

∥∥∥∥∥≤ ε/2.

We view Φ̂ −∑
k
i=1 LξiL

∗
ηi

as an element of B(L 2(M,ϕ)A) and we apply it to 1Sn ∈
L 2(M,ϕ). Then∥∥∥∥∥Φ(1Sn)−

k

∑
i=1

ξi〈ηi,1Sn〉A

∥∥∥∥∥
L 2(M)

≤ ε/2‖1Sn‖L 2(M) ≤ ε/2.

Using the Cauchy-Schwarz inequality 〈ξ ,η〉∗A〈ξ ,η〉A ≤ ‖ξ‖2
L 2(M)〈η ,η〉A, we

get∥∥∥∥∥
〈

1Sn ,Φ(1Sn)−
k

∑
i=1

ξi〈ηi,1Sn〉A

〉
A

∥∥∥∥∥≤
∥∥∥∥∥Φ(1Sn)−

k

∑
i=1

ξi〈ηi,1Sn〉A

∥∥∥∥∥
L 2(M)

≤ ε/2.

We have, for almost every γ ∈ Sn and x = s(γ),

|FΦ(γ)|=
∣∣EA(Φ(1Sn)◦1∗Sn)(r(γ))

∣∣ =
∣∣EA(1∗Sn ◦Φ(1Sn))(x)

∣∣ =
∣∣〈1Sn ,Φ(1Sn)〉A(x)

∣∣
≤

∣∣∣∣∣
〈

1Sn ,Φ(1Sn)−
k

∑
i=1

ξi〈ηi,1Sn〉A

〉
A

(x)

∣∣∣∣∣+ k

∑
i=1

∣∣〈1Sn ,ξi〈ηi,1Sn〉A

〉
A(x)

∣∣.
The first term is ≤ ε/2 for almost every x ∈ s(Sn). As for the second term, we have,
almost everywhere,∣∣〈1Sn ,ξi〉A(x)〈ηi,1Sn〉A(x)

∣∣≤ ‖ξi‖L 2(M)

∣∣〈ηi,1Sn〉A(x)
∣∣.

Hence, we get

|FΦ(γ)| ≤ ε/2+
k

∑
i=1

‖ξi‖L 2(M)

∣∣〈ηi,1Sn〉A(s(γ))
∣∣
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for almost every γ ∈ Sn.
We want to estimate

ν({|FΦ |> ε}) = ∑
n

ν({γ ∈ Sn : |FΦ(γ)|> ε}).

For almost every γ ∈ Sn such that |FΦ(γ)|> ε , we see that

k

∑
i=1

‖ξi‖L 2(M)

∣∣〈ηi,1Sn〉A(s(γ))
∣∣ > ε/2.

Therefore

ν({|FΦ |> ε})≤∑
n

ν

({
γ ∈ Sn :

k

∑
i=1

‖ξi‖L 2(M)

∣∣〈ηi,1Sn〉A(s(γ))
∣∣ > ε/2

})
≤∑

n
µ

({
x ∈ s(Sn) :

k

∑
i=1

‖ξi‖L 2(M)

∣∣〈ηi,1Sn〉A(x)
∣∣ > ε/2

})
.

Now,

k

∑
i=1

‖ξi‖L 2(M)

∣∣〈ηi,1Sn〉A(x)
∣∣≤ (

k

∑
i=1

‖ξi‖2
L 2(M))

1/2( k

∑
i=1

∣∣〈ηi,1Sn〉A(x)
∣∣2)1/2

.

We set c = ∑
k
i=1 ‖ξi‖2

L 2(M)) and fn(x) = ∑
k
i=1

∣∣〈ηi,1Sn〉A(x)
∣∣2. We have

∑
n

fn(x) = ∑
n

k

∑
i=1

∣∣〈ηi,1Sn〉A(x)
∣∣2 =

k

∑
i=1

∑
n

∣∣〈ηi,1Sn〉A(x)
∣∣2

=
k

∑
i=1

〈ηi,ηi〉A(x)≤
k

∑
i=1

‖ηi‖2
L 2(M),

since, by Lemma 3.3 (or directly here),

〈ηi,ηi〉A = ∑
k

〈
ηi,1Sk

〉
A

〈
1Sk ,ηi

〉
A = ∑

k

∣∣〈ηi,1Sk

〉
A

∣∣2
.

We set d = ∑
k
i=1 ‖ηi‖2

L 2(M).
We have

ν({|FΦ |> ε})≤∑
n

µ(
{

x ∈ s(Sn) : c fn(x) > (ε/2)2}.

We set α = c−1(ε/2)2. Denote by i(x) the number of indices n such that fn(x) > α .
Then i(x) ≤ N, where N is the integer part of d/α . We denote by P = {Pn} the
set of subsets of N whose cardinal is ≤ N. Then there is a partition X = tmBm into
Borel subsets such that
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∀x ∈ Bm, Pm = {n ∈ N : fn(x) > α}.

We have

ν({|FΦ |> ε})≤ ∑
n,m

µ({x ∈ Bm∩ s(Sn) : fn(x) > α})

≤∑
m

(
∑
n

µ({x ∈ Bm∩ s(Sn) : fn(x) > α})

≤∑
m

∑
n∈Pm

µ({x ∈ Bm∩ s(Sn) : fn(x) > α})≤∑
m

Nµ(Bm) = N

ut

5 From positive type functions to completely positive maps

Again, we want to extend a well known result in the group case, namely that, given
a positive definite function F on a countable group G, there is a normal completely
positive map Φ : L(G) → L(G), well defined by the formula Φ(ut) = F(t)ut for
every t ∈ G.

We need some preliminaries. For the notion of representation used below, see for
instance [6, Sect. 3.1].

Lemma 5.1 Let F be a positive definite function on (G,µ). There exists a repre-
sentation π of G on a measurable field K = {K (x)}x∈X of Hilbert spaces, and a
measurable section ξ : x 7→ ξ (x) ∈K (x) such that

F(γ) = 〈ξ ◦ r(γ),π(γ)ξ ◦ s(γ)〉

almost everywhere, that is F is the coefficient of the representation π , associated
with ξ .

Proof. This classical fact may be found in [27]. The proof is straightforward, and
similar to the classical GNS construction in the case of groups. Let V (x) the space of
finitely supported complex-valued functions on Gx, endowed with the semi-definite
positive hermitian form

〈 f ,g〉x = ∑
γ1,γ2∈Gx

f (γ1)g(γ2)F(γ−1
1 γ2).

We denote by K (x) the Hilbert space obtained by separation and completion of
V (x), and π(γ) : K (s(γ)) → K (r(γ)) is defined by (π(γ) f )(γ1) = f (γ−1γ1). The
Borel structure on the field {K (x)}x∈X is provided by the Borel functions on G
whose restriction to the fibres Gx are finitely supported. Finally, ξ is the characte-
ristic function of X , viewed as a Borel section. ut

Now we assume that F(x) = 1 for almost every x∈X , and thus ξ is a unit section.
We consider the measurable field

{
`2(Gx)⊗K (x)

}
x∈X . Note that
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`2(Gx)⊗K (x) = `2(Gx,K (x)).

Let f ∈ `2(Gx). We define Sx( f ) ∈ `2(Gx,K (x)) by

Sx( f )(γ) = f (γ)π(γ)∗ξ ◦ r(γ)

for γ ∈ Gx. Then
∑

s(γ)=x
‖Sx( f )(γ)‖2

K (x) = ‖ f‖`2(Gx).

The field (Sx)x∈X of operators defines an isometry

S : L2(G,ν)→
∫ ⊕

X
`2(Gx,K (x))dµ(x),

by
S( f )(γ) = f (γ)π(γ)∗ξ ◦ r(γ).

Note that
∫ ⊕

X `2(Gx,K (x))dµ(x) is a right A-module, by

(ηa)x = ηxa(x) : γ ∈ Gx 7→ η(γ)a◦ s(γ).

Of course, S commutes with the right actions of A. We also observe that, as a right A-
module, L 2(M,ϕ)⊗A

∫ ⊕
X K (x)dµ(x) and

∫ ⊕
X `2(Gx,K (x))dµ(x) are canonically

isomorphic under the map

ζ ⊗η 7→ ζ η ◦ s, ∀ζ ∈L 2(M,ϕ),∀η ∈
∫ ⊕

X
K (x)dµ(x),

where (ζ η ◦ s)x is the function γ ∈ Gx 7→ ζ (γ)η ◦ s(γ) in `2(Gx,K (x)). It follows
that M acts on

∫ ⊕
X `2(Gx,K (x))dµ(x) by m 7→ m⊗ Id . In particular, for f ∈ I(G),

we see that L( f )⊗ Id , viewed as an operator on
∫ ⊕

X `2(Gx,K (x))dµ(x), is acting
as

((L( f )⊗ Id)η)(γ) = ∑
γ1γ2=γ

f (γ1)η(γ2) ∈K (s(γ)).

Lemma 5.2 For f ∈ I(G), we have S∗
(
L( f )⊗ Id

)
S = L(F f ).

Proof. A straightforward computation shows that for η ∈
∫ ⊕

X `2(Gx,K (x))dµ(x),
we have

(S∗η)(γ) = 〈π(γ)∗ξ ◦ r(γ),η(γ)〉K (s(γ)).

Moreover, given h ∈ L2(G,ν), we have(
(L( f )⊗ Id)Sh

)
(γ) = ∑

γ1γ2=γ

f (γ1)(Sh)(γ2) = ∑
γ1γ2=γ

f (γ1)h(γ2)π(γ2)∗ξ ◦ r(γ2).

Hence,
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(
S∗(L( f )⊗ Id)Sh

)
(γ) =

〈
π(γ)∗ξ ◦ r(γ), ∑

γ1γ2=γ

f (γ1)h(γ2)π(γ2)∗ξ ◦ r(γ2)

〉

=

〈
ξ ◦ r(γ), ∑

γ1γ2=γ

f (γ1)h(γ2)π(γ1)ξ ◦ r(γ2)

〉
= ∑

γ1γ2=γ

f (γ1)h(γ2)〈ξ ◦ r(γ1),π(γ1)ξ ◦ r(γ2)〉

= ∑
γ1γ2=γ

f (γ1)F(γ1)h(γ2) = (L(F f )h)(γ).

ut

Proposition 5.3 Let F : G → C be a Borel positive type function on G such that
F|X = 1. Then there exists a unique normal completely positive map Φ from M into
M such that Φ(L( f )) = L(F f ) for every f ∈ I(G). Morever, Φ is A-bimodular, unital
and EA ◦Φ = EA.

Proof. The uniqueness is a consequence of the normality of Φ , combined with the
density of L(I(G)) into M. With the notation of the previous lemma, for m ∈ M we
put Φ(m) = S∗

(
m⊗ Id

)
S. Obviously, Φ satisfies the required conditions. ut

Remark 5.4 We keep the notation of the previous proposition. A straightforward
computation shows that F is the positive definite function FΦ constructed from Φ .

Proposition 5.5 Let F be a Borel positive definite function on G such that F|X =
1. We assume that for every ε > 0, we have ν({|F |> ε}) < +∞. Let Φ be the
completely positive map defined by F. Then Φ̂ belongs to the norm closed ideal
I (〈M,eA〉) generated by the finite projections of 〈M,eA〉.

Proof. We observe that T = Φ̂ is the multiplication operator m(F) by F . We need
to show that for every t > 0, the spectral projection et(|T |) of |T | relative to ]t,+∞[
is finite. This projection is the multiplication operator by ft = 1]t,+∞[ ◦ |F |. By (3.8),
we have

Trµ(m( ft)) = ν( ft) = ν({|F |> t}< +∞.

ut

6 Characterizations of the relative Haagerup property

We keep the same notation as in the previous section.

Theorem 6.1 The following conditions are equivalent:

(1) M has the Haagerup property relative to A and EA.
(2) There exists a sequence (Fn) of positive definite functions on G such that

(i) (Fn)|X = 1 almost everywhere ;
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(ii) for every ε > 0, ν({|Fn|> ε}) < +∞ ;
(iii) limn Fn = 1 almost everywhere.

Proof. (1) ⇒ (2). Let (Φn) a sequence of unital completely positive maps M → M
satisfying conditions (i), (ii), (iii) of Definition 3.5. We set Fn = FΦn . By Proposition
4.7 we know that condition (ii) of (2) above is satisfied. It remains to check (iii). For
m ∈ M, we have

‖Φn(m)−m‖2
2 =

∫
X

EA((Φn(m)−m)∗(Φn(m)−m))(x)dµ(x).

Let G = tnSn be a partition of G by Borel bisections. There is a null subset Y of X
such that, for every k and for γ ∈ Sk ∩ r−1(X \Y ) we have

Fn(γ)−1 = EA(1∗Sk
◦Φn(1Sk))(s(γ))−EA(1∗Sk

◦1Sk)(s(γ)).

Thus

|Fn(γ)−1|2 =
∣∣EA(1∗Sk

◦ (Φn(1Sk)−1Sk))(s(γ))
∣∣2

≤ EA((Φn(1Sk)−1Sk)
∗(Φn(1Sk)−1Sk))(s(γ)).

It follows that∫
G
|Fn−1|21Sk dν ≤

∫
s(Sk)

EA((Φn(1Sk)−1Sk)
∗(Φn(1Sk)−1Sk))(x)dµ(x)

≤
∥∥Φn(1Sk)−1Sk

∥∥2
2 → 0.

So there is a subsequence of (|Fn(γ)−1|)n which goes to 0 almost everywhere on
Sk. Using the Cantor diagonal process, we get the existence of a subsequence (Fnk)k
of (Fn)n such that limk Fnk = 1 almost everywhere, which is enough for our purpose.

(2)⇒ (1). Assume the existence of a sequence (Fn)n of positive definite functions
on G, satisfying the three conditions of (2). Let Φn be the completely positive map
defined by Fn. Let us show that for every m ∈ M, we have

lim
n
‖Φn(m)−m‖2 = 0.

We first consider the case m = L( f ) with f ∈ I(G). Then we have

‖Φn(L( f ))−L( f )‖2 = ‖L((Fn−1) f )‖2 = ‖(Fn−1) f‖2 → 0

by the Lebesgue dominated convergence theorem.
Let now m ∈ M. Then

‖Φn(m)−m‖2 ≤ ‖Φn(m−L( f ))‖2 +‖Φn(L( f ))−L( f )‖2 +‖L( f )−m‖2.

We conclude by a classical approximation argument, since

‖Φn(m−L( f ))‖2 ≤ ‖L( f )−m‖2.
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Together with Propositions 5.3, 5.5 and Lemma 3.6, this proves (1). ut

This theorem justifies the following definition.

Definition 6.2 We say that a countable measured groupoid (G,µ) has the Haagerup
property (or has property (H)) if there exists a sequence (Fn) of positive definite
functions on G such that

(i) (Fn)|X = 1 almost everywhere ;
(ii) for every ε > 0, ν({|Fn|> ε}) < +∞ ;

(iii) limn Fn = 1 almost everywhere.

We observe that, by Theorem 6.1, this notion only involves the conditional ex-
pectation EA and therefore only depends on the measure class of µ . This fact does
not seem to be obvious directly from the above definition 6.2.

Of course, we get back the usual definition for a countable group. The other
equivalent definitions for groups also extend to groupoids as we shall see now.

Definition 6.3 A real conditionally negative definite function on G is a Borel func-
tion ψ : G → R such that

(i) ψ(x) = 0 for every x ∈ G(0) ;
(ii) ψ(γ) = ψ(γ−1) for every γ ∈ G ;

(iii) for every x ∈ G(0), every γ1, . . . ,γn ∈ Gx and every real numbers λ1, . . . ,λn with
∑

n
i=1 λi = 0, then

n

∑
i, j=1

λiλ jψ(γ−1
i γ j)≤ 0.

Such a function is non-negative.

Definition 6.4 Let (G,µ) be a countable measured groupoid. A real conditionally
negative definite function on (G,µ) is a Borel function ψ : G → R such that there
exists a co-null subset U of G(0) with the property that the restriction of ψ to the
inessential reduction G|U satisfies the conditions of the previous definition.

We say that ψ is proper if for every c > 0, we have ν({ψ ≤ c}) < +∞.

Theorem 6.5 The groupoid (G,µ) has the Haagerup property if and only if there
exists a real conditionally negative definite function ψ on (G,µ) such that

∀c > 0, ν({ψ ≤ c}) < +∞.

Proof. We follow the steps of the proof given by Jolissaint [17] for equivalence
relations and previously by Akemann-Walter [3] for groups. Let ψ be a proper con-
ditionally negative definite function. We set Fn = exp(−ψ/n). Then (Fn) is a se-
quence of positive definite functions which goes to 1 pointwise. Moreover, we have
Fn(γ) > c if and only if ψ(γ) <−n lnc. Therefore (G,µ) has the Haagerup property.

Conversely, let (Fn) be a sequence of positive definite functions on G satisfying
conditions (i), (ii), (iii) of Theorem 6.1 (2). We choose sequences (αn) and (εn) of
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positive numbers such (αn) is increasing with limn αn = +∞, (εn) is decreasing with
limn εn = 0, and such that ∑n αn(εn)1/2 < +∞.

Let G = tSn be a partition of G into Borel bisections. Taking if necessary a
subsequence of (Fn), we may assume that for every n,

∑
1≤k≤n

∫
G
|1−Fn|21Sk dν ≤ ε

2
n .

It follows that ∫
G

(
ℜ(1−Fn

)21∪1≤k≤nSk dν ≤
∫

G
|1−Fn|21∪1≤k≤nSk dν

≤ ε
2
n .

We set En =
{

γ ∈ ∪1≤k≤nSk : |ℜ(1−Fn(γ)| ≥ (εn)1/2
}

and E = ∩l ∪n≥l En. Since
ν(En)≤ εn and ∑n εn < +∞, we see that ν(E) = 0.

Let us set ψ = ∑n αnℜ(1−Fn) on G\E and ψ = 0 on E. We claim that the series
converges pointwise. Indeed, let γ ∈ G\E. There exists m such that

γ ∈ (∪1≤i≤mSi)∩ (∩n≥mEc
n).

Thus, |ℜ(1−Fn(γ)| ≤ (εn)1/2 for n ≥ m, which shows our claim.
It remains to show that ψ is proper. Let c > 0, and let γ ∈ G\E with ψ(γ) ≤ c.

Then we have ℜ(1−Fn(γ)) ≤ c/αn for every n and therefore ℜFn(γ) ≥ 1− c/αn.
Let n be large enough such that 1− c/αn ≥ 1/2. It follows that

ν({ψ ≤ c})≤ ν({|Fn| ≥ 1/2)}< +∞.

ut

Definition 6.6 Let π be a representation of (G,µ) on a measurable field K =
{K (x)}x∈X of Hilbert spaces. A π-cocycle is a Borel section b of the pull-back
bundle r : r∗K = {(γ,ξ ) : ξ ∈K (r(γ))} → G such that, up to an inessential re-
duction, we have, for γ1,γ2 ∈ G with s(γ1) = r(γ2),

b(γ1γ2) = b(γ1)+π(γ1)b(γ2).

We say that b is proper if for every c > 0, we have ν({‖b‖ ≤ c}) < +∞.

Let b be a π-cocycle. It is easily seen that γ 7→ ‖b(γ)‖2 is conditionally negative
definite. Moreover, every real conditionally negative definite is of this form (see [6,
Proposition 5.21]).

Corollary 6.7 The groupoid (G,µ) has the Haagerup property if and only if it ad-
mits a proper π-cocycle for some representation π .

Examples 6.8 Let Γ y (X ,µ) be an action of a countable group Γ which leaves
quasi-invariant the probability measure µ . If Γ has the property (H), then (X oΓ ,µ)
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inherits this property. Indeed, if ψ : Γ →R is a proper conditionally negative definite
function, then ψ̃ : (x,s) 7→ ψ(s) is a proper conditionally negative definite function
on (X o Γ ,µ). Conversely, when the action is free, preserves µ and is such that
(X oΓ ,µ) has property (H), then Γ has property (H) [17, Proposition 3.3]. However,
free non-singular actions of groups not having property (H) can generate semi-direct
product groupoids with this property. Such actions can even be amenable (see for
instance [8, Examples 5.2.2]).

Interesting examples are provided by treeable groupoids, as we shall see now.
For instance, the free product of the type II1 hyperfinite equivalence relation by
itself, being treeable [5, Proposition 2.4], has the Haagerup property. Note also that
property (H) passes to subgroupoids.

7 Treeable countable measured groupoids have property (H)

The notion of treeable countable measured equivalence relation has been introduced
by Adams in [1]. Its obvious extension to the case of countable measured groupoids
is exposed in [6]. We recall here the main definitions. Let Q be a Borel subset of a
countable Borel groupoid G. We set Q0 = X and for n ≥ 1, we set

Qn = {γ ∈ G : ∃γ1, . . . ,γn ∈ Q,γ = γ1 · · ·γn}.

Definition 7.1 A graphing of G is a Borel subset Q of G such that Q = Q−1, Q∩X =
/0 and ∪n≥0Qn = G.

A graphing defines a structure of G-bundle of graphs on X : the set of vertices is
G and

E =
{
(γ1,γ2) ∈ G×G : r(γ1) = r(γ2),γ−1

1 γ2 ∈ Q
}

is the set of edges. In particular, for every x ∈ X , the fibre Gx is a graph, its set or
edges being E∩ (Gx×Gx). Moreover, for γ ∈ G, the map γ1 7→ γγ1 induces an iso-
morphism of graphs from Gs(γ) onto Gr(γ). Thus, a graphing is an equivariant Borel
way of defining a structure of graph on each fibre Gx. These graphs are connected
since ∪n≥0Qn = G.

When the graphs Gx are trees for every x ∈ X , the graphing Q is called a treeing.

Definition 7.2 A countable Borel groupoid G is said to be treeable if there is a
graphing which gives to r : G → X a structure of G-bundle of trees.

A countable measured groupoid (G,µ) is said to be treeable if there exists an
inessential reduction G|U which is a treeable Borel groupoid in the above sense.

Equipped with such a structure, (G,µ) is said to be a treed measured groupoid.

Consider the case where G is a countable group and Q is a symmetric set of
generators. The corresponding graph structure on G is the Cayley graph defined by
Q. If Q = S∪S−1 with S∩S−1 = /0, then Q is a treeing if and only if S is a free subset
of generators of G (and thus G is a free group).
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As made precise in [4, Proposition 3.9], treeable groupoids are the analogue of
free groups and therefore the following theorem is no surprise.

Theorem 7.3 (Ueda) Let (G,µ) be a countable measured groupoid which is tree-
able. Then (G,µ) has the Haagerup property.

Let Q be a treeing of (G,µ). We endow Gx with the length metric dx defined by

dx(γ1,γ2) = min
{

n ∈ N : γ
−1
1 γ2 ∈ Qn}.

The map (γ1,γ2) ∈ {(γ1,γ2) : r(γ1) = r(γ2)} 7→ dr(γ1)(γ1,γ2) is Borel.
We set ψ(γ) = dr(γ)(r(γ),γ). It is a real conditionally negative definite function

on G. Indeed, given γ1, . . . ,γn ∈ Gx and λ1, . . . ,λn ∈ R such that ∑
n
i=1 λi = 0, we

have

n

∑
i, j=1

λiλ jψ(γ−1
i γ j) =

n

∑
i, j=1

λiλ jds(γi)(s(γi),γ−1
i γ j) =

n

∑
i, j=1

λiλ jdx(γi,γ j)≤ 0,

since the length metric on a tree is conditionally negative definite (see [16, p. 69]
for instance).

We begin by proving Theorem 7.3 in the case where Q is bounded, i.e. there
exists k > 0 such that ]Qx ≤ k for almost every x ∈ X .

Lemma 7.4 Assume that Q is bounded. For every c > 0 we have ν({ψ ≤ c}) < +∞.

Proof. We have

ν({ψ ≤ c}) =
∫

X
]
{

γ : s(γ) = x,dx(x,γ−1)≤ c
}

dµ(x).

If k is such that ]Qx ≤ k for almost every x ∈ X , the cardinal of the ball in Gx of
center x and radius c is smaller than kc. It follows that ν({ψ ≤ c})≤ kc. ut

In view of the proof in the general case, we make a preliminary observation.
Whenever Q is bounded, G is the union of the increasing sequence ({ψ ≤ k})k∈N
of Borel subsets with ν({ψ ≤ k}) < +∞. Moreover, setting Fn = exp(−ψ/n), we
have limn Fn = 1 uniformly on each subset {ψ ≤ k}. Indeed, if ψ(γ)≤ k, we get

0 ≤ 1−Fn(γ)≤ ∑
j≥1

1
n j

ψ(γ) j

j!
≤ k

n
exp(k/n).

Proof of theorem 7.3. The treeing Q is no longer supposed to be bounded. Let G =
tSk be a partition of G into Borel bisections. For every integer n we set

Q′
n = ∪k≤n(Q∩Sk) and Qn = Q′

n∪ (Q′
n)
−1.

Note that (Qn) is an increasing sequence of Borel symmetric and bounded subsets
of Q with ∪nQn = Q. Let Gn be the subgroupoid of G generated by Qn, that is
Gn = ∪k≥0Qk

n, where we put Q0
n = X .
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We observe that Qn is a treeing for Gn. Denote by ψn the associated conditionally
negative definite function on Gn. Since Qn−1 ⊂ Qn, we have

(ψn)|Gn−1
≤ ψn−1.

Given two integers k and N, we set

Ak,N = {γ ∈ Gk : ψk(γ)≤ N}.

Then, obviously we have

Ak,N ⊂ Ak+1,N and Ak,N ⊂ Ak,N+1.

In particular, (Ak,k)kis an increasing sequence of Borel subsets of G with∪kAk,k = G.
We fix k. We set Fk,n(γ) = exp(−ψk(γ)/n) if γ ∈Gk and Fk,n(γ) = 0 if γ /∈Gk. By

Lemma 7.5 to follow, Fk,n is positive definite on G. Since Qk is bounded, Lemma
7.4 implies that for every ε > 0, and for every n, we have ν(

{
Fk,n ≥ ε

}
) < +∞.

Moreover, limn Fk,n = 1 uniformly on each Ak,N , N ≥ 1, as previously noticed.
We choose, step by step, a strictly increasing sequence (ni)i≥1 of integers such

that for every k,
sup

γ∈Ak,k

1−Fk,nk(γ)≤ 1/k.

Then the sequence (Fk,nk)k of positive definite functions satisfies the required con-
ditions showing that (G,µ) has property (H). ut

Lemma 7.5 Let H be a subgroupoid of a groupoid G with G(0) = H(0). Let F be a
positive definite function on H and extend F to G by setting F(γ) = 0 if γ /∈H. Then
F is positive definite on G.

Proof. Let γ1, . . . ,γn ∈ Gx and let λ1, . . . ,λn ∈ C. We want to show that

n

∑
i, j=1

λiλ jF(γ−1
i γ j)≥ 0.

We assume that this inequality holds for every number k < n of indices. For k = n,
this inequality is obvious if for every i 6= j we have γ

−1
i γ j /∈ H. Otherwise, up to a

permutation of indices, we take j = 1 and we assume that 2, . . . , l are the indices i
such that γ

−1
i γ1 ∈H. Then, if 1 ≤ i, j ≤ l we have γ

−1
i γ j = (γ−1

i γ1)(γ−1
1 γ j) ∈H and

for i ≤ l < j we have γ
−1
i γ j /∈ H. It follows that

n

∑
i, j=1

λiλ jF(γ−1
i γ j) =

l

∑
i, j=1

λiλ jF(γ−1
i γ j)+ ∑

i, j>l
λiλ jF(γ−1

i γ j),

where the first term of the right hand side is ≥ 0. As for the second term, it is also
≥ 0 by the induction assumption. ut
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8 Properties (T) and (H) are not compatible

Property (T) for group actions and equivalence relations has been introduced by
Zimmer in [32]. Its extension to measured groupoids is immediate. We say that
(G,µ) has property (T) if whenever a representation of (G,µ) almost has unit in-
variant sections, it actually has a unit invariant section (see [6, Definitions 4.2, 4.3]
for details). We have proved in [6, Theorem 5.22] the following characterization of
property (T).

Theorem 8.1 Let (G,µ) be an ergodic countable measured groupoid. The follo-
wing conditions are equivalent:

(i) (G,µ) has property (T) ;
(ii) for every real conditionally negative definite function ψ on G, there exists a Borel

subset E of X, with µ(E) > 0, such that the restriction of ψ to G|E is bounded.

Theorem 8.2 Let (G,µ) be an ergodic countable measured groupoid. We assume
that (G(0),µ) is a diffuse standard probability space. Then (G,µ) cannot have si-
multaneously properties (T) and (H).

Proof. Assume that (G,µ) has both properties (H) and (T). There exists a Borel
conditionally negative definite function ψ such that for every c > 0, we have
ν({ψ ≤ c}) < +∞. Moreover, there exists a Borel subset E of X , with µ(E) > 0,
such that the restriction of ψ to G|E is bounded. Then, we have∫

E
]{γ : s(γ) = x,r(γ) ∈ E}dµ(x) < +∞.

Therefore, for almost every x ∈ E, we have ]{γ : s(γ) = x,r(γ) ∈ E}< +∞. Repla-
cing if necessary E by a smaller subset we may assume the existence of N > 0 such
that for every x ∈ E,

]{γ : s(γ) = x,r(γ) ∈ E} ≤ N.

Since (G|E ,µ|E ) is ergodic, we may assume that all the fibres of this groupoid
have the same finite cardinal. Therefore, this groupoid is proper and so the quotient
Borel space E/(G|E ) is countably separated (see [8, Lemma 2.1.3]). A classical ar-
gument (see [33, Proposition 2.1.10]) shows that µ|E is supported by an equivalence
class, that is by a finite subset of E. But this contradicts the fact that the measure is
diffuse. ut

In the following corollaries, we always assume that (X ,µ) is a diffuse standard
probability measure space.

Corollary 8.3 Let (G,µ) be a countable ergodic measured groupoid such that
(RG,µ) has property (H) (e.g. is treeable). Then (G,µ) has not property (T).

Proof. If (G,µ) had property (T) then (RG,µ) would have the same property by [6,
Theorem 5.18]. But this is impossible by Theorem 8.2. ut
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This allows to retrieve results of Jolissaint [17, Proposition 3.2] and Adams-
Spatzier [2, Theorem 1.8].

Corollary 8.4 Let Γ y (X ,µ) be an ergodic probability measure preserving action
of a countable group Γ having property (T). Then (RΓ ,µ) has not property (H) and
in particular is not treeable.

Proof. Indeed, under the assumptions of the corollary, the semi-direct product
groupoid (X o Γ ,µ) has property (T) by [32, Proposition 2.4], and we apply the
previous corollary. ut

Corollary 8.5 Let (R,µ) be a type II1 equivalence relation on X having property
(H). Then its full group [R] does not contain any countable subgroup Γ which acts
ergodically on (X ,µ) and has property (T).

Proof. If [R] contains such a subgroup, then (RΓ ,µ) has property (T), and also
property (H) as a subequivalence relation of R, in contradiction with Corollary 8.3.

ut

Problem. Since by Dye’s theorem (R,µ) is entirely determined by its full group
[20, Theorem 4.1], it would be interesting to characterize property (H) in terms of
this full group.
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Mathématique. (L’Enseignement Mathématique, Geneva, 2000)
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