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1. Introduction

We say that a locally compact groupoida G has the weak containment property (in short
(WCP)) if the canonical surjective map from its full C∗-algebra C∗(G) onto its reduced
C∗-algebra C∗r (G) is injective. Every (topologically) amenable groupoid [2] has the (WCP)
(see [14, Theorem 3.6], [2, Proposition 6.1.10]). When G is a locally compact group it is
well known that the converse is true (see for instance [13, Theorem 4.21]). Therefore it is
natural to ask whether this converse still holds for locally compact groupoids. Surprisingly,
Willett gave an example of an étale groupoid for which this fact fails [16] (see [1] for a
related example). In fact, in Willett’s example one has the following equivalent properties:

• G is amenable;
• G is exact and has the (WCP).

We conjecture that this equivalence applies for any étale groupoid. This is based on the
following two results. First, in [12] it is proved that when G is a discrete group acting
by homeomorphisms on a compact space X, the corresponding transformation groupoid
G = X oG is amenable if and only if it has the (WCP) and G is exact. Secondly, Bönicke
proved in [9] that if G is a locally compact groupoid such that the orbit space G\X equipped
with the quotient topology is T0, then G is measurewise amenable if and only if it has the
(WCP) and is inner exact. Here X denotes the space of units of G equipped with the natural
G-action. Measurewise amenability is a notion weaker than amenability, equivalent to it in
many cases and in particular for étale groupoids [2, Theorem 3.3.7]. Inner exactness is a
much weaker notion than exactness (see the remark 2.1 below for some details). We also
remark that, recently, Matsumura’s result in [12] has been extended in [11] as follows: if G
is an exact locally compact group acting on a locally compact space X, then G = X oG is
measurewise amenable if and only if it has the (WCP).

For the notion of locally compact exact groupoid we refer to [6]. In this paper we are
only interested in the groupoid G = X o G, associated with an action of a discrete group
on a locally compact space X. In this case the different possible definitions of exactness for
G coincide (see [6, Theorem 8.6]). When X is not compact we observe that G can be exact,
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aWe implicitely assume that the groupoids we consider are second countable and with Haar system.

Moreover locally compact spaces are assumed to be Hausdorff.
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although G is not exact (think for instance of the action of G onto itself by translations).
On the the other hand, when X is compact, then X o G is exact if and only if the group
G is exact (see [6, Proposition 4.3]). In this paper, we extend Matsumura’s result and
strengthen our conjecture with the following proposition.

Proposition. Let G be a discrete group acting by homeomorphisms on a locally compact
space X. Then the groupoid XoG is amenable if and only if it is exact and has the (WCP).

2. Proof of the above proposition

Let α : G y X : (g, x) 7→ gx be a left action of a discrete group G on a locally compact
space X. In this case, the weak containment property (in short (WCP)) means that the
canonical surjective map from the full crossed product C0(X) o G (= C∗(X o G)) onto
the reduced crossed product C0(X) or G (= C∗r (X oG)) is injective. Amenable actions of
groups are defined for instance in [2], [4, Definition 2.1]. We also refer to [3] for equivalent
definitions that will be useful. For reasons explained above we only consider the case where
X is not compact.

We set A = C0(X). The bidual A∗∗ of A is a commutative von Neumann algebra. Let us
denote by Ω its spectrum. It is a compact, Hausdorff, extremally disconnected space. We
denote by X̂ the one-point compactification of X. We set A+ = C(X̂). Then, A+ is a unital

C∗-subalgebra of A∗∗. We view f ∈ C0(X) as a continuous function on X̂ = X ∪{∞}, with
value 0 at ∞. The canonical action α of G on A extends by bitransposition to an action on
A∗∗ that we still denote by α, so that A+ ⊂ A∗∗ is a G-equivariant inclusion. Note that α
induces a left action on Ω by setting f(tω) = αt−1(f)(ω) for f ∈ C(Ω), t ∈ G and ω ∈ Ω.

Given ω ∈ Ω, we denote by ρ(ω) the character of A+ sending f ∈ A+ onto f(ω). Then

ρ : Ω → X̂ is an equivariant surjective continuous map. In the sequel, when needed, A is
canonically identified with an ideal of A+ and with a C∗-subalgebra of C(Ω) via the map
f ∈ A 7→ f ◦ ρ.

Let us represent A∗∗ in standard form on a Hilbert space H. Then there is a localizable
Borel probability measure µ on Ω such that the action of A∗∗ on H is spatially isomorphic
to the action on L∞(Ω, µ) (identified with C(Ω)) on L2(Ω, µ) by multiplication [8]. We will
freely make this identification.

Let t 7→ ut be the unitary representation of G on H such that Adut = αt for every t ∈ G.
Note that (utfu

∗
t )(ω) = f(t−1ω) for f ∈ A∗∗ = C(Ω) and ω ∈ Ω.

Any amenable action is obviously exact [6] and has the WCP [4, Theorem 5.3]. We want
to prove the converse. Assume that AorG = AoG. Using the universal property of AoG
with respect to covariant representations, there exists a unique representation π of A o G
on H such that π(aδt) = aut for a ∈ A and t ∈ G where aδt denotes the function on X ×G
with value a(x) on (x, t) and 0 on (x, s) when s 6= t. On the other hand, the C∗-algebra
A or G is canonically embedded in B(L2(Ω, µ) ⊗ `2(G)). In this embedding, aδt is sent
onto aut ⊗ λt where (λtξ)(s) = ξ(t−1s) for ξ ∈ `2(G) and s, t ∈ G. This homomorphism
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π extends to a completely positive contraction φ from B(L2(Ω, µ) ⊗ `2(G) onto B(H)), by
Arveson’s extension theorem.

Let (βr(X ×G), rβ) be the Stone-Čech fibrewise compactification of X ×G with respect

to the projectionb r : X ×G→ X (see [5], to which we refer for more details and notation).
Recall that βr(X×G) is the spectrum of the ideal C0(X×G, r) of Cb(X×G) of all continuous
bounded function f on X × G such that for every ε > 0 there exists a compact subset K
on X, with |f(x, t)| ≤ ε if x 6∈ K and t ∈ G.

To every f ∈ C0(X ×G, r) we associate a function f̃ defined on Ω×G by

f̃(ω, t) = 0 if ρ(ω) =∞ ∈ X̂
= f(ρ(ω), t) if ρ(ω) ∈ X.

In fact, C0(X ×G, r) is canonically contained in the space of continuous bounded functions

h on X̂oG such that h(x, t) vanishes at infinity on X for every t ∈ G, by setting h(∞, t) = 0

for t ∈ G, whenever h ∈ C0(X ×G, r). Then f̃ = f ◦ (ρ× IdG).

We denote by ι the injective homomorphism f 7→ f̃ from C0(X ×G, r) into Cb(Ω×G).

Note that C0(X) is embedded into C0(X × G, r), thanks to the map f 7→ r∗f = f ◦ r.
Therefore when viewed as an element of Cb(Ω×G), f become the function (ω, t) 7→ f(ρ(ω)).

We define a faithful representation Π of C0(X×G, r) on the Hilbert space L2(Ω, µ)⊗`2(G)
by setting

(Π(f)ξ)(ω, t) = f̃(ω, t)ξ(ω, g) = ι(f)(ω, t)ξ(ω, t).

Therefore φ ◦Π is a completely positive contraction from C0(X ×G, r) into B(H).

Recall from [5], that rβ is the unique map from βr(X × G) onto X that extends the
projection r = X ×G → X. Then, f 7→ r∗β(f) = f ◦ rβ ≡ f ◦ r = r∗f is an inclusion from

C0(X) into

C0(βr(X ×G)) = C0(X ×G, r).

For f ∈ C0(X), we have have(
Π(r∗βf)ξ

)
(ω, t) =

(
Π(r∗f)ξ

)
(ω, t) = (f ◦ ρ)(ω)ξ(ω, t) =

(
(f ⊗ λe)ξ

)
(ω, t)

and therefore φ ◦Π(r∗(f)) = f .

Note that Π(r∗f) is in the multiplicative domain of φ for f ∈ C0(X). It follows that for
F ∈ C0(X ×G, r),

φ ◦Π(F )f = φ(Π(F )Π(r∗(f))) = φ(Π(r∗(f))Π(F )) = fφ ◦Π(F ).

This implies that φ ◦Π(F ) ∈ A∗∗.
The action on Cb(X̂ ×G) provided by the diagonal action of G induces by restriction an

action on C0(X ×G, r) that we denote by θ. For t ∈ G and f ∈ C0(X ×G, r) ⊂ Cb(X̂ ×G)

bwhich is also the range projection of the transformation groupoid G = X oG
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we have

θt(f)(x, s) = f(t−1x, t−1s)

and since ρ× IdG is G-equivariant we have

ι(θt(f))(ω, s) = ι(f)(t−1ω, t−1s).

It follows that for f ∈ C0(X ×G, r) and t ∈ G we have

ι(θtf) = (ut ⊗ λt)ι(f)(ut ⊗ λt)∗,

that is

Π(θtf) = (ut ⊗ λt)Π(f)(ut ⊗ λt)∗.

Let us show now that Φ = φ◦Π is equivariant. Let (ei) be an approximate unit in C0(X).
For f ∈ C0(X ×G, r) and t ∈ G we have

φ ◦Π
(
θt(r

∗(ei)fr
∗(ej))

)
= φ

(
(ut ⊗ λt)Π

(
r∗(ei)fr

∗(ej)
)
(ut ⊗ λt)∗

)
= φ

(
(ut(ei ◦ ρ)⊗ λt)Π(f)(ut(ej ◦ ρ)⊗ λt)∗

)
= uteiφ ◦Π(f)eju

∗
t ,

since utek ◦ρ⊗λt is in the multiplicative domain of φ with φ(utek ◦ρ⊗λt) = utek for k = i, j
(note that we identify ek ∈ A with ek ◦ ρ when viewed as an element of A∗∗).

We have limi,j ‖r∗(ei)fr∗(ej)− f‖ = 0 on one hand and limi,j eiφ ◦Π(f)ej = φ ◦Π(f) in
the weak* topology of A∗∗. This concludes our claim about the equivariance of φ ◦Π(f).

We assume now that the groupoid G = X oG is exact. By [6, Theorem 8.6], this means
that the Stone-Čech fibrewise compactification (βrG, rβ) of G is an amenable G-space. Thus,
the semidirect product groupoid βrG o G is amenable. Recall that the G-action on βrG
denoted by

(
(x, t), z) 7→ (x, t)z requires that rβ(z) = t−1x.

Note that the group G acts on βrG by

t · z = (trβ(z), t)z

where (trβ(z), t) ∈ G = X o G. One immediately checks that (t, z) 7→ t · z defines a left
action of G on βrG, since rβ is G-equivariant, due to the fact that G acts to the left on
βrG. Moreover the semidirect product groupoids βrG o G and βrG o G are canonically
isomorphic via the isomorphism (z, t) 7→ (z, (rβ(z), t)). Therefore the left action of G on
βrG is amenable. It follows that there exists a net (hi) of positive type finitely supported
functions hi : G → C0(X o G, r) with hi(e) ≤ 1 such that, for every t ∈ G, we have
limi hi(t) = 1 in the strict topology of C0(X oG, r) (see [3]).

Let us consider the net (Φ ◦ hi) of functions from G → A∗∗. Since Φ is equivariant and
completely positive we see that Φ◦hi is of positive type. Let us show that limi Φ◦hi(t) = 1
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in the ultraweak topology of A∗∗. Let ϕ ∈ A∗ and f ∈ A and set ψ : a 7→ ϕ(fa). We have,
since f = Φ(r∗f), and since Π(r∗f) is in the multiplicative domain of φ,

|ψ(Φ(hi(t))− 1)| =
∣∣∣ϕ(Φ

(
r∗f(hi(t)− 1)

))∣∣∣.
We have limi r

∗f(hi(t)− 1) = 0 in norm and therefore

lim
i
|ψ(Φ(hi(t))− 1)| = lim

i

∣∣∣ϕ(Φ
(
r∗f(hi(t)− 1)

))∣∣∣ = 0.

It follows that limi Φ ◦ hi(t) = 1 in the ultraweak topology of A∗∗ because the elements of
A∗ like ψ are dense in norm into A∗. We conclude that the action α : G y X is amenable
by using again results from [3].

Remark 2.1. About inner exactness. Let G be a locally compact groupoid and let Y be
a subset of X = G(0). We set G(Y ) = r−1(Y ) ∩ s−1(Y ).

Definition 2.2. [7] We say that a locally compact groupoid G with Haar system is inner
exact if for every G-invariant closed subset F of X, the canonical sequence

0
i−→ C∗r (G(U)) −→ C∗r (G)

p−→ C∗r (G(F ))−→0

is exact.

Recall that i is always injective and p is always surjective. The term “inner” in the
above definition aims to highlight that we only consider short sequences with respect to
the left action of the groupoid on its set of units. This notion is much weaker than the
KW- exactness that we defined in [6, Definition 7.6], which, when the groupoid is a group
is the notion of exactness defined by Kirchberg and Wassermann. Obviously, every locally
compact group is inner exact. More generally, locally compact groupoids G such that G acts
transitively on G(0), and groupoid group bundles are inner exact.

Problems:

1) Let G y X be an action of a discrete group on a compact space. Is it true that the
(WCP) implies that G is exact? If yes, (WCP) would be equivalent to amenability. This
question was already asked in [16].

Observe that if G is a Gromov monster group, G y βG has not the (WCP) (see [10,
Lemma 4.7]). Gromov monsters are not exact either.

2) Another open question seems to be whether the (WCP) for Gy βG (for the canonical
extension of Gy G) implies the exactness of G.

Observe that for the boundary compact set X = ∂G = βG\G, equipped with the natural
action of G the answer is positive. Indeed, the weak containment property for Gn∂G implies
that the sequence

0 −→ C∗r (GnG) −→ C∗r (Gn βG) −→ C∗r (Gn ∂G) −→ 0
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is exact. Roe and Willett proved in [15] that this exactness property implies that G has
Yu’s property A and thus is exact.
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279:297–315, 1987.

[4] Claire Anantharaman-Delaroche. Amenability and exactness for dynamical systems and their C∗-
algebras. Trans. Amer. Math. Soc., 354(10):4153–4178 (electronic), 2002.

[5] Claire Anantharaman-Delaroche. Fibrewise equivariant compactifications under étale groupoid actions.
https://hal.archives-ouvertes.fr/hal-01081807, 2014.

[6] Claire Anantharaman-Delaroche. Exact groupoids. https://arxiv.org/pdf/1605.05117.pdf, 2016.
[7] Claire Anantharaman-Delaroche. Some remarks about the weak containment property for groupoids

and semigroups. https://arxiv.org/pdf/arXiv:1604.01724.pdf, 2016.
[8] Tim Austin. Commutative von neumann algebras and representations of normal hilbert space operators.

https://pdfs.semanticscholar.org/e4d5/eb1e3214861f752561008ef4475b7f46b2bd.pdf, 2016.
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