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The problem

X
{
Riemannian manifold (complete)
dimension n

e.g. X = Rn, Tn, Sn, Hn

∆ Laplacian, D =
√
−∆

Pλ,η = 1 [λ−η,λ+η ](D) projector in a spectral window

Problem

Estimate
∥∥Pλ,η∥∥L2→Lp for


p > 2
large frequency λ≥ 0
small width η > 0
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The problem (continued)

Remark 1 (TT ∗ trick)

∥∥Pλ,η∥∥L2→Lp =
∥∥ Pλ,η︷︸︸︷
P ∗λ,η

∥∥
Lp ′→L2 =

∥∥ Pλ,η︷ ︸︸ ︷
Pλ,η P ∗λ,η

∥∥ 1/2
Lp ′→Lp

As usual 2<p≤∞ and 1≤p ′<2 are dual indices : 1
p + 1

p ′ =1

Remark 2 (smooth version)

We can replace 1 [λ−η,λ+η ](D) by ψ
(D−λ

η

)
where ψ is a smooth bump function

Related problem
Estimate

∥∥dPλ∥∥Lp ′→Lp where dPλ = δλ(D) = limη→0
1

2η Pλ,η

Comment. dPλ ! eigenfunctions
Pλ,η ! quasimodes
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Stein-Tomas restriction theorem

I The Fourier transform

f̂ (ξ) =
∫
Rn
f (x) e−i〈x ,ξ 〉 dx

of a function f ∈L1(Rn) is a continuous function (vanishing at
infinity) and thus it makes sense to restrict it to the unit
sphere Sn−1 = {ξ∈Rn |‖ξ‖=1}

I The Fourier transform f̂ of f ∈L2(Rn) runs through L2(Rn)
and thus it makes no sense to restrict it to Sn−1

Nevertheless
Stein-Tomas restriction theorem
Let p ≥ pST = 2 n+1

n−1 . Then∥∥ f̂ |Sn−1
∥∥

L2 . ‖f ‖Lp ′ ∀ f ∈ S(Rn)



The problem Some history Hyperbolic surfaces References

Stein-Tomas restriction theorem (continued)

By rescaling and interpolation, one gets the following sharp result

Corollary (restriction to an annulus of width 1)
Let p > 2. Then there exists C>0 such that∥∥1λ− 1

2≤‖ξ‖≤λ+ 1
2
f̂
∥∥

L2︸ ︷︷ ︸
‖P
λ, 1

2
f ‖L2

≤ C λγ(p) ‖f ‖Lp ′ ∀ f ∈ S(Rn)

where γ(p) =

 n−1
2 (1

2 −
1
p ) if 2<p≤pST

n (1
2 −

1
p )− 1

2 if p≥pST

1
2

1
pST

n−1
2 (1

2−
1
p )

n−1
2

n(1
2−

1
p )− 1

2

1
pST

0 1
p

γ(p)

Further development :
Strichartz estimates
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Sogge’s result and its consequences

Sogge’s theorem
Let X be a compact Riemannian manifold. Then there exists
η0>0 such that ∥∥Pλ,η0

∥∥
L2→Lp ≈ λγ(p)

for p>2 and λ large

Remark
This result is local and holds true for X with bounded geometry :

I injectivity radius bounded from below
I uniform local geometry

in all small balls B(x , r0) of fixed radius r0>0
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Corollary
Let X be a Riemannian manifold with bounded geometry. Then
there exists η0>0 such that

max
λ−η0≤µ≤λ+η0

∥∥Pµ,η∥∥L2→Lp & λγ(p) η
1
2

for p>2, λ large and η small

Let say
∥∥Pλ,η∥∥L2→Lp & λγ(p) η

1
2

Back to problem
I Behavior in λ of

∥∥Pλ,η∥∥L2→Lp should be always λγ(p)

I Behavior in η depends on the global geometry of the manifold
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Examples

I Sharp result for Rn :∥∥Pλ,η∥∥L2→Lp ≈ λγ(p)×

 η
n+1

2 ( 1
2−

1
p ) if 2<p≤pST

η
1
2 if p≥pST

I Conjecture for Tn : under the assumption η >λ−1,

∥∥Pλ,η∥∥L2→Lp ≈ λγ(p)×

 η
n−1

2 ( 1
2−

1
p ) if 2<p≤pST

η
1
2 if p≥pST

Partial results [Bourgain, Demeter, Germain, Myerson] (1)

1 See Germain’s survey [arXiv:2306.16981]
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Hyperbolic surfaces (2)

X


Riemannian manifold (complete, connected)
dimension n=2
curvature −1

 

2 Borthwick’s book, 2016
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Hyperbolic surfaces (continued)

Example (universal cover)
Hyperbolic plane H = H2 = {z∈C | Im z >0}
Riemannian metric ds2 = d |z|2

(Im z)2

Isometry group Isom(H) = Isom+(H)︸ ︷︷ ︸
G =PSL(2,R)=PSL(2,R)/{±Id}

t Isom−(H)

Other definition of hyperbolic surfaces
X = Γ\H, where Γ is a discrete torsion free subgroup of G

+ finiteness assumption
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Further examples
I Parabolic cylinder : Γ = {z 7→ z+nb | n∈Z} with b>0

 

I Hyperbolic cylinder : Γ = {z 7→ anz | n∈Z} with a>1

 

I Modular surface : Γ = PSL(2,Z) not torsion free
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Critical exponent

Equivalent definitions of the critical exponent δ of Γ

I δ = lim supR→+∞
1
R log

counting function︷ ︸︸ ︷
|{γ∈Γ | d (x , γ.y)≤R }|

I δ = inf{s>0 |
∑

γ∈Γ
e−sd (x ,γ.y)︸ ︷︷ ︸

Poincaré series

<∞}

Remarks
I Both definitions are independent of x , y ∈H
I 0≤ δ≤1

I δ =


0 for the hyperbolic cylinder
1
2 for the parabolic cylinder
1 for the modular surface
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Results

Proposition [A-Germain-Léger 2023]
If X has cusps, then

∥∥Pλ,η∥∥L2→Lp =∞

Theorem [A-Germain-Léger 2023]
Assume that X has funnels (infinite area) and no cusps

I Optimal upper bound when 0≤ δ < 1
2 :∥∥Pλ,η∥∥L2→Lp . λγ(p) η

1
2

I Upper bound when 1
2 ≤ δ <1 : for every ε>0 and N>0,∥∥Pλ,η∥∥L2→Lp . λγ(p)+ε η

1
2−ε

under the condition η >λ−N
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Remarks

I In dimension n=2, pST = 6 and

γ(p) =

 1
4 −

1
2p if 2<p≤6

1
2 −

2
p if p≥6

I Replace D =
√
−∆ by D =

√
−∆− 1

4

I The first part of the theorem holds true more generally

for locally symmetric spaces
{
rank 1
convex cocompact

and for 0≤ δ < ρ (⇒ infinite volume).
Moreover, in this case,

∥∥dPλ∥∥Lp ′→Lp . λ2γ(p)
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Basic tool

Spherical Fourier transform on H
There is a Fourier transform on H and an inverse transform,
which reduce to

F f (ξ) =
∫
H
f (x)ϕξ(x)dx = 2π

∫ ∞
0

f (r)ϕξ(r)(sinh r)dr
and

f (r) = 1
2π

∫ ∞
0
F f (ξ)ϕξ(r) (tanhπξ)ξdξ

= − 1
23/2π2

∫ ∞
r

∂
∂s F̂ f (s) ds√

cosh s−cosh r

for radial functions f (x) = f (r), where r = d(x , i). These formulae
involve the spherical functions ϕξ(x) = ϕξ(r), which can be ex-
pressed in terms of special functions (Legendre or hypergeometric)

Remark. Analogy with the Fourier transform of radial functions on
Rn (Hankel transform), which involves modified Bessel functions
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Another helpful tool

Kunze-Stein phenomenon on G [Kunze-Stein 1964]
L2(G)∗L2−ε(G)⊂ L2(G) ∀ 0<ε≤1

The right convolution by a radial kernel K on H satisfies actually

Kunze-Stein phenomenon on H [Herz/Stein 1970]∥∥f ∗K∥∥L2 .
∥∥f ∥∥L2

∫ ∞
0
|K(r)|e

r
2 r dr

The same operator satisfies

Kunze-Stein phenomenon on X with 0≤ δ < 1
2

[Fotiadis-Mandouvalos-Marias 2018/Zhang 2019]
Let 0<ε< 1

2−δ. Then, for every p>2,∥∥f ∗K∥∥Lp . ‖f ‖Lp ′

[∫ ∞
0
|K(r)e (δ+ε)r |

p
2 e ( 1

2−δ−ε)r r dr
]2

p
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Idea of proof when 0≤ δ < 1
2

I Use the inverse spherical Fourier transform
to express and estimate the kernel on H

pλ,η(x , y) = C
∫ ∞

0

[
ψ
( ξ−λ

η

)
+ψ

( ξ+λ
η

)]
ϕξ(r) (tanhπξ)ξdξ

= C η
∫ ∞

r
∂
∂s
[
cos(λs)ψ̂(ηs)

] ds√
cosh s−cosh r

where r = d(x , y) and ψ is an even Schwartz function
whose Fourier transform has compact support

=⇒
∣∣pλ,η(x , y)

∣∣ . {
λ η for small r = d(x , y)
λ

1
2 η e− r

2 for large r = d(x , y)
I Estimate the kernel on X = Γ\H

pΓ
λ,η(x , y) =

∑
γ∈Γ

pλ,η(γ.x , y) =
∑

γ∈Γ
pλ,η(x , γ.y)

I Estimate related kernels
I Use interpolation and/or the Kunze-Stein phenomenon on X
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Idea of proof when 1
2 ≤ δ < 1

I Decompositions. Given bump functions ψ∈C∞c (R) and
θ∈S(R) such that θ>0 and supp θ̂ is compact, write first

ψ
(D−λ

η

)
= θ(D−λ)2

∫ +∞

−∞
Z (t)e i tD2dt

in terms of the Schrödinger group e i tD2, where Z =Zλ,η
denotes the Fourier transform of

τ 7−→

 1
2π

ψ(
√
τ−λ
η

)
θ(
√
τ−λ)2 if τ >0
0 otherwise

Given a smooth partition of unity 1=
∑m

j=0
χj corresponding

to the decomposition X = X0︸︷︷︸
core

∪
(⋃m

j=1Xj
)︸ ︷︷ ︸

funnels

, split up next

ψ
(D−λ

η

)
= θ(D−λ)

∑
j
χj

∫ +∞

−∞
Z (t)θ(D−λ)e i tD2dt
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Idea of proof when 1
2 ≤ δ < 1 (continued)

I Estimates in the core. Main tools
I Sogge’s theorem
I Resolvent estimates [Bourgain-Dyatlov 2018] in dim n=2
‖χ0 (D 2−λ2± i 0)−1χ0‖L2→L2 . λ−1+2ε for λ large

I Kato’s local L2 smoothing theorem yields
‖χ0 θ(D−λ)e i tD2f ‖L2

t L2
x
. λ−

1
2 +ε‖f ‖L2

I Estimates in the funnels. Tools from the case 0≤ δ < 1
2

I improved Strichartz estimates for θ(D−λ)e i tD2 :

‖θ(D−λ)e i tD2
f ‖Lq

t (Lp
x ) . λ

1
2−

1
p−

1
q ‖f ‖L2 (p>2, q≥2)

I global Lp smoothing estimate for e i tD2 :
‖D 1

2−γ(p)e i tD2f ‖Lp
x (L2

t ) . ‖f ‖L2 (p>2)
I commutator estimates

I Piece results together (method goes back to Staffilani-Tataru)
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Low frequency estimate

Theorem [A-Germain-Léger 2023]
Assume that

I X has funnels (infinite area) and no cusps
I 0≤ δ < 1

2
Then ∥∥Pλ,η∥∥L2→Lp . (λ+η)η 1

2

for p>2, 0≤λ<1 and 0<η<1

Remark
Again this result holds true more generally

for locally symmetric spaces
{
rank 1
convex cocompact

and for 0≤ δ < ρ (⇒ infinite volume).
Moreover, in this case,

∥∥dPλ∥∥Lp ′→Lp . λ2
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