Erratum to: Revising Uniqueness for a Nonlinear Diffusion-Convection Equation

B. Andreianov * N. Igbida †

August 2010

Abstract

The proof of [1, Lemma 3] was incomplete. Here we give the missing arguments, under very weak regularity assumptions on the domain Ω coming from the paper [2] of the authors.

First, note that the factor $\psi = \psi(t)$ was forgotten in most of the terms that figure in the proof of [1, Lemma 3]; all the integrals that do not contain ψ_t or $\psi(0,\cdot)$ should contain the factor ψ .

Next, in the proof of [1, Lemma 3, p.75], we studied the term

$$I_{n,\varepsilon}^2 = \iint_O \mathcal{F}_{\varepsilon} \cdot \nabla(\xi(1-\xi_n))\psi,$$

where, with the notation of [1],

$$\mathcal{F}_{\varepsilon} = \int_{0}^{w} \left(F(j(\varphi_{0}^{-1}(r)), r) - F(j(k), \varphi(k)) H_{\varepsilon}'(r - \varphi(k)) dr \right)$$
$$= \frac{1}{\varepsilon} \int_{\min(w, \varphi(k))}^{\max(w, \varphi(k) + \varepsilon)} \left(F(j(\varphi_{0}^{-1}(r)), r) - F(j(k), \varphi(k)) dr \right).$$

The next point of our proof in [1] was that

(1)
$$\lim_{\varepsilon \to 0} I_{n,\varepsilon}^2 = 0;$$

yet the statement (1) is not exact. We point out that the lemma was stated under the assumption

$$F(u, w) = F_1(w) + u F_2(w)$$
 with $F_i \in \mathcal{C}(\mathbb{R}; \mathbb{R}^N)$ and $F_2(0) = 0$.

The above requirement $F_2(0) = 0$ and the homogeneous boundary condition for $w = \varphi(v)$ on $(0,T) \times \partial \Omega$ are the crucial properties needed to complete the proof of [1, Lemma 3].

^{*}Laboratoire de Mathématiques CNRS UMR 6623, Université de Franche Comté, 16 route de Gray, 25000 Besançon, France. Email: boris.andreianov@univ-fcomte.fr

[†]LAMFA, CNRS-UMR 6140 Université de Picardie Jules Verne, 33 rue Saint Leu, 80038 Amiens, France. Email : noureddine.igbida@u-picardie.fr

We now rectify the bound on $\mathcal{F}_{\varepsilon}$. In general, in the place of (1) we have

(2)
$$\lim_{\varepsilon \to 0} |\mathcal{F}_{\varepsilon}| \le \left(j(\varphi_0^{-1}(\varphi(k) + 0)) - j(k) \right) \max\{|F_2(w)|, |F_2(\varphi(k))|\};$$

here $\left(j(\varphi_0^{-1}(\varphi(k)+0))-j(k)\right)$ denotes the jump at the point k of the graph $j \circ \varphi^{-1}$, φ_0^{-1} being the left-continuous inverse of φ . Notice that the jump $(j(\varphi_0^{-1}(\varphi(k)+0))-j(k))$ is finite¹, for all $k\geq 0$.

The exact statement that replaces (1) is:

(3)
$$\lim_{n \to \infty} \lim_{\varepsilon \to 0} I_{n,\varepsilon}^2 = 0.$$

To get (3), we exploit the techniques of [2]. Let us recall that $(\xi_n)_n$ is a sequence such that $\xi_n \in H^1_0(\Omega)$, $0 \le \xi_n \le 1$ and $\xi_n \to 1$ in $L^1(\Omega)$. In particular, the distance-to-the-boundary functions $\xi_n : x \mapsto \min\{1, n \operatorname{dist}(x, \partial\Omega)\}$ can be chosen. We have supp $\nabla \xi_h \subset \Omega_{\frac{1}{n}} := \left\{ x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) < \frac{1}{n} \right\}$ and

$$(4) \quad \frac{1}{\mathcal{M}} \leq \int_{\Omega} |\nabla \xi_{n}|, \ \int_{\Omega} |\nabla \xi_{n}|^{q} \leq n^{q-1} \mathcal{M} \ \text{uniformly in } n, \text{ for } 1 \leq q < +\infty$$

(here we assume that $|\Omega_{\frac{1}{n}}| \leq \mathcal{M}/n$, see hypothesis (H1) and Remarks 5.1, 5.2 in [2]). Then arguing in the same way as in [2, Lemma 5.8] (the assumptions $w \in L^2(0,T;H_0^1(\Omega))$ and $F_2(0)=0$ are exploited), we show that

(5)
$$\lim_{n \to \infty} \iint_Q |F_2(w)| |\nabla \xi_n| \, \xi \psi = 0.$$

Hence the conclusion (3) follows, and the proof of [1, Lemma 3] is complete under the additional assumptions (H1), (H2) from [2] on the regularity of Ω ; this includes weakly Lipschitz domains and many others.

Further, in [1, Section 3], we stated that the uniqueness results of the paper remain true for nonlinear Leray-Lions kind diffusions; this is true, under the version of assumption (H2) in [2] adapted to the case $p \neq 2$. The proof of (5) is adapted in a straightforward way, using (4) with q = p'.

References

- [1] B. Andreianov and N. Igbida. Revising uniqueness for a nonlinear diffusionconvection equation. J. Diff. Eq. 227, pp.69-79 (2006).
- [2] B. Andreianov and N. Igbida. Uniqueness for inhomogeneous Dirichlet problem for elliptic-parabolic equations. Proc. Royal Soc. Edinburgh, 137A, pp.1119-1133 (2007).

¹The case where φ is constant on $[k, +\infty)$ should be excluded; in this case, $w \leq \varphi(k)$ on Q, and we have $I_{n,\varepsilon}^2 = 0$ for all $\varepsilon > 0$.