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Introduction

Complex dynamics is the study of orbits z, f(z), . . . fn(z), . . . of points in a complex man-
ifold X under the iteration of a holomorphic self-map f : X → X. Following the pioneering
work of Fatou and Julia in the early 20th century, one may partition X into different sets,
one stable (the Fatou set) and one unstable or chaotic (the Julia set). The study of the global
dynamics of f involves both its Fatou and Julia set, using different tools and approaches. In
higher dimensions, two classes of complex dynamical systems are especially studied: poly-
nomial automorphisms of C2, including the so-called Hénon maps, and endomorphisms of
projective spaces Pk = Pk(C); with some exceptions, much of the work described in this
manuscript is focused on the setting of endomorphisms of Pk (k ≥ 1).

On the one hand, it is a fundamental question to classify dynamics in the Fatou set. For
rational self-maps of P1, this classification was essentially achieved thanks to the seminal
work of Sullivan [Sul85], who proved that every connected component of the Fatou set is
eventually periodic. Together with a sharp upper bound on the number of possible periodic
components by Shishikura [Shi87] and a classification of periodic components (by works
of Fatou, Siegel, Herman and others), dynamics in the Fatou set of rational maps on P1 is
therefore very well understood. Despite recent progress, the picture is far from being as clear
in higher dimension.

On the other hand, the dynamics on the Julia set (or small Julia set) is chaotic, and is
typically studied via tools from pluripotential and ergodic theory. Notably, endomorphisms of
Pk admit a unique measure of maximal entropy, which enjoys good properties: it is ergodic,
mixing, and it has positive Lyapunov exponents, with sharp lower bounds. In that respect, the
ergodic-theoretic aspect of higher-dimensional complex dynamics is particularly successful
and generally better understood than its Fatou set counterpart.

Bifurcations. A fundamental type of questions in complex dynamics relates to parame-
ter spaces: given a holomorphic family (fλ)λ∈M of self-maps fλ : X → X, how are global
dynamics of fλ affected by a variation of the parameter λ? Of particular interest is the set
of parameters λ ∈ M for which the global dynamics is stable under perturbation of the pa-
rameter in some sense; this is called the stability locus, and its complement is the bifurcation
locus. Again, for families of rational maps on P1 of given degree, much is understood: in the
foundational works [MSS83], [Lyu83], [DeM01], it has been proven that several possible
notions of stability coincide (in terms of continuous motion of the Julia set, stability of pe-
riodic orbits, harmonicity of Lyapunov exponents and support of a bifurcation current Tbif).
Moreover, there is a natural stratification

Bif = Bif1 ) Bif2 ) . . . ) Bif2d−2

of the bifurcation locus into "bifurcation loci of order k", which may be defined as supports
of the currents T kbif , 1 ≤ k ≤ 2d − 2. Heuristically, Bifk describes the closure of the set of
parameters which exhibit bifurcation phenomena of codimension at least k: k non-persistent
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neutral cycles, or k critical orbits bifurcating independantly. An important consequence of
Mañé-Sad-Sullivan-Lyubich’s results is the lack of robust bifurcations in one-dimensional ra-
tional dynamics: the bifurcation locus always has empty interior. However, we proved in
[AGMV19] that the maximal bifurcation locus Bif2d−2 is as large as it possibly could, in the
sense that it has positive Lebesgue volume in the moduli space of degree d ≥ 2 rational maps
on P1.

This theory has been generalized to higher dimensions only recently: for polynomial au-
tomorphisms in [DL15], and in parallel, for projective endomorphisms by Berteloot, Bianchi
and Dupont [BBD18, Bia19a]. A significant new challenge in understanding higher-dimensional
bifurcation loci is the presence of robust bifurcations, by works of Bianchi, Biebler, Dujardin
and Taflin ([BT17a], [Duj17], [Taf21], [Bie19], see also [GTV23]). Remarkably, all these
constructions of robust bifurcations (excepting [Bie19]) start from a special type of map pre-
serving a foliation (skew-product).

With the aim of understanding more precisely the bifurcation locus of a toy-model fam-
ily (keeping in mind the role that the quadratic family plays in one-dimensional rational
dynamics), Bianchi and I studied in detail families of skew-products in [AB23], and in par-
ticular quadratic skew-products. We obtained a geometric and quantitative description of the
bifurcation locus near infinity in parameter space. We also proved that for skew-products,
hyperbolicity is preserved within stable families (which remains an open question for endo-
morphisms of Pk): in particular, the notion of hyperbolic component is well-defined. We then
give a classification of unbounded hyperbolic components, using a new topological invariant.
In the sequel paper [AB22], we prove a perhaps surprising theorem:

THEOREM 0.1. Let p be a polynomial map with Julia set not totally disconnected, which is
neither conjugated to z 7→ zd nor to a Chebyshev polynomial. Let Sk(p, d) denote the family of
polynomial skew-products of degree d ≥ 2 over the base polynomial p, up to affine conjugacy,
and let Dd be its dimension. Then

Bif = Bif1 = Bif2 = . . . = BifDd .

In other words, in the family Sk(p, d), it is impossible to isolate the bifurcation of a single
critical point: if one critical point bifurcates near a parameter, then many others must do so
as well. This contrast with the picture in dimension one may be intuitively understood by the
fact that critical points now form a hypersurface of P2 instead of a finite subset, and are not
isolated anymore. It seems very likely that this type of phenomenon is not restricted to skew-
products, but also occurs in the general family of endomorphisms of Pk of a given degree.

Going back to complex dimension one, one may also consider non-algebraic holomorphic
dynamical systems, such as entire or meromorphic maps f : C→ P1 with an essential singu-
larity at∞. In this setting, the potential and ergodic side of the theory vanishes: transcenden-
tal maps do not have the equivalent of a measure of maximal entropy (the topogical entropy
being always infinite), Lyapunov exponent or Green function. Despite this, there are some
connections between transcendental dynamics in dimension one and algebraic dynamics in
dimension 2: for instance, transcendental arguments appear when studying unstable mani-
folds of Hénon maps (see e.g. [DL15]), or parabolic dynamics in C2 ([ABD+16], [ABTP23],
[AT22]).

For transcendental meromorphic maps, in addition to the bifurcation of critical values,
a new type of singular value (asymptotic values) must also be considered; and with respect
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to the bifurcations of periodic points, a new type of phenomenon also appears, namely col-
lisions between periodic points and the essential singularity. Since transcendental entire or
meromorphic maps can be quite badly behaved in general, many works in transcendental
dynamics place some restrictions on the set of singular values. In the joint work [ABF21]
with A.M. Benini and N. Fagella, we study bifurcations for families of finite type meromorphic
maps, i.e. maps with only finitely many singular values. By a result of Eremenko and Lyubich
([EL92]), collisions between periodic points and the essential singularity are not possible for
finite type entire maps; as a result, their bifurcations work essentially in the same way as
those of rational maps. However, for finite type meromorphic maps, the presence of poles
makes collisions between periodic points and ∞ possible. We analyze this phenomenon in
detail and prove that it is closely related to the bifurcation of asymptotic values.

Parabolic dynamics. A holomorphic self-map has a parabolic cycle if it admits a periodic
point with at least one multiplier which is a root of unity. Parabolic cycles are a mechanism
of bifurcations, as parameters with parabolic cycles are dense in the bifurcation locus. While
in dimension one the local dynamics near a parabolic cycle are well-understood, by work
of Leau and Fatou at the beginning of 20th century, in higher dimension the local dynamics
near parabolic cycles started developing more recently (see e.g., [Hak98], [Aba01]) and is
an active subject of research (e.g., [LHRRSS19] and [LHRSSV20]). A major tool in one-
dimensional complex dynamics is the study of local dynamics near perturbations of parabolic
maps: these techniques, called parabolic implosion, have led to major results such as the fact
that the boundary of the Mandelbrot set has full Hausdorff dimension [Shi98], or the con-
struction of polynomial Julia sets of positive Lebesgue measure [BC12]. Some analoguous
results have started to appear in higher dimension: in [BSU17], Bedford, Smillie and Ueda
study perturbations of semi-parabolic germs of C2, i.e. germs of diffeomorphisms of C2 fixing
the origin with one multiplier equal to 1 and the other in the unit disk. Bianchi [Bia19b]
partially extended that theory to a class of germs tangent to the identity in C2. Following an
original idea of Lyubich, the main technical ingredient for the construction of wandering do-
mains in [ABD+16],[ABTP23] and [AT22] is an adaptation of parabolic implosion techniques
to skew-products. Parabolic implosion has also been used in [DL15] to prove the density of
homoclinic tangencies in bifurcation loci of polynomial automorphisms.

Wandering domains. A long-standing open question was to know whether Sullivan’s
Theorem could be extended to either endomorphisms of Pk (k ≥ 2) or polynomial automor-
phisms of C2 (Hénon maps); it turns out that the answer is negative in both cases. The first
examples of wandering domains (non eventually periodic Fatou components) have been con-
structed for endomorphisms of P2 in [ABD+16], and the first examples of wandering domains
for polynomial automorphisms of C2 have been constructed in [BB23] by Berger and Biebler,
through completely different methods.

These recent breakthroughs lead to many natural questions, such as, to cite a few:
(1) Can wandering domains occur in low degree?
(2) What can be said about the limits of iterates restricted to a wandering Fatou compo-

nent? More precisely, can there exist non-constant limits in dimension 2?
(3) What can be said about the accumulation set of a wandering Fatou component?
(4) How often do wandering domains occur in parameter space?

Part of my work these last few years has been motivated by these questions. Question
(4) in particular remains largely unanswered. However, for instance, the following theorem
proved in [AT22] provides an answer to (1) and (2):
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THEOREM 0.2. [AT22] Let b := 1
4 + π2

(lnα)2
, where α ∈ N∗ and α ≥ 2. Let

fb([z : w : t]) := [zt+ z2, wt+ w2 + bz2 : t2].

Then fb has infinitely many distinct grand orbits of wandering Fatou components, each admitting
non-constant limit maps taking values in the line z = 0.

As previously mentionned, the proof of Theorem 0.2 is based on parabolic implosion, but
it also involves studying a one-parameter family of non-algebraic finite type maps and ideas
from [ABF21].

Outline. This manuscript is composed of three chapters. The first one is dedicated to
finite type maps in the sense of A. Epstein, introduced in [Eps93]. Finite type maps are a class
of holomorphic maps in one complex variable which contains e.g. rational maps, entire or
meromorphic maps with only finitely many singular values, and horn maps of rational maps.
They appear in several places in my work: for instance in the proof of Theorem 0.2, but also
more directly in [Ast22]. The article [ABF21] is also strongly motivated by and linked to
finite type maps. Chapter 1 is intended as a sort of survey, gathering in one place several
unpublished results (including reasonnably self-contained proofs) which may be known to
some experts but are probably not widely known in the community. Moreover, there are no
publicly available reference for some of them. Most of the material comes from A. Epstein’s
PhD thesis ([Eps93]), the unpublished manuscript [Eps09], or private communications with
A. Epstein or X. Buff, which I both thank; however, a few proofs are original.

We start by developping the Fatou/Julia theory for finite type maps (density of repelling
cycles in the Julia set, lack of Baker or exotic Fatou components, absence of wandering Fa-
tou components and Fatou-Sullivan’s classification); this part of Chapter 1 is more or less
directly reproduced from [Eps93]. We then introduce Epstein’s deformation space, which
forms a natural parameter space akin to that introduced by Eremenko and Lyubich in [EL92],
or Goldberg and Keen in [GK86], and the Teichmüller space of a finite type map. We finish
with a generalization of a theorem of McMullen-Sullivan ([MS98][Theorem 7.4]), which is
the only original result from Chapter 1.

Chapter 2 is devoted to the topic of bifurcations, in various settings: one-dimensional ra-
tional maps ([AGMV19]), endomorphisms of Pk (with a strong emphasis on families of poly-
nomial skew-products on P2: [AB23], [AB22]), and finally finite type meromorphic maps in
dimension one ([ABF21]).

Finally, Chapter 3 is devoted to parabolic dynamics and wandering domains in dimension
2 ([ABTP23] and [AT22]).
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CHAPTER 1

Finite type maps

1. First definitions

1.1. Singular values, tracts, island property. By definition, we require Riemann sur-
faces to be connected; if not, we will use the term "complex 1-manifold".

DEFINITION 1.1. Let X be a Riemann surface, and W be a complex 1-manifold. Let f : W →
X be a holomorphic map. The singular value set of f , denoted by S(f), is the smallest subset of
X such that f : W \f−1(S(f))→ X \S(f) is a covering map (when restricted to each connected
component of W ).

We will use the following notation: X∗ := X \ S(f) and W ∗ := W \ f−1(S(f)).

A covering map is surjective by definition, so X \ f(W ) ⊂ S(f).

DEFINITION 1.2. Let X be a compact Riemann surface, and let W ⊂ X be a non-empty open
set. Let f : W → X be a holomorphic map. We say that f is a finite type map on X if

(1) f is non-constant on every connected component of W
(2) f has no removable singularities
(3) S(f) is finite.

Let us emphasize the importance of the assumption that X is compact. By the previous
remark, if f : W → X is a finite type map, then X \ f(W ) is finite, possibly empty.

DEFINITION 1.3. Let W,X be complex 1-manifolds and f : W → X be a holomorphic map.
Let v ∈ X.

(1) We say that v ∈ X is a critical value for f if there exists c ∈W such that f ′(c) = 0 and
f(c) = v.

(2) We say that v ∈ X is an asymptotic value for f if there exists a continuous curve
γ : R+ →W such that γ(t)→ ∂W and limt→+∞ f ◦ γ(t) = v.

We will denote by A(f) the set of asymptotic values of f , and by CV(f) the set of its critical
values.

More explicitly, γ(t) → ∂W means that for every compact K ⊂ W , there exists tK > 0
such that for all t > tK , γ(t) /∈ K. An important point is that this does not in general imply
that limt→+∞ γ(t) exists in X.

REMARK 1.1. If f : S1 → S2 is a holomorphic map between Riemann surfaces, then A(f)
depends on the range S2. For instance, the identity map i : D → D has no asymptotic values,
but the inclusion map j : D ↪→ P1 satisfies A(j) = S1. Neither are finite type maps: the first one
because the range D is not compact, and the second one because S(f) is not finite.

On the other hand, the map exp : C→ P1 is a finite type map with S(f) = {0,∞} = A(f),
and CV(f) = ∅. Rational maps f : P1 → P1 are also finite type maps, with A(f) = ∅ and
S(f) = CV(f).

11
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PROPOSITION 1.1. Let f : W → X be a finite type map. Then S(f) = A(f) ∪ CV(f).

PROOF. Let v ∈ S(f), and let D = D(v, r) be a disk centered at v with r > 0 small enough
that D ∩ S(f) = {v}. Let (Ui)i∈I be the family of connected component of f−1(D), and let
U∗i := Ui \ f−1({v}), and D∗ := D \ {v}. Then for every i ∈ I, f : U∗i → D∗ is a covering
map. Since v ∈ S(f), there is at least one i0 ∈ I such that f : Ui0 → D is not an isomorphism.
Therefore, either f : U∗i0 → D∗ is a degree d ≥ 2 covering map, or it is a universal cover. In
the first case, v is a critical value; in the second, v is an asymptotic value. Indeed, there exists
r > 0 and a conformal isomorphism φ : H → Ui0 such that f(z) = v + reiφ

−1(z) for z ∈ Ui0;
then one can take γ(t) := φ(it). �

REMARK 1.2. In fact, the following more general statement holds: for every surjective holo-
morphic map f : W → X, where W is a complex 1-manifold and X is a Riemann surface,
A(f) ∪ CV(f) is dense in S(f).

DEFINITION 1.4 (Tract). Let f : W → X be a holomorphic map, and let v ∈ A(f). Let
D be a simply connected domain of X containing v. We say that an open subset U of W is a
logarithmic tract above D if f : U → D \ {v} is a universal cover.

The proof of Proposition 1.1 shows that finite type maps always have logarithmic tracts
above their asymptotic values. Since we will only consider logarithmic tracts, from now on
we will just use the term "tract".

LEMMA 1.1. Let f : W → X be a finite type map, and let x ∈ ∂W . There exists y ∈ X \S(f)
and a sequence wk → x in W such that f(wk)→ y.

PROOF. Let xk → x by any sequence converging to x in W . By compactness of X, up to
extracting a subsequence, we may assume that f(xk)→ y0 ∈ X. If y0 /∈ S(f), we are done.

Otherwise, let D be a Jordan domain containing y0, small enough that D ∩ S(f) = {y0},
and let ε > 0. For all k ∈ N large enough, f(xk) ∈ D, and we let Uk denote the connected
component of f−1(D) which contains xk. Since xk → x ∈ ∂W and Uk ⊂ W , for all k large
enough, we have D(x, ε) ∩ ∂Uk 6= ∅. If f : Uk → D is a branched cover (which is the case if
y0 /∈ A(f)), then f maps ∂Uk to ∂D. If we choose wk ∈ ∂Uk ∩ D(x, ε), then f(wk) ∈ ∂D, and
by choosing smaller and smaller values of ε, we construct a sequence wk → x such that for all
k ∈ N, f(wk) ∈ ∂D. Up to extracting a subsequence, we have f(wk)→ y ∈ ∂D and y /∈ S(f)
by the choice of D.

It finally remains to treat the case where y0 ∈ A(f) and for all k ≥ 0 large enough, Uk is
a tract above D. This case is a little bit more delicate, because then we have ∂Uk ∩ ∂W 6= ∅,
so it is not true anymore that f maps ∂Uk to ∂D. However, by [[Eps93], Lemma 58 p. 85],
it holds that f−1(∂D) is dense in ∂Uk, so that we may still pick wk ∈ D(x, ε) ∩ ∂Uk, and then
argue as above. �

PROPOSITION 1.2 (Island property; [Eps93], Proposition 9 p. 88). Let f : W → X be a
finite type map, and let z ∈ ∂W and U a neighborhood of z in X. Let D ⊂ X be a Jordan
domain whose closure does not intersect S(f). Then there exists a domain Ω b U ∩W such that
f : Ω→ D is a conformal isomorphism.

PROOF. By definition, f : W ∗ → X∗ is a covering map. If X∗ is not hyperbolic, then we
are in one of the following cases:

(1) either X is the Riemann sphere and cardS(f) ≤ 2
(2) or X is a complex torus and S(f) = ∅.
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In case (1), W ∗ must be isomorphic to either C or C∗. Then, there exists m1,m2 two auto-
morphisms of P1 such that m1 ◦ f ◦m−1

2 is either exp or z 7→ zd (with d ≥ 1), and the lemma
is either obvious (in the case of exp) or vacuously true.

In case (2), we must have W ∗ = X = X∗, and f is an endomorphism of the complex
torus. Then ∂W = ∅ and the lemma is also vacuously true.

We therefore assume from now on that both X∗ and W ∗ are hyperbolic (that is, every
connected component of W ∗ is hyperbolic). Let x ∈ ∂W ∩ U and let wk → x in W given
by Lemma 1.1, with y = limk→+∞ f(wk) ∈ X∗. Up to replacing D by a larger simply con-
nected domain (also chosen to be relatively compact in X∗), we may assume without loss of
generality that y ∈ D.

Let r > 0 denote the hyperbolic diameter of D in X∗ (which is finite by assumption). Let
(Ui)i∈I be the connected components of f−1(D). Since f : W ∗ → D∗ is a covering, for every
i ∈ I we have that f : Ui → D is a conformal isomorphism and diamW ∗(Ui) = r. Moreover,
by definition of y, for every k large enough there exists ik ∈ I such that wk ∈ Uik . Then, since
wk → x and diamW ∗(Uik) = r, Uik b U ∩W for all k large enough.

�

1.2. Basic Fatou/Julia theory.

DEFINITION 1.5. Let f : W → X be a finite type map. The Fatou set F (f) of f is defined as
the union of all open subsets U ⊂W such that

(1) either there exists n ∈ N∗ such that fn(U) ∩W = ∅
(2) or fn(U) ⊂W for all n ∈ N, and {fn|U : U → X : n ∈ N} is normal.

The Julia set is J(f) := X \ F (f).

Observe that by this definition, we have ∂W ⊂ J(f), where ∂W denotes the boundary of
W as a subset of X.

LEMMA 1.2. Let W∞ := int
⋂
n≥0 f

−n(W ). Assume that either W∞ is empty, or that all its
connected components are hyperbolic. Then J(f) =

⋃
n≥0 f

−n(∂W ).

PROOF. The inclusion
⋃
n≥0 f

−n(∂W ) ⊂ J(f) is always true by definition. Conversely, if
W∞ 6= ∅, W∞ is completely invariant, and f : W∞ →W∞ is non-increasing for the hyperbolic
metric. Therefore W∞ ⊂ F (f).

This means that for any open set U intersecting J(f), there exists n ∈ N such that fn(U)∩
(X \W ) 6= ∅; and moreover, we must have fn(U) ∩ ∂W 6= ∅, for otherwise by definition we
would have U ⊂ F (f). In other words,

⋃
n≥0 f

−n(∂W ) is indeed dense in J(f). �

LEMMA 1.3 ([Eps93], Lemma 68 p. 99). Let f : U → V be a polynomial-like map with
exactly one critical value v, and assume that v /∈ U . Then f has a repelling fixed point.

PROOF. Let γ be a simple curve joining v to ∂V , while avoiding U . Then the slit region
V − := V \ γ is simply connected; let U− be a simply connected preimage of V −. Then
f : U− → V − is a conformal isomorphism, and U− b V −. Therefore f has a repelling
periodic point inside U−. �

REMARK 1.3. Using Douady-Hubbard’s straightening theorem, it is not difficult to see that
the assumption on the critical values is unnecessary. However, the proof given above is elementary
and the statement of Lemma 1.3 is sufficient for our purposes.
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Here is the first fundamental result we prove for finite type maps:

THEOREM 1.1 (Epstein, [Eps93] p. 100). Let f : W → X be a finite type map which is not
an automorphism of X. Then repelling cycles are dense in J(f).

PROOF. If W∞ is non-hyperbolic, then W∞ is isomorphic to a complex torus, P1, C∗ or C.
Then f is either an endomorphism of a complex torus (of degree d ≥ 2), a rational map (of
degree d ≥ 2), a transcendental self-map of C∗ or a transcendental entire map. In all these
cases, Theorem 1.1 is classical and we will not prove it here. We therefore only deal with the
case where Lemma 1.2 applies.

Let z ∈ J(f). Since J(f) is perfect, we may assume without loss of generality that
z /∈ S(f); and by Lemma 1.2, we may also assume that fn(z) ∈ ∂W for some n ∈ N. Let D
be a some small disk centered at z, small enough that fn : D → fn(D) is a branched cover,
ramified only possibly at fn(z). Let Ω b fn(D) be the simply connected domain given by
the Island Property (Proposition 1.2): then fn+1 : Ω → fn(D) is a branched cover with at
most one critical value fn(z), which lies outside of Ω. Therefore, by Lemma 1.3, fn+1 has a
repelling fixed point in Ω, which means that D contains a repelling cycle. �

REMARK 1.4. We remark here that the proof above shows that in non-exceptionnal cases, f
admits infinitely many repelling cycles of every period n ≥ 2. We will implicitly use this fact later
on, by choosing a repelling 3-cycle for an arbitrary finite type map.

We now turn to the classification of periodic Fatou components. A priori, there could be
new types of non-compactly contained in W periodic Fatou components on which the iterates
accumulate the boundary of W ; the following theorem rules out this possibility.

THEOREM 1.2 ([Eps93], Proposition 15 p. 105). Let f : W → X be a finite type map, and
let U be a fixed Fatou component such that fn|U → ∂U . Then U is a parabolic basin.

We start with the following lemma:

LEMMA 1.4 ([Eps93], Lemma 28 p. 49). Let f : W → X be a finite type map, and let U be
a fixed Fatou component such that fn|U → ∂U and fn|U has at least a limit point in W . Then U is
a parabolic basin.

PROOF OF LEMMA 1.4. By assumption, there exists a0 ∈ U and a sequence mk → +∞
with fmk(a0) → x0 ∈ ∂U ∩W . Let γ : [0, 1] → U be a C1 curve such that f(γ(0)) = γ(1)
and γ(0) = a0. We will still denote by γ : R+ → U its unique extension to R+ such that
f ◦ γ(t) = γ(t+ 1) for all t ≥ 0. Let

L := {x ∈ X : γ(tk)→ x for some sequence tk → +∞}.
If cardL > 1 then L has no isolated points. Let x ∈ L and tk → +∞ such that γ(tk) → x.
Let nk + sk = tk, where nk ∈ N and sk ∈ [0, 1), and let wk := γ(sk): then fnk(wk) → x.
Up to extracting a subsequence, we may assume that wk → a ∈ γ([0, 1]) and that fnk|U → h.
Then h(a) = x ∈ ∂U , so h is constant and h ≡ a. In particular, limk→+∞ f

nk(γ(0)) = x =
limk→+∞ f

nk(γ(1)), so if x ∈ W then f(x) = x. In particular, W ∩ L consists of isolated
points.

Since by assumption x0 ∈ W ∩ L, we conclude that L = {x0}. Then by the Snail Lemma
(see [Mil06], Lemma 16.2), U is a parabolic basin. �

We can now turn to the proof of Theorem 1.2.
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PROOF OF THEOREM 1.2. Let U be a fixed Fatou component of f such that fn|U → ∂U , and
let γ : R+ → U be an invariant piecewise C1 curve. By Lemma 1.4, it is enough to prove that
γ accumulates on at least one point in ∂U ∩W .

For any hyperbolic domain V ⊂ X, we will denote by `V (n) the hyperbolic length in V of
the segment γ([n, n+ 1]). We will let V ∗ := V \ S(f) and V × := V \ f−1(S(f)), and we will
denote by ρV the density of the hyperbolic metric on V .

As before, if W∞ is non-hyperbolic, then f is a rational map, a transcendental entire map,
a transcendental self-map of C∗ or an affine toral endomorphism (this last case is in fact
impossible). In the rational case, ∂W = ∅ and so we are done; and in the two remaining
cases, Theorem 1.2 is proved in [EL92]. Therefore, we will assume from now on that W∞
is hyperbolic, in particular, U is also hyperbolic. Similarly, we have seen that if X∗ is non-
hyperbolic, then f is holomorphically conjugated to either z±d, an affine toral endomorphism
or a meromorphic map with exactly two asymptotic values; therefore, we may assume without
loss of generality that X∗ is hyperbolic as well.

We have 0 < `X∗(n) ≤ `U∗(n) and `U (n) ≥ `U (n + 1). For all t > 0 large enough, γ(t)
stays away from S(f) ∩ U , so ρU∗(γ(t)) ∼t→+∞ ρU (γ(t)); let n0 ∈ N be large enough that for
all n ≥ n0, `U∗(n) ≤ 2`U (n). Then, for all n ≥ n0:

`X∗(n) ≤ `U∗(n) ≤ 2`U (n) ≤ 2`U (n0).

In particular, (`X∗(n))n∈N is bounded.
Let L denote the accumulation set of γ, and assume for a contradiction that L ∩W = ∅.

As before, L is either a point or a continuum in ∂W ; assume first that L is not a point.
First, by [[Eps93], Proposition 1 p. 7], we have ρW×(γ(t)) ∼t→+∞ ρX∗(γ(t)). Next, since γ
accumulates on a continuum component of ∂W , we have

ρW×(γ(t))

ρX∗(γ(t))
→ +∞

(see [Eps93], Corollary 1 p.7). Therefore, for all n large enough:

`X∗(n+ 1) = `W×(n) ≥ `X∗(n)

which contradicts the boundedness of `X∗(n).

It finally remains to treat the case where γ(t) → x ∈ ∂W . Then f ◦ γ(t) = γ(t + 1) → x
as well, therefore x is an asymptotic value. Let D be a small disk around x; then for all t > 0
large enough, γ(t) lies in a tract T above D∗ = D \ {x}. Then

`D∗(n+ 1) = `T (n) ≥ 2`D∗(n),

and since ρX∗(γ(t)) ∼ ρD∗(γ(t)) as t→ +∞, we again have `X∗(n)→ +∞, a contradiction.
Therefore we have proved that L contains at least one point in W , and therefore we are

done by Lemma 1.4. �

Finally, a consequence of Theorem 1.2 is that the usual Fatou-Sullivan classification of
fixed Fatou components also applies to finite type maps. We will not give the proof here, as
it is the same as in the rational case; the key point is the absence of so-called Baker or exotic
domains, i.e. periodic Fatou components U such that fnp|U converges to the boundary of W .
Note that Baker domains may in fact occur for entire maps that are not of finite type: for
instance, Fatou gave the example of the map f(z) = z + 1 + e−z, which has a Baker domain
containing a right half-plane.
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COROLLARY 1.1. Let f : W → X be a finite type map, and let U be a fixed Fatou component.
Then U is one of the 5 standard types:

(1) attracting basin
(2) super-attracting basin
(3) Siegel disk
(4) Herman ring
(5) parabolic basin.

2. Background on Teichmüller spaces

From now on, for the sake of simplicity, we will restrict ourselves to the case of finite type
maps f : W → P1. We will assume that the reader is already familiar with quasiconformal
analysis and Teichmüller spaces, and in particular with objects such as Beltrami coefficients,
quasiconformal vector fields, and quadratic differentials. We start by recalling the definitions
of these objects and a few key properties, without proofs. To keep the presentation elemen-
tary, we have often opted for definitions using coordinates; more formal, intrinsic definitions
are also possible.

2.1. Beltrami coefficients, isotopies and Teichmüller space.

DEFINITION 2.1. We let Bel(P1) denote the space of Beltrami forms on P1, that is: µ ∈
Bel(P1) if µ is written in coordinates as µ(z)dzdz , where µ ∈ L∞(P1) and ‖µ‖∞ < 1. We let
bel(P1) denote the space of Beltrami differentials, obtained by replacing the condition ‖µ‖∞ < 1
by the condition ‖µ‖∞ <∞.

REMARK 2.1. If µ ∈ bel(P1), then |µ(z)| is a well-defined function in L∞(P1,R), independent
from the choice of coordinates. Therefore, the definition above makes sense.

We think of bel(P1) as the tangent space to Bel(P1), which is itself the unit ball of an
infinite-dimensional complex Banach space.

Recall that by the Measurable Riemann Mapping Theorem, for every µ ∈ Bel(P1), there

exists a quasiconformal homeomorphism hµ : P1 → P1 such that ∂hµ
∂hµ

= µ. We say that
hµ integrates the Beltrami form µ. Moreover, hµ is unique up to post-composition by an
automorphism of P1. If Z ⊂ P1 is a set of cardinal 3, we will denote by hZµ the unique

quasiconformal homeomorphism hZµ : P1 → P1 which fixes Z pointwise and such that ∂hZµ
∂hZµ

=

µ. Recall as well that for every z ∈ P1, the map µ 7→ hZµ (z) is holomorphic.

DEFINITION 2.2. Let A ⊂ P1 be a closed set with cardA ≥ 3. We say that a quasiconformal
homeomorphism h : P1 → P1 is uniformly isotopic to the identity relative to A if there exists a
continuous map H : [0, 1]× P1 → P1 and 0 < k < 1 such that

(1) H(0, ·) = idP1 and H(1, ·) = h
(2) for all t ∈ [0, 1], ht := H(t, ·) is a quasiconformal homeomorphism of dilatation less

than k, which fixes A pointwise.

DEFINITION 2.3. Let A ⊂ P1 with cardA ≥ 3. We say that a quasiconformal homeo-
morphism h : P1 → P1 is the identity relative to the ideal boundary of A if there exists a lift
f̃ : H → H of f by a universal cover π : H → P1 \ A which extends continuously to R by the
identity.
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THEOREM 2.1 ([EM88]). Let A ⊂ P1 with cardA ≥ 3, and let h : P1 → P1 be a quasicon-
formal homeomorphism. The following properties are equivalent:

(1) h is uniformly quasiconformally isotopic to the identity relative to A
(2) h is isotopic to the identity relative to the ideal boundary of A
(3) h is isotopic to the identity through an isotopy fixing pointwise P1 \A.

We let QC0(A) denote the group of quasiconformal homeomorphisms which satisfy one
of the equivalent properties above. It acts on Bel(P1) by pullback, in the following sense: if
µ ∈ Bel(P1) and h : P1 → P1 is a quasiconformal homeomorphism, then h∗µ is defined as the
Beltrami form associated to hµ ◦ h, where hµ integrates µ.

Recall the definition of the Teichmüller space of a finite type Riemann surface:

DEFINITION 2.4. Let A ⊂ P1 be a finite set with cardA ≥ 3. The Teichmüller space of P1

with marked set A is:
Teich(P1, A) := Bel(P1)/QC0(P1, A).

THEOREM 2.2. There is a complex structure on Teich(P1, A), for which the quotient map
π : Bel(P1) → Teich(P1, A) admits local holomorphic sections. Equipped with this complex
structure, Teich(P1, A) is a complex manifold of dimension cardA− 3.

2.2. Quasiconformal vector fields. We refer the reader to [GL00] for more background
on quasiconformal vector fields.

DEFINITION 2.5. Let ξ be a continuous vector field on P1. We say that ξ is a quasiconformal
vector field if ∂ξ ∈ Bel(P1) (in the sense of distributions, in local coordinates): ξ = h(z) ddz ,
where ∂h ∈ L∞.

Every Beltrami differential µ on P1 may be written µ = ∂ξ for some quasiconformal vector
field ξ, which is unique up to adding a holomorphic vector field.

It can be proved that quasiconformal vector fields are α-Hölder for every 0 < α < 1, but
not Lipschitz in general. In fact, their modulus of continuity is controlled by Cε ln ε−1.

We will make frequent use of the following fact:

LEMMA 2.1. Let λ 7→ µλ be a holomorphic map from D to Bel(P1) with µ0 = 0, and let
Z ⊂ P1 be a set of cardinal 3. Then ξ := d

dλ |λ=0
hZµλ is a quasiconformal vector field, and

d

dλ |λ=λ0
µλ = ∂ξ.

The tangent space TτTeich(P1, A) (for τ ∈ Teich(P1, A)) may be canonically identified
with bel(P1)/{∂ξ : ξ is a qc vector field and ξ|A = 0}, in the sense that

ker dπA = {∂ξ : ξ is a qc vector field and ξ|A = 0},

where π : Bel(P1)→ Teich(P1, A) is the quotient map.
Finally, we will also use:

THEOREM 2.3 ([Ast17], Theorem A). Let Ω be a hyperbolic open subset of P1 and ξ be a
quasiconformal vector field on Ω. We denote by ρΩ(ξ) the hyperbolic length of the vector field ξ.
The following properties are equivalent:

i) We have ρΩ(ξ) ∈ L∞(Ω).
ii) We have ‖ρΩ(ξ)‖L∞(Ω) ≤ 4‖∂ξ‖L∞(Ω).
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iii) There exists a quasiconformal extension ξ̂ of ξ on all of P1 with ξ̂ = 0 on ∂Ω.
iv) The extension ξ̂ defined by ξ̂(z) = ξ(z) if z ∈ Ω and 0 else is quasiconformal on P1, and

∂ξ̂(z) = 0 almost everywhere in the complement of Ω.

2.3. Quadratic differentials.

DEFINITION 2.6. A meromorphic quadratic differential on P1 is a meromorphic section of
T ∗P1 ⊗ T ∗P1. If A ⊂ P1, we let Q(A) denote the vector space of meromorphic quadratic dif-
ferentials with at worst simple poles, all of which are in A. We endow Q(A) with the L1 norm
‖q‖1 :=

∫
P1 |q|.

REMARK 2.2. The condition that q ∈ Q(A) has at most simple poles ensures that ‖q‖1 <∞.
Moreover, ‖q‖1 is independant from the choice of coordinates.

The cotangent space T ∗τ Teich(P1, A) may be identified with Q(A). The pairing between
T ∗τ Teich(P1, A) and TτTeich(P1, A) is given by

〈q, [µ]〉 =

∫
P1

q · µ =

∫
P1

q(z)µ(z)dzdz = 2iπ
∑
zi∈A

Res(qi · ξ, zi),

where µ = ∂ξ is any representative of [µ] in

bel(P1)/{∂ξ : ξ is a qc vector field and ξ|A = 0}.

DEFINITION 2.7. Let A,B be finite subsets of P1 with A ⊂ B. We define $ : Teich(P1, B)→
Teich(P1, A) as the "forgetful map" induced by the inclusion QC0(B) ↪→ QC0(A).

LEMMA 2.2. The map $ : Teich(P1, B) → Teich(P1, A) is an analytic submersion. Its
codifferential d∗$[0] at the basepoint [0] is the inclusion map Q(A) ↪→ Q(B).

PROOF. The analyticity of $ follows from the existence of local sections of the quotient
map πB : Bel(P1)→ Teich(P1, B), and from the commutative diagram

Bel(P1)
id //

πB
��

Bel(P1)

πA
��

Teich(P1, B) $
// Teich(P1, A)

The differential d$[0] : T[0]Teich(P1, B)→ Teich(P1, A) is given by the natural linear map

Bel(P1)/ ker dπB → Bel(P1)/ ker dπA.

Recall that ker dπB = {∂ξ : ξ|B = 0}. Therefore, d$[0] is surjective, so $ is a submersion.
Finally, by duality, d∗$[0] is the inclusion map Q(A) ↪→ Q(B). �

DEFINITION 2.8. Let f : W → P1 be a finite type map, and let A ⊂ P1 be a finite set of
cardinal at least 3. Let q ∈ Q(A). The pushforward f∗q is defined by:

f∗q(z) =
∑

f(xi)=z

q(xi)

f ′(xi)2

for every z ∈ P1 \ (f(A) ∪ S(f)).

LEMMA 2.3. Let f : W → P1 be a finite type map, and let A ⊂ P1 be a finite set of cardinal
at least 3. Let q ∈ Q(A). Then f∗q ∈ Q(f(A) ∪ S(f)), and ‖f∗q‖1 ≤ ‖q‖1.
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PROOF. It is clear from the definition that f∗q is holomorphic on P1 \ (f(A) ∪ S(f)). Let
U ⊂ P1 be a dense simply connected domain of full measure, contained in P1 \ (f(A)∪ S(f))
(for instance, one can choose v0 ∈ S(f) and a collection Γ of pairwise disjoint simple curves
joining v0 to each other element of f(A) ∪ S(f), and then take U := P1 \ Γ). Let gi : U → Ui
denote the set of univalent inverse branches of f defined on U : then

f∗q(z) =
∑
i∈I

q ◦ gi(z)g′i(z)2 =
∑
i∈I

g∗i q(z),

for all z ∈ U . In particular:

(1)
∫
P1

|f∗q| =
∫
U
|f∗q| =

∫
U

∣∣∣∣∣∑
i∈I

g∗i q(z)

∣∣∣∣∣ ≤∑
i∈I

∫
U
|g∗i q| ≤

∑
i∈I

∫
Ui

|q| ≤ ‖q‖1

which proves that ‖f∗q‖1 ≤ ‖q‖1 < +∞. Finally, a holomorphic function is integrable in a
punctured neighborhood of an isolated singularity if and only if that singularity is a simple
pole; therefore f∗q has at worst simple poles. �

DEFINITION 2.9. Let A ⊂ P1 be a finite set, and letQ(A) denote the vector space of integrable
quadratic differentials on P1 with at worst simple poles, all of which are located in A. Let
∇f : Q(A)→ Q(A ∪ S(f)) be defined by ∇fq = q − f∗q.

LEMMA 2.4. If f is not a flexible Lattès map nor an automorphism of P1, then ∇f is injective
on Q(A) and in fact, ‖f∗q‖1 < ‖q‖1.

PROOF. Lemma 2.4 is well-known in the case of a rational map (see e.g. [McM94]).
Therefore, we will only deal with the case where f has infinite degree. If q = f∗q for some
non-zero q ∈ Q(A), then ‖f∗q‖1 = ‖q‖1, so the chain of inequalities in (1) are equalities. By
the equality case of the triangular inequality, this means that for all i ∈ I, there exists a func-
tion αi : U → R+ such that g∗i q = αif∗q. Moreover, since both g∗i q and f∗q are holomorphic
on U , the function αi is meromorphic on U , hence constant; and since

∑
i∈I g

∗
i q = f∗q, we

have
∑

i∈I αi = 1. In particular, there exists a sequence ik such that αik → 0.
Finally, observe that for every i ∈ I,

αif
∗f∗q = f∗(αif∗q) = f∗g∗i q = q.

But then, with i = ik and k → +∞, we find q = 0, a contradiction. �

REMARK 2.3. If f is a rational map of degree d ≥ 2, then a similar argument proves that
q = f∗q implies that f∗f∗q = dq (see [BE09]), and with additional work, one can prove that
this happens only for flexible Lattès maps.

2.4. Holomorphic motions of subsets of the Riemann sphere.

DEFINITION 2.10. Let E ⊂ P1 and let h : M × E → P1, where M is a connected complex
manifold. We say that h is a holomorphic motion of the set E over M if

(1) there exists λ0 ∈M such that h(λ0, ·) is the injection i : E ↪→ P1

(2) for every λ ∈M , h(λ, ·) is injective
(3) for every x ∈ E, h(·, x) is holomorphic on M .

We will also commonly use the notation hλ := h(λ, ·). The two classical results below will
be needed, to extend holomorphic motions:
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THEOREM 2.4 (Mañé-Sad-Sullivan’s λ-Lemma, [MSS83]). Let E ⊂ P1 and h : M×E → P1

be a holomorphic motion of E over M . Then h extends uniquely to a holomorphic motion h̃ of
E, the closure of E. This extension is continuous on M × E.

THEOREM 2.5 (Slodkowski’s λ-lemma, [Slo91]). Let E ⊂ P1 and h : D × E → P1 be a
holomorphic motion of E over the unit disk D. Then h extends to a holomorphic motion h̃ :
D×P1 → P1 which is continuous on D×P1, and such that for all λ ∈ D, h̃λ = h̃(λ, ·) : P1 → P1

is a quasiconformal homeomorphism.

We note that the extension given by Slodkowski’s theorem is not unique; additionally, it
requires that the holomorphic motion is parametrized by a one-dimensional disk. The next
and last result that we will need about holomorphic motions has none of these drawbacks:

DEFINITION 2.11. Let E ⊂ P1 be a closed set with cardE > 2, and let µ ∈ Bel(P1). We will
say that µ is harmonic on P1 \ E if locally near every z ∈ P1 \ E, µ is of the form

µ =
q

ρ2
=

q(z)

ρ(z)2

dz

dz

where q is a holomorphic quadratic differential, and ρ(z)2dzdz is the area element of the hyper-
bolic metric on P1 \ E.

THEOREM 2.6 (Bers-Royden’s Harmonic λ-lemma, [BR86]). Let E ⊂ P1 and h : B ×E →
P1 be a holomorphic motion of E over the open unit ball B of a complex Banach space, where
E is closed set with cardE > 2. Let B′ := 1

3B. Then there is a unique holomorphic motion
h̃ : B′ × P1 → P1 which coincides with h on B′ × E and such that for all λ ∈ B′, h̃λ : P1 → P1

is a quasiconformal homeomorphism whose Beltrami form is harmonic on P1 \ E.

With a slight abuse of terminology, we will refer to h̃ as an extension of the holomorphic
motion h to B′ × P1 (even though B × E is not contained in B′ × P1).

REMARK 2.4. If U, V are hyperbolic domains of P1, f : U → V is a holomorphic covering
map and µ is a harmonic Beltrami form on V , then f∗µ is a harmonic Beltrami form on U .
Indeed,

f∗µ =
f∗q

f∗ρ2
V

=
f∗q

ρ2
U

since f : U → V is a local isometry for the hyperbolic metrics on U and V , and f∗q is a
holomorphic quadratic differential on U .

3. Epstein’s deformation space

3.1. Pullback of Beltrami forms and Thurston’s pullback map. If f : W → P1 is
a finite type map, and µ ∈ bel(P1) (resp. Bel(P1)), the pullback f∗µ is by definition the
Beltrami differential (resp. form) on P1 defined by

f∗µ(z) =

{
µ(f(z))f

′(z)
f ′(z) if z ∈W

0 else.

Note that when W has full measure in P1, as is the case e.g. for rational maps or entire
maps, this is the usual definition of the pullback. We denote by Bel(f) (resp. bel(f)) the
space of pullback-invariant Beltrami forms (resp. differentials) on P1.

The Beltrami form f∗µ is characterized by the following diagram:
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W
f //

hf∗µ
��

P1

hµ
��

hf∗µ(W )
fµ

// P1

where hµ and hf∗µ integrate µ and f∗µ respectively, and fµ : hf∗µ(W ) → P1 is holomor-
phic. More precisely, if µ and ν are Beltrami forms, then hµ ◦f ◦h−1

ν is holomorphic on hν(W )
if and only if ν = f∗µ a.e. on W .

The next lemma states that the pushforward operator on quadratic differentials is dual to
the pullback operator on Beltrami differentials:

LEMMA 3.1. Let A ⊂ P1 be a finite set, q ∈ Q(A), and µ ∈ bel(f). Let f : W → P1 be a
finite type map. Then ∫

P1

f∗q · µ =

∫
P1

q · f∗µ.

PROOF. Let U ⊂ P1 \ S(f) be a simply connected domain of full Lebesgue measure. Let
(gi)i∈I denote the set of univalent branches of f−1 defined on U . Then∫

P1

f∗q · µ =

∫
U
f∗q · µ

=

∫
U

∑
i∈I

g∗i q · µ

=

∫
U

∑
i∈I

g∗i q · (g∗i f∗µ)

=
∑
i∈I

∫
U
g∗i (q · f∗µ)

=
∑
i∈I

∫
gi(U)

q · f∗µ

=

∫
P1

q · f∗µ.

In the last equality, we used the fact that
⋃
i∈I gi(U) has full Lebesgue measure in W , and that

f∗µ = 0 a.e. on P1 \W . �

LEMMA 3.2. Let Z ⊂ A ⊂ B be finite subsets of P1. Assume that f(A) ⊂ B, S(f) ⊂ B
and cardZ = 3. Let µ ∈ Bel(P1), and let φ, ψ denote the quasiconformal homeomorphisms
integrating µ and f∗µ respectively and fixing Z pointwise. If φ ∈ QC0(B) , then there exists
quasiconformal isotopies (φt)t∈[0,1] and (ψt)t∈[0,1] such that

(1) φ0 = ψ0 = id and φ1 = φ, ψ1 = ψ
(2) φt|B = id and ψt|(P1\W )∪f−1(B) = id, for all t ∈ [0, 1]

(3) φt ◦ f = f ◦ ψt for all t ∈ [0, 1].
Moreover, if µ = f∗µ, then we can take ψt = φt.



3. EPSTEIN’S DEFORMATION SPACE 22

PROOF. Let (φt)t∈[0,1] be an isotopy of φ to id such that φt|B = id for all t ∈ [0, 1] (see
Theorem 2.1).

By [[ABF21], Lemma 2.7], there exists an isotopy (ψ̃t)t∈[0,1] such that ψ̃t : W \ f−1(B)→
W \ f−1(B) is a homeomorphism, φt ◦ f = f ◦ ψ̃t, and ψ̃0 = id. Moreover, the relation
φt ◦ f = f ◦ ψ̃t implies that ψ̃t : W \ f−1(B) → W \ f−1(B) is in fact a quasiconformal
homeomorphism, of same dilatation as φt. By Theorems 4.2 and 4.3 of [MS98], ψ̃t extends to
an isotopy ψt of P1 which fixesE pointwise, whereE := P1\(W \f−1(B)) = (P1\W )∪f−1(B).
We will prove that ψ = ψ1.

Indeed ψ1 : P1 → P1 is a quasiconformal homeomorphism, which satisfies the following
two properties:

(1) φ ◦ f ◦ ψ−1
1 = f is holomorphic on ψ1(W ) = W

(2) and ∂ψ1 = 0 a.e. on P1 \W (since ψ1|P1\W = id).
Therefore, the Beltrami coefficient of ψ1 is exactly f∗µ, and we are done. �

In view of Lemma 3.2, we may define:

DEFINITION 3.1. Let f : W → P1 be a finite type map, and A,B be finite subsets of P1 with
A ⊂ B, f(A) ⊂ B and S(f) ⊂ B. We define the pullback map

σf : Teich(P1, B)→ Teich(P1, A)

as the natural map induced by µ 7→ f∗µ on Bel(P1).

LEMMA 3.3. The map σf : Teich(P1, B) → Teich(P1, A) is holomorphic, and its codifferen-
tial d∗(σf )[0] of the map σf at the basepoint [0] is the pushforward operator

f∗ : Q(A)→ Q(B).

PROOF. The operator f∗ : Bel(P1)→ Bel(P1) is C-linear, hence holomorphic. The analyt-
icity of σf then follows from the existence of local sections of the quotient map πB : Bel(P1)→
Teich(P1, B), and from the commutative diagram

Bel(P1)
f∗ //

πB
��

Bel(P1)

πA
��

Teich(P1, B) σf
// Teich(P1, A)

We have dσf [0] ◦ dπB |0 = dπA|0 ◦ f∗, which means that

dσf [0]([µ]B) = [f∗µ]A

where [µ]A and [µ]B denote the equivalence class of µ in T[0]Teich(P1, A) (resp. T[0]Teich(P1, B)).
�

DEFINITION 3.2 (Epstein’s deformation space). Let A ⊂ B be two finite subsets of P1, such
that cardA ≥ 3, A ⊂ B, f(A) ⊂ B and S(f) ⊂ B. We let

DefBA(f) := {[µ] ∈ Teich(P1, B) : $([µ]) = σf ([µ])}.

Let us explain this definition. Let [µ] ∈ DefBA(f), and let φ : P1 → P1 be a quasiconformal
homeomorphism integrating a representative µ of [µ] ∈ Teich(P1, B), normalized so that it
fixes three points a1, a2, a3 ∈ A. Let ψ : P1 → P1 be a quasiconformal homeomorphism
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integrating a representative of σf ([µ]) ∈ Teich(P1, A), also fixing a1, a2, a3. Then g := φ ◦
f ◦ ψ−1 : ψ(W ) → P1 is holomorphic, and it is then easy to see that it is a finite type map,
with S(g) = φ(S(f)). We will say that the triple (φ, ψ, g) represents [µ] in DefBA(f). The
condition that $([µ]) = σf ([µ]) means that φ and ψ are isotopic to each other relative to A.
In particular, φ|A = ψ|A, so if for instance A is a finite union of cycles for f , then φ(A) = ψ(A)
is also a finite union of cycles for g. However, as φ is allowed to differ from ψ outside A, the
multipliers of those cycles can be different.

PROPOSITION 3.1. If (φ1, ψ1, g1) and (φ2, ψ2, g2) represent the same τ ∈ DefBA(f), then g1

and g2 are conjugated by an automorphism of P1.

PROOF. Assume without loss of generality that φi and ψi fix the same 3 points a1, a2, a3 ∈
A. By assumption, we have φ1 ◦ φ−1

2 ∈ QC0(B); if σ denotes the Beltrami form of φ1 ◦ φ−1
2 ,

then observe that f∗σ is the Beltrami form of ψ1 ◦ ψ−1
2 . By Lemma 3.2, we have:

(φ1 ◦ φ−1
2 ) ◦ f = f ◦ (ψ1 ◦ ψ−1

2 )

from which we deduce g1 = g2. �

We can therefore think of DefBA(f) as a "natural parameter space" parametrizing a family
of finite type maps fτ , which are locally of the form φτ ◦ f ◦ ψ−1

τ , and which have the same
combinatorics as f on the finite set A.

The following result is proved in [Eps09] in the case of rational maps:

THEOREM 3.1. Assume that f is not a flexible Lattès map nor an automorphism. Then
DefBA(f) is a smooth complex manifold of dimension card (B \A).

PROOF. This follows immediately from Lemmas 2.2, 3.3, 2.4 and the submersion lemma.
�

3.2. No wandering domains. We now prove our last important result on Fatou/Julia
theory of finite type maps. The presentation is closely based on the proof of Sullivan’s theorem
given in [Ast17], which is itself based on an infinitesimal argument due to McMullen. The
core of the proof is essentially that the Teichmüller space of a finite type map can be embedded
in a deformation space DefBA(f), and that the presence of a wandering domain would make
this Teichmüller space infinite-dimensional, which is absurd as DefBA(f) is a finite-dimensional
manifold. However, it is not formally necessary to define the Teichmüller space of f and the
embedding into DefBA(f) for this argument to work: it is enough to consider the differential
of the embedding, and show that if f had a wandering domain, then this linear map would
map injectively an infinite-dimensional vector space into a finite-dimensional one, which is of
course a contradiction. This is what is done below.

THEOREM 3.2 (Epstein, [Eps93], Theorem 7 p. 148). Let f : W → P1 be a finite type map.
Then f has no wandering domains.

In the setting of rational maps or transcendental entire functions of finite type, a lemma
due to Baker asserts that given any wandering domain U0 → U1 . . . → Un → . . ., the Fatou
component Un must eventually be simply connected, which simplifies considerably the proof.
Unfortunately, the proof of this lemma doesn’t go through in the more general setting of finite
type maps, which will force us to consider the case of multiply connected wandering domains,
as in the original paper of Sullivan [Sul85]. We start with a series of lemma designed to
analyse this situation.



3. EPSTEIN’S DEFORMATION SPACE 24

DEFINITION 3.3. Let (Un)n∈N be a sequence of hyperbolic Riemann surfaces, and fn : Un →
Un+1 a sequence of covering maps. We say that a Riemann surface U∞ represents the direct limit
of (fn)n∈N if for every n ∈ N, there exists a holomorphic covering map πn : Un → U∞ such that
πn+1 ◦ fn = πn and for all x, y ∈ Un, πn(x) = πn(y) if and only if there exists m ≥ n such that
fm ◦ fm−1 ◦ . . . ◦ fn(x) = fm ◦ fm−1 ◦ . . . ◦ fn(y).

LEMMA 3.4 ([Sul85], Prop. 1). Let (Un)n∈N be a sequence of hyperbolic Riemann surfaces,
and assume that π1(U0) is not abelian. Then there exists a Riemann surface U∞ representing the
direct limit of (fn)n∈N, and either

(1) all fn are eventually isomorphisms
(2) or π1(U∞) is not finitely generated

LEMMA 3.5 (Compare [Sul85], Prop. 4). Let (Un)n∈N be a sequence of wandering domains
of a finite type map, and fn := f : Un → Un+1. Assume without loss of generality that S(f) ∩
Un = ∅ for all n ∈ N. Then either

(1) all Un are annuli and dn → +∞, where dn := deg(fn : U0 → Un)
(2) or there exists a Riemann surface U∞ representing the direct limit of (fn)n∈N which is

not of finite type (i.e. not a compact Riemann surface with a finite number of punc-
tures).

PROOF. Since S(f) ∩ Un = ∅, all maps f : Un → Un+1 are coverings.
Up to further relabeling the Un, we may reduce without loss of generality to one of the

two following situations: either for all n ∈ N, Un is simply connected and f : Un → Un+1 is
a conformal isomorphism, or U0 is not simply connected. In the first situation, U0 represents
the direct limit of the (fn)n∈N, so we are in case (2) of Lemma 3.5 (indeed, U0 ⊂ P1 \U1 so it
is not a finite type Riemann surface). From now on we assume that π1(U0) is non-trivial.

If π1(U0) is not abelian, then either all maps f : Un → Un+1 are isomorphisms, and then
U∞ ' Un is not of finite type; or U∞ is still not of finite type by Lemma 3.4.

It therefore suffices to prove that if π1(U0) is abelian, then all Un are annuli. Indeed, if it
is the case, then π1(U0) ' Z and U0 is biholomorphic to D∗, C∗ or an annulus. The first two
cases are impossible for a Fatou component, therefore U0 is an annulus, and then all Un are
annuli as well since they are covered by U0. �

LEMMA 3.6. Case (1) in Lemma 3.5 is not possible.

PROOF. Assume for a contradiction that there is a sequence of wandering domains (Un)n∈N
as in Case (1) of Lemma 3.5, that is, each Un is an annulus and fn : U0 → Un is a covering
map of degree dn → +∞. Let γ0 ⊂ U0 be a geodesic that is a non-trivial simple closed curve,
and let γn := fn(γ0). Then γn ⊂ Un is also a simple closed curve, and fn : γ0 → γn is a degree
dn covering map.

We first claim that any limit h of a convergent subsequence of (fn : U0 → P1)n∈N must be
constant. Indeed, the Un are disjoint open subsets of P1, so their spherical area must tend to
0; therefore, if fnk → h on U0, we must have that h is constant.

In particular, diam(γn) → 0 for the spherical metric in P1. By Jordan’s theorem, P1 \ γ
has two simply connected components, one of which has small diameter when n is large. We
denote by Bn the component with small diameter and we refer to it as the interior of γn, the
other component being the exterior (this terminology is well-defined for all n ≥ n0, for some
n0 ∈ N; up to relabeling, we assume n0 = 0).

Let Cn denote the connected component of f−1(Bn+1) whose closure meets γn. For n
large enough, we must have Cn ⊂ Bn. Since S(f) is finite and diam(Bn)→ 0, for all n large
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enough, Bn ∩ S(f) contains at most one point. Therefore Cn is simply connected, and then
Cn = Bn.

In particular, Bn ⊂W , and then by Montel’ theorem, Bn must be in the Fatou set of f . But
this contradicts the assumption that Un is a Fatou component isomorphic to an annulus. �

LEMMA 3.7. Let U∞ be a Riemann surface which is not of finite type. Let π : H → U∞ a
universal cover, and let

N := {µ ∈ bel(U∞) : ∃ξ qc and hyperbolically bounded on H, π∗µ = ∂ξ}.

Then there exists an infinite dimensional vector subspace V ⊂ bel(U∞) such that V ∩N = {0}.

PROOF. The quotient vector space bel(U∞)/N is exactly the tangent space to the Teich-
müller space T[0]Teich(U∞).

Moreover, since U∞ is not of finite type, Teich(U∞) is infinite-dimensional. �

LEMMA 3.8. Let X(W ) denote the vector space of meromorphic vector fields on W . If ∂ξ ∈
bel(f), then f∗ξ − ξ ∈ X(W ). Moreover, if ξ|B = 0 for some finite set B containing S(f) and at
least 3 other points, then ξ = f∗ξ.

PROOF. If z ∈ W is not a critical point, then there is a neighborhood U of z in W such
that f : U → f(U) is a conformal isomorphism. Then we have ∂f∗ξ = f∗∂ξ on U , and since
f∗∂ξ = ∂ξ, we have ∂η = 0 on U . Moreover, if c ∈ Crit(f), then in local coordinates we have
|f∗ξ(z) − ξ(z)| = O(|z − c|−ν), where ν ≥ 1 is the multiplicity of the critical point c. This
proves that f∗ξ − ξ is meromorphic on W , with poles contained in Crit(f) (of order at most
the multiplicity of the critical points).

If ξ|S(f) = 0, then ξ is hyperbolically bounded on X∗ by Theorem 2.3, and therefore so
is f∗ξ on W ∗. So f∗ξ extends to P1 as a quasiconformal vector field that vanishes outside of
W ∗; let us denote by χ this extension. So χ− ξ is a quasiconformal vector field on P1, which
is holomorphic on W , and such that ∂(χ− ξ) = 0 on P1 \W (since ∂ξ = 0 outside of W ). By
Weil’s lemma, χ− ξ is therefore holomorphic on P1, and it vanishes on 3 points, so it vanishes
everywhere. �

PROOF OF THEOREM 3.2. Assume that f has a wandering domain U0, and let Un :=
fn(U0) for n ≥ 0. Up to relabeling, we may assume without loss of generality that Un∩S(f) =
∅ for all n ≥ 0, so that each map f : Un → Un+1 is a covering map. By Lemmas 3.5 and 3.6,
there exists a Riemann surface U∞ representing the direct limit of the maps f : Un → Un+1,
and U∞ is not of finite type.

Let V be the vector space given by Lemma 3.7. We define a linear map J : V → bel(f)
in the following way: if µ ∈ V , we let σ := J(µ) := π∗nµ on Un for all n ≥ 0 (πn : U∞ → Un
are the maps from the definition of the direct limit), and σ := (fn)∗π∗0µ on f−n(U0). We then
extend σ by 0 outside of

⋃
n∈Z f

n(U0).

Let µ ∈ V and let ξ be a quasiconformal vector field on P1 such that σ = ∂ξ. Assume
that ξ = f∗ξ on W ; we will prove that this implies that µ = 0. Indeed, if ξ = f∗ξ then ξ
must vanish on every repelling periodic point, therefore ξ = 0 on J(f) by Theorem 1.1. In
particular, ξ vanishes on ∂U0, hence ξ is hyperbolically bounded on U0 by Theorem 2.3. Let
p : H → U0 be a universal cover, so that p∞ := π0 ◦ p : H → U∞ is a universal cover of U∞.
On H, we have

p∗σ = p∗∂ξ = ∂p∗ξ



4. TEICHMÜLLER SPACES OF FINITE TYPE MAPS 26

Since ξ is hyperbolically bounded on U0 and since p : H → U0 is a (universal) cover, p∗ξ is
hyperbolically bounded on H. Therefore, by definition of V , µ = 0.

Let Z ⊂ P1 \ S(f) be any set of cardinal 3 and let us introduce the map

I : bel(f)→
⊕
v∈S(f)

TvP1

defined by I(µ) = (ξ(v))v∈S(f), where ξ is the unique quasiconformal vector field on P1

vanishing on Z such that µ = ∂ξ. With Lemma 3.8 we have proved the following: the linear
map I ◦ J : V →

⊕
v∈S(f) TvP1 is injective. But this is absurd, since V is infinite-dimensional

but
⊕

v∈S(f) TvP1 is not. Therefore f cannot have wandering domains. �

4. Teichmüller spaces of finite type maps

We denote by QC(f) the group of quasiconformal homeomorphisms h : P1 → P1 with
h(W ) = W and which commute with f . Let QC0(f) the subgroup of quasiconformal home-
omorphisms commuting with f and uniformly quasiconformally isotopic to the identity. This
means that h ∈ QC0(P1) if and only if there is 0 < k < 1 and a continuous map H :
[0, 1]× P1 → P1 such that

(1) for all t ∈ [0, 1], ht := H(t, ·) ∈ QC(f)
(2) h0 is the identity on P1, and h1 = h
(3) for all t ∈ [0, 1], the quasiconformal dilatation of ht is less than k.

The group QC0(f) acts on Bel(f) by pullback.

DEFINITION 4.1. The Teichmüller space of f , denoted by Teich(f), is defined as the quotient
Bel(f)/QC0(f).

DEFINITION 4.2. We say that a singular value is acyclic if it is not preperiodic. We say that
two acyclic singular values lie in the same foliated acyclic class if the closure of their grand orbits
are the same.

THEOREM 4.1. The Teichmüller space Teich(f) can be naturally identified with the product
of a polydisk and of a product of Teichmüller spaces of punctured spheres and tori. It makes
Teich(f) into a finite-dimensional complex manifold of dimension

dim Teich(f) = nH + nJ + nf − np
where nH is the number of Herman rings of f , nJ is the number of ergodic line fields of f , nf
is the number of foliated acyclic critical classes lying in the Fatou set, and np is the number of
parabolic cycles.

In order to prove Theorem 4.1, we could adapt the approach taken in [Ast17], replacing
the moduli spaceMd of degree d rational maps by a deformation space DefBA(f). This would
give a construction from first principles of the complex structure on Teich(f). However,
we choose to follow here the original approach of McMullen-Sullivan ([MS98]), which uses
heavier machinery but is quicker and more precise (they prove that Teich(f) is isomorphic to
a finite product of disks and Teichmüller spaces of marked tori and spheres).

Now that we know that repelling cycles are dense in the Julia set of finite type maps
(Theorem 1.1) and that we dispose of the Fatou-Sullivan classification of periodic Fatou com-
ponents (Corollary 1.1), the proof is essentially the same as in [MS98]. We give the ideas
below, but we mostly refer to [MS98].
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Let us first introduce and recall some notations. Let Ω be a hyperbolic complex 1-
manifold; let

(1) Bel(Ω) denote the space of Beltrami forms on Ω
(2) QC0(Ω) denote the group of quasiconformal homeomorphisms isotopic to id relative

to the ideal boundary of Ω
(3) Teich(Ω) = Bel(Ω)/QC0(Ω).

Note that Ω is not assumed to be connected; we will use this notation in a context where Ω
has finitely many connected components Ωi, in which case

Teich(Ω) '
∏
i

Teich(Ωi).

If additionnally there is a holomorphic endomorphism g : Ω→ Ω, we let

(1) Bel(Ω, g) denote the space of g-invariant Beltrami forms on Ω
(2) QC(Ω, g) denote the group of quasiconformal homeomorphisms commuting with g
(3) QC0(Ω, g) denote the group of quasiconformal homeomorphisms isotopic to id rela-

tive to the ideal boundary of Ω in QC(Ω, g)
(4) Teich(Ω, g) = Bel(Ω, g)/QC0(Ω, g).

DEFINITION 4.3. Let f : W → P1 be a finite type map, and let Λf denote the closure of
the grand orbits of the union of S(f) and all periodic points. Let Ωf = W∞ \ Λf (recall that
W∞ =

⋂
n∈N f

−n(W )). Let M1(J, f) denote the subspace of Bel(f) of invariant Beltrami forms
supported in J .

The open set Ωf is a completely invariant subset of the Fatou set, such that f : Ωf → Ωf

is a covering without periodic points. By the Fatou-Sullivan classification (Corollary 1.1) and
the absence of wandering domains (Theorem 3.2), we have the following description of Ωf :
it is the union of all periodic Fatou components and their preimages, minus a discrete subset
of W (iterated preimages of cycles and singular values contained in attracting and parabolic
basins) and a countable collection of real-analytic Jordan curves (closures of the grand orbits
of singular values contained in super-attracting basins, Herman rings or Siegel disks). We let
Ωdis denote the subset of Ωf contained in attracting and parabolic basins and their preimages,
and Ωfol denote the subset of Ωf contained in super-attracting basins, Herman disks and Siegel
disks, so that Ωf = Ωdis t Ωfol.

This choice of notation comes from the fact that the grand orbit relation (that is, x ∼ y
if and only if there exists (n,m) ∈ N2 : fn(x) = fm(y)) on Ωdis is discrete, while in Ωfol the
closure of grand orbit equivalence classes gives a foliation by real analytic curves.

LEMMA 4.1 (See [MS98], Theorem 6.2). Let f : W → X be a finite type map. We have

Teich(f) 'M1(J, f)× Teich(Ωdis/f)× Teich(Ωfol, f)

PROOF. First, observe that Bel(f) = M1(J, f)
⊕

Bel(Ωdis, f)
⊕

Bel(Ωfol, f). Indeed, any
µ ∈ Bel(f) must be supported in W∞; and by the discussion above, int(W∞) and Ωf differ
only by a set of zero Lebesgue measure. Additionnally, the boundary of W∞ is contained in
the Julia set.

Next, observe that any h ∈ QC0(f) must fix Λf pointwise. Therefore, by [[MS98], Theo-
rem 4.3], we have

QC0(f) ' QC0(Ωdis, f)×QC0(Ωfol,P1)
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which proves that

Teich(f) 'M1(J, f)× Teich(Ωdis, f)× Teich(Ωfol, f).

Finally, the quotient Ωdis/f is a finite union of Riemann surfaces (since f : Ωdis → Ωdis is
a covering map without periodic points), corresponding to the finitely many attracting and
parabolic basins of f (there are at most cardS(f) of them). By the discussion at the end of
the proof of [[MS98], Theorem 6.2], we therefore have Teich(Ωdis, f) ' Teich(Ωdis/f). �

LEMMA 4.2 ([MS98], Theorem 6.5). The quotient space Ωdis is a finite union of Riemann
surfaces, one for each cycle of attracting or parabolic components of the Fatou set of f . An at-
tracting basin contributes an n-times punctured torus to Ωdis, while a parabolic basin contributes
an (n+ 2)-times punctured sphere, where n ≥ 1 is the number of grand orbits of singular values
landing in the corresponding basin.

We simply replaced the words "critical points" by "singular value" in the statement above.
The proof of Lemma 4.2 is exactly the same as in [MS98], and we do not reproduce it com-
pletely here. We just note that Ωdis can be written as a disjoint union of completely invariant
open subsets Ωi, each of which is contained either in an attracting or a parabolic basin. In the
case of an attracting basin, the fact that Ωi/f is isomorphic to a punctured torus can be seen
by constructing a fundamental domain in a linearizing coordinate. In the case of a parabolic
basin, we use a Fatou coordinate instead to prove that Ωi/f is isomorphic to a cylinder with
n punctures, which is itself isomorphic to a sphere with n+ 2 punctures.

LEMMA 4.3 ([MS98], Theorem 6.8). The space Teich(Ωfol, f) is a finite-dimensional poly-
disk, whose dimension is given by the number nH of cycles of Herman rings plus the number nfol

of foliated equivalence classes of acyclic singular values landing in Siegel disks, Herman rings or
superattracting basins.

Again, we simply present here the idea of the proof. We can write Ωfol as a disjoint
union of completely invariant open subsets Ωfol

i , where the Ωfol
i each intersect exactly one

cycle of Siegel disks, Herman rings or a super-attracting basin; and we have Teich(Ωfol, f) =∏
i Teich(Ωfol

i , f). The space Teich(Ωfol
i , f) is a polydisk of dimension the number of grand

orbits of annular components in Ωfol
i : each such annulus can be stretched and twisted, which

gives 2 real parameters or 1 complex parameter of quasiconformal deformations. Let ni
denote the number of foliated acyclic equivalence classes of singular values contained in Ωfol

i .
If Ωfol

i intersects a cycle of Siegel disks, then it has ni grand orbits of annuli components; if Ωfol
i

intersects a cycle of Herman rings, then it has ni + 1 grand orbits of annuli components; and
if Ωfol

i intersects a super-attracting basin, then it has ni grand orbits of annuli components.

PROOF OF THEOREM 4.1. Now that we have the identification given by Lemma 4.1, it
remains to describe each factor and count its dimension.

First, the space M1(J, f) is a polydisk of dimension nJ , where nJ is the number of ergodic
line fields. Lemma 4.2 provides a description of Teich(Ωdis/f). Since the Teichmüller space
of a sphere with n punctures is n − 3 and the dimension of the Teichmüller space of a torus
with n punctures is n, the dimension of Teich(Ωdis/f) is ndis − np, where ndis is the number
of grand orbits of singular values captured by either attracting or parabolic cycles.

Lastly, Lemma 4.3 asserts that Teich(Ωfol, f) is a polydisk of dimension nfol+nH , where nfol

is the number of foliated acyclic equivalence classes of singular values in Ωfol. The dimension
count of Theorem 4.1 then follows from the observation that nf = ndis + nfol. �
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DEFINITION 4.4. Let A ⊂ P1 be a finite set of cardinal at least 3, such that A is a union of
cycles and of pieces of singular orbits

⋃
0≤j≤n f

j(v), v ∈ S(f). Let B := A ∪ f(A) ∪ S(f). Then
QC0(f) ⊂ QC0(A), so that there is a natural map ΥA,B : Teich(f)→ DefBA(f).

THEOREM 4.2. The map ΥA,B is a holomorphic injection.

PROOF. This is a direct consequence of Lemma 3.2. �

COROLLARY 4.1. Let f : W → P1 be a finite type map. With the same notations as in
Theorem 4.1, we have

nH + nJ + nf − np ≤ cardS(f).

PROOF. It suffices to choose A to be a finite union of cycles of cardinal at least 3 disjoint
from S(f), and B := A ∪ S(f). Then A and B satisfy the conditions of definition 4.4, and
dim DefBA(f) = card (B \ A) = cardS(f). Finally, by Theorem 4.2, we have dim Teich(f) ≤
dim DefBA(f). �

4.1. No singular relations and lift to the Teichmüller space.

DEFINITION 4.5. A natural family of finite type maps on P1 is a triple (f, φ, ψ), where f :
W → P1 is a finite type map on P1, and φ, ψ : M × P1 → P1 are holomorphic motions of the
Riemann sphere parametrized by a complex manifold M , such that for all λ ∈ M , ∂ψλ = 0 a.e.
on P1 \W .

We will still use the notation (fλ)λ∈M , where fλ := φλ ◦ f ◦ ψ−1
λ .

If τ0 ∈ Teich(f) and A ⊂ P1 is a 3-cycle of f , then the choice of a local section σ : U →
Bel(P1) at τ0 of the quotient map π : Bel(f)→ Teich(f) defines a natural family in the sense of
the previous definition, by taking φτ = ψτ to be the unique quasiconformal homeomorphism
integrating σ(τ) and normalized to fix A pointwise. Moreover, the map fτ := φτ ◦ f ◦ φ−1

τ

depends only on τ , A and f , and not on the choice of section.
We have thus defined a map ΨA : Teich(f) 3 τ 7→ fτ , which locally induces natural

families of finite type maps in the sense of Definition 4.5.

DEFINITION 4.6. A singular value relation for a finite type map f is a relation of the form

fm(v1) = fn(v2)

where v1, v2 are either singular values or critical points, and m,n ∈ N with either v1 6= v2 or
m 6= n, or of the form

fn(v1) ∈ P1 \W.

If (fλ)λ∈M is a natural family of finite type maps, then a singular value relation can be
persistent or not in the family, in the obvious sense.

The next theorem is an adaptation to the setting of finite type maps of [[MS98], Theorem
7.4]. It will be applied later in the manuscript.

THEOREM 4.3. Let B denote the unit ball of a complex Banach space, and let B′ := 1
3B. Let

(fλ)λ∈B be a natural family of finite type maps on P1, and assume that both of the following
properties hold:

(1) all singular relations are persistent on B
(2) and for every v ∈ S(f0), fn0 (v) ∈W for all n ≥ 0.
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Then there is a holomorphic map j : B′ → Teich(f0), mapping 0 to [0], such that for all λ ∈ B′,

ΨA ◦ j(λ) = fλ.

Assumption (2) is probably not necessary, but it simplifies the proof and it will be enough
for our purposes. The idea of the proof is that the absence of non-persistent singular relations
will allow us to construct a dynamical holomorphic motion hλ respecting the dynamics on
W , and such that ∂hλ = 0 a.e. on P1 \ W . Compared to the case of rational maps, the
added difficulties are this new requirement that ∂hλ = 0 a.e. on P1 \W , and the presence
of asymptotic values which makes pulling back holomorphic graphs by the dynamics more
delicate. We begin with the following lemmas:

LEMMA 4.4. Assume that the hypotheses of Theorem 4.3 are satisfied. Let γ1, γ2 : B → P1

be holomorphic maps such that for all λ ∈ B,

fmλ ◦ γ1(λ) = fmλ ◦ γ2(λ) = fnλ (v(λ)),

where v(λ) ∈ S(fλ) and m,n ∈ N. Then either γ1 ≡ γ2, or for all λ ∈M , γ1(λ) 6= γ2(λ).

PROOF OF LEMMA 4.4. We prove this by induction on m. For m = 0, there is nothing to
prove.

Let us now assume m = 1:

fλ ◦ γ1(λ) = fλ ◦ γ2(λ) = fnλ (v(λ)),

and let us assume for a contradiction that there exists λ0 ∈ B such that γ1(λ0) = γ2(λ0), but
γ1 6≡ γ2. Then c(λ0) := γi(λ0) is a critical point for fλ0 , so we have fλ(c(λ)) = fnλ (v(λ)) for
all λ ∈ B by the persistence of singular relations. But on the other hand, c(λ) has constant
multiplicity as a critical point; and the fact that γ1 6≡ γ2 implies that there is a loss of local
degree at c(λ) for some λ 6= λ0, a contradiction.

Let m ≥ 1, and assume that the lemma is proved for m. Let γ1, γ2 : B → P1 such that for
all λ ∈ B,

fm+1
λ ◦ γ1(λ) = fm+1

λ ◦ γ2(λ) = fnλ (v(λ)).

If γ1(λ) 6= γ2(λ), then we are done, so assume that γ1(λ0) = γ2(λ0). Let γ̃i := fλ◦γi, 1 ≤ i ≤ 2.
Applying the induction hypothesis to γ̃i, we get γ̃1 = γ̃2. We now argue as before: if γ1 6≡ γ2,
then c(λ0) := γi(λ0) is a critical point for fλ0 . Therefore, fm+1

λ0
(c(λ0)) = fnλ0(v(λ0)), and by

the persistence of singular relations, fm+1
λ (c(λ)) = fnλ (v(λ)) for all λ ∈ B. We then obtain a

contradiction by the same local degree consideration.
Therefore γ1 = γ2, and the lemma is proved. �

LEMMA 4.5. Assume that the hypotheses of Theorem 4.3 are satisfied. Let γ : B → P1 be
a holomorphic map such that γ(λ) is in the grand orbit of S(fλ), i.e. such that there exists
m,n ∈ N, fmλ (γ(λ)) = fnλ (v(λ)) where v(λ) ∈ S(fλ). Let x ∈ f−1({γ(0)}). Then there is a
holomorphic map γ̃ : B → P1 such that fλ ◦ γ̃ = γ and γ̃(0) = x.

PROOF OF LEMMA 4.5. Let Z := {(λ, z) : fλ(z) = γ(λ)}, and let Z0 denote the connected
component of Z containing (0, x): it is an analytic hypersurface of the open set

U := {(λ, ψλ(z)) : (λ, z) ∈ B ×W} ⊂ B × P1.

Let π : Z0 → B denote the projection on the first coordinate.
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Assume first that π : Z0 → B is not locally invertible near (λ0, z0). Then, by the implicit
function theorem, we must have f ′λ0(z0) = 0, i.e. z0 is a critical point of fλ0 and γ(λ0) =:
v1(λ0) is a critical value, so fλ0 has a singular relation

fmλ0(v1(λ0)) = fnλ0(v(λ0)).

By assumption, this relation is persistent, so that

fmλ (v1(λ)) = fnλ (v(λ)) = fmλ (γ(λ))

for all λ ∈ B. Then we must have γ(λ) = v1(λ) for all λ ∈ B by Lemma 4.4, so if we let
v1 := v1(0), we have γ(λ) = φλ(v1). In particular, f(x) = γ(0) = v1, and we can just take
γ̃(λ) := ψλ(x).

Assume now that π : Z0 → B has an asymptotic value λ0. Then there is a curve t 7→
(λt, zt) ∈ Z0 such that λt → λ0 as t → 0, but t 7→ zt has no accumulation point in W (fλ0) as
t→ 0. Using the expression fλ = φλ ◦ f ◦ ψ−1

λ and the definition of Z0, we obtain:

f ◦ ψ−1
λt

(zt) = φ−1
λt
◦ γ(λt)

and φ−1
λt
◦γ(λt)→ φ−1

λ0
◦γ(λ0) as t→ 0, while ψ−1

λt
(zt) = zt+ot→0(1) has no accumulation point

in W (fλ0). Therefore, v1 := φ−1
λ0
◦γ(λ0) is an asymptotic value for f ; but then v1(λ) := φλ(v1)

is an asymptotic value for fλ for all λ ∈ B; in particular, γ(λ0) = v1(λ0), and by the persistence
of singular relations, we must have

fmλ (v1(λ)) = fnλ (v(λ)) = fnλ (γ(λ))

for all λ ∈ B. Then, by Lemma 4.4, we have γ(λ) = v1(λ) for all λ ∈ B.
In particular, f(x) = γ(0) = v1, and we can just define γ̃(λ) := ψλ(x).

Finally, it remains to treat the case where π : Z0 → B has no asymptotic values nor
critical values. Then π : Z0 → B is a covering map, and since B is simply connected, it has a
well-defined inverse g : B → Z0. We can then define γ̃ := π2 ◦ g, where π2 : Z0 → P1 is the
projection on the second coordinate. �

LEMMA 4.6. Assume that the hypotheses of Theorem 4.3 are satisfied. Let γ : B → P1 be a
holomorphic map such that γ(λ) avoids in the grand orbit of S(fλ), i.e. such for all λ ∈ B and
all m,n ∈ N, fmλ ◦ γ(λ) 6= fnλ (v(λ)), where v(λ) ∈ S(fλ). Let x ∈ f−1({γ(0)}). Then there is a
holomorphic map γ̃ : B → P1 such that fλ ◦ γ̃ = γ and γ̃(0) = x.

PROOF OF LEMMA 4.6. The proof is similar to that of Lemma 4.5, except that the first two
cases are now ruled out by the assumption on γ.

Indeed, let Z and Z0 be as above. By the proof of Lemma 4.5, if π : Z0 → B has a critical
value or an asymptotic value at λ0, then γ(λ0) is a critical value or an asymptotic value for
fλ0 , which contradicts our hypothesis on γ. Therefore π : Z0 → B is a covering map, hence
an isomorphism, and we can take γ := π2 ◦ π−1 as before. �

PROOF OF THEOREM 4.3. Let f := f0. Recall that since (fλ = φλ ◦f ◦ψ−1
λ )λ∈B is a natural

family, we have a holomorphic motion φλ(S(f)) of the singular values and a holomorphic
motion ψλ of the critical points. Moreover, the absence of persistent singular value relation
implies that these motions are compatible; we denote it by hλ, i.e. hλ(x) = ψλ(x) if x ∈
Crit(f) and hλ(x) = φλ(x) if x ∈ S(f).
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Let P denote the post-singular set of f , that is,

P :=
⋃
n∈N

fn(S(f))

(which is well-defined by assumption (2)). We first extend hλ to P by

hλ(fn(v)) := fnλ (vλ) = fnλ (φλ(v))

for any v ∈ S(f). Again, the absence of non-persistent singular relations implies that this
defines a compatible holomorphic motion, well-defined and without collisions. Moreover, for
all λ ∈ B and all x ∈ P , we have

hλ ◦ f(x) = fλ ◦ hλ(x).

Using Lemmas 4.5 and 4.4, we then extend hλ to P̂ :=
⋃
n∈N f

−n(P ) ⊂ W . Next, we
observe that the holomorphic motion hλ (defined so far on P ∗) and ψλ restricted to P1 \W
are compatible by assumption (2). We may therefore extend hλ to P1 \W by ψλ, which gives
us a holomorphic motion h : B × (P̂ ∪ (P1 \W ))→ P1. Moreover, by construction, h respects
the dynamics on P̂ : hλ◦f(x) = fλ◦hλ(x), for all x ∈ P̂ . Finally, we use Bers-Royden Harmonic
λ-lemma (Theorem 2.6, [BR86]) to extend h to a holomorphic motion h : B′×P1 → P1 which
is harmonic outside of E := P̂ ∪ (P1 \W ); we observe moreover that since by construction
hλ = ψλ on P1\W , and ∂ψλ = 0 a.e. on P1\W , this holomorphic motion is actually harmonic
on P1 \ P̂ , with µλ = 0 a.e. on P1 \W , where µλ is the Beltrami form of hλ.

On the other hand, applying Lemma 4.6 with γ(λ) := hλ ◦ f(x), x /∈ E = P̂ ∪ (P1 \W ),
we define a second holomorphic motion h̃ on B′ × P1 satisfying

fλ ◦ h̃λ(x) = hλ ◦ f(x)

for every x /∈ E. We also define h̃λ(x) := hλ(x) for x ∈ E: these two definitions are compati-
ble, and patch together to define a holomorphic motion h̃ : B′ × P1 → P1 satisfying

fλ ◦ h̃λ = hλ ◦ f
on W .

Let µλ, νλ denote the Beltrami forms of hλ and h̃λ respectively. By construction, hλ ◦ f ◦
h̃−1
λ = fλ is holomorphic on Wλ = hλ(W ) = h̃λ(W ), and νλ = 0 on W . Therefore νλ = f∗µλ,

and since f : W \ P̂ → P1 \ P̂ is a covering map, the Beltrami form νλ is harmonic on W \ P̂ ,
and in fact on P1 \ P̂ since νλ = 0 on P1 \W .

Therefore, by unicity in Bers-Royden’s Harmonic λ-lemma, νλ = µλ = f∗µλ. We may
then define j : B′ → Teich(f) by j(λ) := π(µλ), where π : Bel(f) → Teich(f) is the quotient
map. �



CHAPTER 2

Bifurcations

1. The case of rational maps on P1

1.1. A short overview of the topic. We begin with a short overview of the theory of
bifurcations in one-dimensional rational dynamics. Since the topic has been the focus of an
intense research activity over the last decades, we will not be able to cover all important
results, and we refer the reader to surveys such as [BC11] or [Duj21].

1.1.1. Mañé-Sad-Sullivan and Lyubich’s theorem. Let Ratd denote the space of rational
maps of degree d on P1, that is, f ∈ Ratd if f = p

q , where p and q are complex polynomials
with no common factors and max(deg p,deg q) = d. The space Ratd can by naturally identified
with a Zariski open subset of P2d+1.

A holomorphic family of rational maps of degree d is a holomorphic map

F : M × P1 →M × P1

such that for all λ ∈ M , F (λ, ·) =: fλ ∈ Ratd. In what follows, we will use the notation
(fλ)λ∈M and refer to M as the parameter space.

The automorphism group PSL2(C) acts on Ratd by conjugacy; we denote by Md :=
Ratd/PSL2(C) the moduli space of rational maps of degree d. It is an orbifold of dimension
2d− 2.

DEFINITION 1.1. Let (fλ)λ∈M be a holomorphic family of degree d rational maps, and assume
that there is a holomorphic map c : M → P1 such that for all λ ∈M , f ′λ(c(λ)) = 0 (we say that
c is a marked critical point). We say that c is passive over M if

{λ 7→ fnλ (c(λ)) : n ∈ N}
is normal. If λ0 ∈ M and if there exists a neighborhood U of λ0 in M such that c is passive on
U , then we say that c is passive at λ0.

When fλ0 has only simple critical points, all critical points can be marked locally near
λ0 by the implicit function theorem; and in general, we can always reduce to the case of
a holomorphic family where all critical points are marked, up to passing to a finite degree
cover in the parameter space. Thus it always makes sense to talk about activity or passivity
of critical points at a parameter λ0 ∈M .

The following theorem, proved independantly by Mañé-Sad-Sullivan ([MSS83]) and Lyu-
bich ([Lyu83]), is the basis of the theory of bifurcations in one-dimensional complex dynam-
ics:

THEOREM 1.1. Let (fλ)λ∈M be a holomorphic family of rational maps of degree d ≥ 2. Let
λ0 ∈ M and let U ⊂ M be a simply connected neighborhood of λ0. The following properties are
equivalent:

(1) the map λ 7→ J(fλ) is continuous on U for the Hausdorff distance

33
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(2) there exists a dynamical holomorphic motion h : U × J(fλ0)→ P1 of the Julia set over
U , satisfying hλ ◦ fλ0 = fλ ◦ hλ

(3) the number of non-repelling cycles of fλ is constant over U
(4) the maximal period of attracting cycles is bounded on U
(5) all critical values are passive on U .

If λ0 satisfies any of the equivalent conditions above, we say that λ0 is in the stable locus;
otherwise, we say that it is in the bifurcation locus. When there is no ambiguity about which
family we are working with, we will denote the stability locus by Stab and the bifurcation
locus by Bif. An essential consequence of Theorem 1.1 is the genericity of stabiliy:

COROLLARY 1.1. Let (fλ)λ∈M be a holomorphic family of rational maps of degree d ≥ 2.
Then the bifurcation locus is a closed set with empty interior in M .

We will see later that this is a feature unique to the one-dimensional setting.

1.1.2. Bifurcation currents. Theorem 1.1 was later complemented by a potential-theoretic
approach to bifurcations introduced by DeMarco in [DeM01]. Let us first recall some results
on the ergodic properties of rational maps. First, a rational map on P1 has a unique measure
of maximal entropy; this result was first obtained by Brolin for polynomials and then by
Lyubich for rational maps:

THEOREM 1.2 ([Bro65], [Lju83],). Let f be a rational map on P1 of degree d ≥ 2. There
exists a unique probability measure µf of maximal entropy log d. Moreover, suppµf = J(f).

We now state DeMarco’s result:

THEOREM 1.3. [DeM01] Let (fλ)λ∈M be a holomorphic family of rational maps of degree
d ≥ 2. Let L : M → R be the Lyapunov exponent, defined by

L(λ) :=

∫
J(fλ)

log ‖dfλ(z)‖dµλ(z).

Then L is continuous and plurisubharmonic. Moreover, it is pluriharmonic exactly on the stability
locus in M .

The fact that L is plurisubharmonic on M means that ddcL is a closed positive current
on M of bidegree (1, 1), denoted by Tbif . Therefore Theorem 1.3 adds another equivalent
characterization of the bifurcation/stabiliy dichotomy: λ ∈ Bif if and only if λ ∈ suppTbif .

Let us also note that the important particular case of quadratic polynomials had been
investigated by Levin prior to this. In terms of DeMarco’s more general setting, his results
may be reformulated as:

THEOREM 1.4. [Lev82] In the quadratic family (z 7→ z2+λ)λ∈C, Bif is exactly the boundary
of the Mandelbrot set M and Tbif is exactly the harmonic measure of M.

1.1.3. Higher bifurcation currents. Bassanelli and Berteloot introduced in [BB07] higher
degree currents T kbif , detecting higher codimensional bifurcation phenomena. Since Tbif has
continuous potential, the intersections

T kbif := Tbif ∧ . . . ∧ Tbif

are well-defined closed positive currents of bidegree (k, k). When k > dimM , T kbif = 0. When
k = dimM , T kbif is a positive measure called the bifurcation measure and denoted by µbif .
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Two families are particularly important: the family Polyd of (monic centered) degree d
polynomials, and the total family induced by Ratd. In the latter case, with a slight abuse
of notations, µbif will denote instead the unique positive measure on Md such that µbif =
π∗(T 2d−2

bif ), where π : Ratd →Md is the quotient map.

THEOREM 1.5 ([BB09], [DF08]). Let (fλ)λ∈M be a holomorphic family of rational maps of
degree d. Then

supp T kbif ⊂ {λ ∈M : fλ has k periodic critical points }.
DEFINITION 1.2. Let f ∈ Ratd and 1 ≤ k ≤ 2d − 2. We say that f is a k-Misiurewicz map

if there exists a compact hyperbolic set K ⊂ J and critical points c1, . . . , ck such that for all
1 ≤ j ≤ k, there exists nj ∈ N∗ such that fnj (cj) ∈ K.

We say that f is a Thurston map or a PCF map if the orbit of each of its critical points are
finite, i.e. all its critical points are either periodic or strictly preperiodic.

Finally, we say that a f is a Misiurewicz-Thurston map if all of its critical points are strictly
preperiodic and if their orbit eventually lands on repelling cycles.

THEOREM 1.6 ([BE09], [DF08]). For M = Polyd orMd, the support of µbif is exactly the
closure of the set of Misiurewicz-Thurston maps.

In fact, the statements in [BE09] and [DF08] involve Misiurewicz-Thurston maps which
are not flexible Lattès maps, but it was proved later by other means in [BG13] that flexible
Lattès maps also belong to the support of µbif inMd.

1.1.4. Equidistribution results. The current Tbif and its self-intersections T kbif provide a
more quantitative description of the bifurcations than simply through their support. A number
of results provide equidistribution theorems of some dynamically defined parameters to Tbif

or µbif . We will only mention a few for illustration purposes, rather than try to present a
complete account of the literature on this topic.

DEFINITION 1.3. Let n ∈ N∗, η ∈ C. We define

Pern(η) := {f ∈ Polyd : f has a cycle of exact period n and multiplier η}.
The first parametric equidistribution result is the following, obtained by Levin:

THEOREM 1.7. [Lev90] Let fλ(z) := z2 + λ be the quadratic family. Then

2−n
∑

λj∈Pern(0)

δλj → µbif

in the sense of measures, where µbif is the bifurcation measure of the quadratic family (fλ)λ∈C
(which also coincides with the harmonic measure of the Mandelbrot set).

This result can be recoverd in a quantitative way by arithmetic methods (see [FRL06])
In higher degree, the set Pern(η) is an algebraic hypersurface of Polyd; it therefore sup-

ports an integration current [Pern(η)], which is closed and of bidegree (1, 1).
Bassanelli and Berteloot first proved in [BB11] the equidistribution of the Pern(η) towards

the bifurcation current, either for η ∈ D or for generic η ∈ C (outside of a polar set). Gauthier
strengthened these results by proving the equidistribution for any η ∈ C:

THEOREM 1.8. [Gau16] For every η ∈ C and d ≥ 2, we have

d−n[Pern(η)]→ Tbif

in the sense of currents.
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Gauthier and his coauthors later improved Theorem 1.8 in various significant ways: for
instance in [GV17], Gauthier and Vigny obtain a speed of convergence of the measures sup-
ported by

⋂d
j=1 Pern(ηj) (for ηj ∈ D) to µbif in Polyd, which has applications to some counting

problems in parameter spaces. Similar results were also obtained in the moduli space of ra-
tional maps.

Another type of equidistribution results address the repartition of parameters whose crit-
ical points are preperiodic, with prescribed combinatorics.

DEFINITION 1.4. Let (fλ)λ∈M be a holomorphic family of degree d ≥ 2 rational maps, with
a marked critical point c(λ). Let 0 ≤ k < n. We define Preper(n, k) as the set of λ ∈ M for
which fn+k

λ (c(λ)) = fnλ (c(λ)), that is, c(λ) is preperiodic with preperiod k and period n.

THEOREM 1.9 ([DF08]). Let (fλ)λ∈M be a holomorphic family of degree d ≥ 2 rational
maps, withM = Polyd orMd; assume that there is a marked critical point c(λ). Let k(n)→ +∞
be a sequence of integers. Then

1

dn + d(1−e)k(n)
[Preper(k(n), n)]→ Tbif,c,

where e is the generic cardinal of the exceptional locus of fλ, and Tbif,c is the bifurcation current
of c.

We will not define here the bifurcation current of a marked critical point, but just mention
that it is analoguous to the bifurcation current, and that its support is exactly the activity locus
of c in the family.

1.2. The support of µbif has positive volume. We present in this section the main result
of [AGMV19] (with T. Gauthier, N. Mihalache and G. Vigny), which is the fact that the support
of µbif inMd has positive Lebesgue volume. Since supp µbif ( Bif and since Bif is a closed
set of empty interior (Corollary 1.1), this is the strongest possible result on the "size" of the set
supp µbif . In particular, it is strictly stronger that a previous theorem of Gauthier ([Gau12])
which states that the bifurcation locus (and not the support of µbif) has maximal Hausdorff
dimension (which is weaker than positive volume).

First, we need to recall the definition of a Collet-Eckmann rational map:

DEFINITION 1.5. A rational map f : P1 → P1 is Collet-Eckmann if there exists γ, γ0 > 0 such
that for all critical value v ∈ CV(f),

|(fn)′(v)| ≥ enγ−γ0 .

In particular, this definition implies that all critical points are in the Julia set (some authors
use a different definition and allow some critical points to be captured by attracting cycles).
Rational maps which are (2d−2)-Misiurewicz as defined in Definition 1.2 are Collet-Eckmann,
but the converse is not true, as critical points may be recurrent for a Collet-Eckmann rational
map. The trade-off is that Collet-Eckmann rational maps are more abundant than Misiurewicz
maps in parameter space.

THEOREM 1.10. [AGMV19] Let d ≥ 2 and let [f ] ∈ supp (µbif). Then for any open neigh-
borhood Ω ⊂Md of [f ], there is a set CEΩ ⊂ Ω ∩ supp (µbif) of Collet-Eckmann maps with:

VolMd
(CEΩ)) > 0.



1. THE CASE OF RATIONAL MAPS ON P1 37

The strategy of the proof is as follows: we first give a general sufficient condition for a
conjugacy class of rational maps to belong to the support of the bifurcation measure (The-
orem 1.11). Then we exhibit a large set of rational maps fulfilling this condition. To this
end, we invoke a result of Aspenberg [Asp13] which gives a set of positive volume of Collet-
Eckmann (conjugacy classes of) rational maps satisfying good properties (see Theorem 1.12).
Then we prove that we can choose this set so that its elements satisfy our criterion to be in
the support of µbif (Theorem 1.13).

The first step of the proof uses the so-called large scale condition as a sufficient condition
to be in the support of the bifurcation measure.

Let us first introduce some notations: given marked critical points c1, . . . , cm and a mul-
tiindex n ∈ Nm, we let ξjnj (λ) := f

nj
λ (cj(λ)) for 1 ≤ j ≤ m, and ξn := (ξ1

n1
, . . . , ξmnm). We let

Vn ⊂ Λ× (P1)m denote the graph of ξn.

DEFINITION 1.6 (Large scale condition). We say that a parameter λ0 ∈ Λ satisfies the
large scale condition at fλ0 for the m-tuple (c1, . . . , cm) in Λ if there exist a sequence nk =
(nk,1, . . . , nk,m) ∈ Nm with limk→+∞ nk,j = +∞ for all 1 ≤ j ≤ m, and a basis of neighborhood
{Ωk}k≥1 of λ0 in Λ and δ > 0 such that for any k ∈ N, the connected component of Vnk ∩
Ωk ×

(
D(ξ1

nk,1
(λ0), δ)× · · · × D(ξmnk,m(λ0), δ)

)
containing (λ0, ξnk(λ0)) is contained in Ω′k ×(

D(ξ1
nk,1

(λ0), δ)× · · · × D(ξmnk,m(λ0), δ)
)

for some Ω′k b Ωk.

This means that a rational map f satisfies the large scale condition if, for appropriate
sequences of iterates, the map ξnk sends a small neighborhood of [f ] in the moduli spaceMd

to a polydisk of fixed size in (P1)2d−2 and its graph is vertical-like near [f ]. This condition
is quite flexible, and is for instance satisfied by (2d − 2)-Misiurewicz maps (and a fortiori by
Misiurewicz-Thurston maps), compare Theorem 1.6.

THEOREM 1.11. [AGMV19] Let f ∈ Ratd. Assume that ω(c) ⊂ J(f) for all c ∈ Crit(f), that
f has simple critical points and that f satisfies the large scale condition. Then [f ] ∈ supp (µbif).

Following a fruiful idea in complex dynamics, the proof of Theorem 1.11 is based on a
phase-parameter transfer (which may be seen as a sort of measurable version of Tan Lei’s
work [Tan90]). These arguments still work in higher dimension, and were used in a very
similar way e.g. in [AB22].

As mentionned above, the critical orbits of a Collet-Eckmann rational map are in general
recurrent. In many cases, it is crucial to control quantitatively this recurrence; this is why
many additional conditions on the critical orbits have been considered by different authors.
Let us now define more precisely some of these conditions appearing in the papers [Tsu93]
and [Asp13]:

DEFINITION 1.7. Let f ∈ Ratd.

(1) We say that f satisfies the Topological Collet-Eckmann property (TCE) if there exists
0 < λ0 < 1 and r0 > 0 such that for z ∈ J(f), n ∈ N∗ and for every component W of
f−n(D(z, r0)), we have diam(W ) ≤ λn0 .

(2) We say that f satisfies the Backward Collet-Eckamnn property (CE2) if for all n ≥ 0
and x ∈ f−n(Crit(f))

|(fn)′(x)| > enµ−µ0 .
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(3) We say that f satisfies the Basic Assumption (BA) if there exists α > 0 such that for all
v ∈ f(Crit(f)) and n ≥ 0

ln |f ′(fn(v))| > −nα.
(4) We say that f satisfies the Free Assumption (FA) if there exist η, ι > 0 such that for all

v ∈ f(Crit(f)) and n > 0

n−1∑
j=0

dist(fj(v),Crit(f))≤η

ln |f ′(f j(v))| > −nι.

(5) We say that f satisfies the summability condition (SC) or is summable if for every
critical point c,

∑
n≥1 ‖df(fn(z))‖−1 < +∞ (in the spherical metric).

REMARK 1.1. Let us make a few comments:
(1) Any Collet-Eckmann rational map is also summable.
(2) There are many equivalent definitions of (TCE), see [PRLS03]; here we only gave one.
(3) It was proved in [PRLS03] that (CE) implies (TCE), but the converse does not hold in

general.

We will use the notation BA(α), CE(γ, γ0), FA(η, ι), etc. to refer to those conditions with
the specified constants α, γ, η, ι, etc.

Reformulating the main result of Aspenberg in terms of the conditions CE(γ, γ0), CE2(µ, µ0),
BA(α) and FA(η, ι) gives the following:

THEOREM 1.12. [Asp13] Assume that f ∈ Ratd is Misiurewicz-Thurston, has simple critical
points and is not a flexible Lattès map. Then, there exist µ, µ0, γ, γ0 > 0 and α̂ > 0 such that for
all α < min( γ

200 , α̂), there exist η̂ > 0 and ι̂ > 0 such that for all η < η̂ and for all ι < ι̂, the
map f is a Lebesgue density point of rational maps satisfying CE(γ, γ0), CE2(µ, µ0), BA(α) and
FA(η, ι).

The last and main ingredient of the proof of Theorem 1.10 can be formulated as follows.

THEOREM 1.13. [AGMV19] Let γ, γ0, µ, µ0, η, κ > 0 and α < γ/200. There exists ι > 0
such that any f ∈ Ratd with simple critical points and satisfying CE(γ, γ0), CE2(µ, µ0), BA(α),
FA(η, ι) satisfies the large scale condition.

The proof of Theorem 1.13 is long and technical and we will not reproduce it here. In-
stead, we only give a very brief account of the main ideas:

(1) Using the properties CE(γ, γ0), CE2(µ, µ0), BA(α), FA(η, ι), we find for each critical
value v of f a large set of integers n (of density close to 1) such that fn : D(v, δn)→
C has small distortion and large derivative (fn)′(v) (here δn � 1

|(fn)′(v)|). This is the
main part of the proof, and it follows Tsujii’s generalization [Tsu93] of Benedicks
and Carleson construction [BC85], adapted to the complex setting.

(2) We now consider a one-parameter family (fλ)λ∈D such that f0 := f satisfies the
assumptions of Theorem 1.12. Using Step (1) and a phase-parameter transfer ar-
gument, we prove that ξjn : D(0, δn) → P1 defined by ξn(λ) := fnλ (vj(λ)) has small
distortion and large derivative at λ = 0 (comparable to 1

δn
).

(3) Finally, a theorem of Sibony-Wong and a transversality result obtained in [Ast22]
allow us to get good control of ξn = (ξjn)1≤j≤n from the estimates obtained at Step
(2) for each ξjn separately, allowing us to get the large scale condition for f = f0.
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Finally, we note that these results were recently much improved by Lefèvre in his PhD
thesis ([Lef23]), who proved that Lebesgue a.e. [f ] ∈ Md satisfying (SC) and (TCE) are
Collet-Eckmann with even better recurrence regularity than (BA) or (FA), hence also satisfy
the large scale condition and are in the support of the bifurcation measure.

2. Bifurcations for skew-products

We now move on to the topic of bifurcations in higher dimension, in the general setting
of endomorphisms of Pk, of which rational maps on P1 are a particular case.

The theory of bifurcations for families of endomorphisms of Pk has only recently been
developped by Berteloot-Bianchi-Dupont ([BBD18], see Theorem 2.3 below), following a
parallel theory for polynomial automorphisms of C2 developped by Dujardin and Lyubich
([DL15]).

The theory is still far from being as developped as in dimension one, and although many
important and striking results have been obtained (e.g. the presence of robust bifurcations, see
[Duj17] and [Taf21]), it is useful to study and understand special, simpler families to build
intuition before tackling the study of bifurcations in the full generality of endomorphisms of
Pk, in the same way that the quadratic family serves as a model for one-dimensional rational
dynamics.

To this end, and motivated in part by the results of [ABD+16], together with F. Bianchi,
we started studying bifurcations in families of regular polynomial skew-products in the papers
[AB23] and [AB22].

Polynomial skew-products are maps of the form

(2) f(z, w) = (p(z), q(z, w))

where p is a polynomial in one complex variable, and q is a polynomial in 2 complex variables.
Unless otherwise stated, we will only consider regular skew-products, that is, maps of the form
(2) which extend to endomorphisms of P2.

If we write p(z) =
∑d1

k=0 akz
k and q(z, w) =

∑
0≤k+`≤d2 bk,`z

kw` with ad1 6= 0, then f is
regular if and only if d1 = d2 and b0,d2 6= 0.

The dynamics of these maps was studied in detail in [Jon99]. Despite their seemingly
simple form, they have already provided examples of dynamical phenomena not displayed by
one-dimensional polynomials, see for instance [ABD+16, Duj16, Duj17, Taf21].

2.1. General theory of bifurcations for endomorphisms of projective spaces. Before
exposing our results on bifurcations in families of skew-products, we begin with a short de-
scription of the ergodic properties of endomorphisms of Pk and their link with the bifurcation
theory recently developped by Berteloot, Bianchi and Dupont. We refer the reader to [DS10]
for full details.

2.1.1. Equilibrium measure for endomorphisms of Pk. An endomorphism f : Pk → Pk is
given in homogeneous coordinates by k + 1 homogeneous polynomials of degree d:

f([x0 : . . . : xk]) = [P0(x0, . . . , xk) : . . . : Pk(x0, . . . , xk)]

such that Z(P0) ∩ . . . ∩ Z(Pk) = {0}, where Z(Pj) = P−1
j ({0}). The integer d is called the

algebraic degree of f . The topological degree of f (generic number of preimages) is dk.
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THEOREM 2.1 ([HP94],[BD01], [DS03]). Let f : Pk → Pk be an endomorphism of alge-
braic degree d ≥ 2. There exists a unique invariant measure µf of maximal entropy k log d. It
also satisfies f∗µf = dkµf , is ergodic and mixing.

The support of µf is denoted by Jk(f) and called the small Julia set (to be distinguished
from the big Julia set J1(f) which is the complement of the Fatou set, see [DS10]). Repelling
cycles are dense in Jk(f), but in contrast to the case of dimension one, there may be some
repelling cycles outside of Jk(f). We will refer to repelling cycles contained in Jk(f) as Jk-
repelling cycles.

As in the case of rational maps on P1, a holomorphic family of endomorphisms of (alge-
braic) degree d ≥ 2 is a holomorphic map F : M × Pk →M × Pk of the form

F (λ, z) = (λ, fλ(z)),

such that for all λ ∈ M , fλ = F (λ, ·) : Pk → Pk is an endomorphism of algebraic degree
d. As before, we will use the notation (fλ)λ∈M . We let Hd(Pk) denote the space of all
endomorphisms of Pk of algebraic degree d.

The theory developped by Mañé-Sad-Sullivan, Lyubich and DeMarco for self-maps of P1

was extended to families of endomorphisms of Pk in any dimension by Berteloot, Bianchi and
Dupont in [BBD18, Bia19a] (see also [DL15, BD17] for a parallel theory in the setting of
polynomial diffeomorphisms of C2). Before we state their result, we need to introduce some
further notations and definitions.

DEFINITION 2.1. Let L : Hd(Pk)→ R be the sum of the Lyapunov exponents of the measure
of maximal entropy:

L(f) :=

∫
Jk(f)

log |Jacf(z)|dµf (z)

THEOREM 2.2 ([BB09], [Pha05]). The function L is continuous and plurisubharmonic.

In particular, we may define as in dimension 1 the bifurcation current Tbif := ddcL. Let
F : M ×Pk →M ×Pk be a holomorphic family of endomorphisms of Pk of degree d ≥ 2 (i.e.
F (λ, z) = (λ, fλ(z))).

2.1.2. Berteloot-Bianchi-Dupont’s theorem. We let

(3) J := {γ : M → Pk, γ is holomorphic and γ(λ) ∈ Jk(fλ) }

and we let F : J → J denote the map induced by F , that is,

F(γ) = (λ 7→ fλ ◦ γ(λ))

DEFINITION 2.2. An equilibrium web for F is a measureM on J such that
(1) M is F -invariant and its support is a compact subset of J
(2) for every λ ∈M , µλ =

∫
J δγ(λ)dM(γ).

DEFINITION 2.3. Given γ ∈ J , we let Γγ ⊂ M × Pk denote its graph. An equilibrium
lamination for F is a relatively compact subset L of J such that

(1) Γγ ∩ Γγ′ = ∅ for every γ, γ′ ∈ L
(2) µλ({γ(λ), γ ∈ L}) = 1 for every λ ∈M
(3) for every γ ∈ L, Γγ does not meet the grand orbit of the critical set of F
(4) the map F : L → L is dk to 1.
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DEFINITION 2.4. Let (fλ)λ∈M be a holomorphic family of endomorphisms, and let λ0 ∈ M .
We say that λ0 is a Misiurewicz parameter if there exists a holomorphic map γ : U → Pk (where
U is an open neighborhood of λ0) such that

(1) γ(λ) ∈ Jk(fλ) and is a repelling periodic point for all λ ∈ U
(2) γ(λ0) ∈ fn0(Crit(fλ0)) for some n0 ∈ N∗
(3) the graph Γγ is not contained in fn0(Crit(f)).

THEOREM 2.3 ([BBD18]). Let M be a simply connected complex manifold and let F =
(fλ)λ∈M be a holomorphic family of endomorphisms of degree d ≥ 2 on Pk. The following are
equivalent:

(1) the repelling Jk-cycles move holomorphically
(2) the function L is pluriharmonic on M
(3) F admits an equilibrium web
(4) F admits an equilibrium lamination
(5) any λ0 ∈M admits a neighborhood U such that:

lim inf
1

dkn
‖(Fn)∗[Crit(F )]U×Pk‖ = 0

(6) there are no Misiurewicz parameters in M .

Here, ‖ · ‖ denotes the mass of a current.

2.1.3. A parametric equidistribution result in higher dimension. We now state an equidis-
tribution result obtained in [AB23], the first in higher dimension. Contrary to the other results
from [AB23], this parametric equidistribution theorem applies not just to skew-products but
in the full family of degree d endomorphisms of Pk.

THEOREM 2.4. [AB23] Let (fλ)λ∈Hd(Pk) be the family of all endomorphisms of Pk of degree
d ≥ 2. For all η ∈ C outside of a polar subset, we have

1

dkn
[Pern(η)]→ Tbif ,

where Pern(η) := {λ : ∃z ∈ Jk(fλ)of exact period n for fλ and such that Jaczfλ = η}.

We note here than contrary to similar results in dimension one (where the case η ∈ D is
special), we are not able to give any explicit value of η for which the equidistribution holds.

Since the proof of Theorem 2.4 is not very long, we have chosen to include it here. The
general strategy follows the main line of the one dimensional case and is based on techniques
and tools from pluripotential theory. However, one of the difficulties we have to face is
the possible presence of infinitely many non-repelling cycles for an endomorphism of Pk –
something which is excluded for k = 1 by a Theorem due to Fatou. We thus need more
quantitative estimates on the number of repelling cycles with small multiplier, which are
related to the approximation formula for the Lyapunov exponent valid in any dimension
established in [BDM08]

Let M be a connected complex manifold, and let F : M ×Pk →M ×Pk be a holomorphic
map, defining a holomorphic family F (λ, z) = (λ, fλ(z)) of endomorphisms of Pk. We assume
here the following:

∀n ∈ N∗ ∃λ ∈M such that for all periodic points of exact period n for fλ :
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(4) det(Dfnλ (z)− id) 6= 0.

Observe that the above condition is for instance satisfied if the family contains the map [z0 :
z1 : . . . zk] 7→ [zd0 : zd1 : · · · : zdk ]. Denote by Jac the determinant of the Jacobian matrix and set

P̃erJn = {(λ, η) ∈M × C : ∃z ∈ Pk of exact period n for fλ and such that Jacfnλ (z) = η}.

Let PerJn be the closure of P̃erJn in M ×C. The following result in particular implies that PerJn
is an analytic hypersurface in M × C.

PROPOSITION 2.1. Let (fλ)λ∈M be a holomorphic family of endomorphisms of Pk satisfying
(4). There exists a sequence of holomorphic maps Pn : M × C→ C such that

(1) for all λ ∈M , Pn(λ, ·) is a monic polynomial of degree δn ∼ dnk

n ;
(2) Pn(λ, η) = 0 if and only (λ, η) ∈ PerJn.

Moreover, if (λ, η) ∈ PerJn\P̃erJn, there exists z ∈ Pk and m < n dividing n such that fmλ (z) = z,
Jac(fnλ )(z) = η, and 1 is an eigenvalue of Dfnλ (z).

PROOF. Let Ωn denote the set of λ ∈ M such that periodic cycles of period less than or
equal to n do not have 1 as an eigenvalue. By Assumption (4), Ωn is Zariski open in M . Let
pn : Ωn × C→ C be defined by

pn(λ, η) :=
∏

z∈En(λ)

(η − Jac fnλ (z))

where En(λ) denotes the set of periodic points of exact period n for fλ.
By the implicit function theorem and the definition of Ωn, pn is holomorphic on Ωn × C.

Since it is locally bounded, Riemann’s extension theorem implies that it extends holomorphi-
cally to all of M × C.

Now notice that for all λ ∈ Ωn, n divides the multiplicity of every root w of the polynomial
pn(λ, ·). Indeed, if z ∈ En(λ) is such that w = Jac fnλ (z), then it is also the case for the other
points of the cycle, namely the fm(z), 0 ≤ m ≤ n − 1. So, for every λ ∈ Ωn, there is a
unique monic polynomial map Pn(λ, ·) such that Pn(λ, ·)n = pn(λ, ·). Its degree δn satisfies
δn ∼ cardEn(λ)

n , and by classical computations cardEn(λ) ∼ dnk. The map λ 7→ Pn(λ, ·) is
holomorphic on Ωn and locally bounded, hence extends holomorphically to M .

Finally, for all (λ, η) ∈ Ωn × C, Pn(λ, η) = 0 if and only if λ ∈ ˜PerJn. If λ /∈ Ωn, by
considering a sequence (λi, ηi) ∈ Ωn×C converging to (λ, η), we find that Pn(λ, η) = 0 if and
only if fλ has a cycle with Jacobian η whose period divides n. The drop in period may occur
if two points of the cycle collide, creating an eigenvalue 1. �

DEFINITION 2.5. For η ∈ C, we denote by PerJn(η) the analytic hypersurface of M defined
by PerJn(η) := {λ ∈ M : (λ, η) ∈ PerJn} and by Ln : M × C → C the function Ln(λ, η) :=
d−nk log |Pn(λ, η)| .

By the Lelong-Poincaré equation, we have that ddcλ,ηLn = d−nk[PerJn], where [PerJn] is the
current of integration on PerJn. Likewise, we have ddcλLn(·, η) = d−nk[PerJn(η)].

THEOREM 2.5. [AB23] Let (fλ)λ∈M be a holomorphic family of endomorphisms of Pk con-
taining the map [z0, z1, . . . zk] 7→ [zd0 , z

d
1 , . . . , z

d
k ]. Then Ln → L, the convergence taking place in

L1
loc(M × C). In particular, for any η ∈ C outside of a polar set, we have d−nk[PerJn(η)]→ Tbif .
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Recall that we denote by L : M → R+ the sum of the Lyapunov exponents of fλ with
respect to its equilibrium measure µλ. The assumptions of Theorem 2.5 are clearly satisfied
when we consider the family of all endomorphisms of Pk of a given algebraic degree. Thus
Theorem 2.5 implies Theorem 2.4. In order to prove the convergence in Theorem 2.5, in the
spirit of [BB09] we first study the convergence of the following modifications of Ln:

(1) L+
n (λ, η) = (ndnk)−1

∑
z∈En(λ) log+ |η − ηn(z, λ)| where ηn(z, λ) := Jacfnλ (z)

(2) Lrn(λ) = (2πdnk)−1
∫ 2π

0 log |Pn(λ, reit)|dt.
We will need the following quantitative approximation of L by Berteloot-Dupont-Molino.

LEMMA 2.1 ([BDM08], Lemma 4.5). Let f be an endomorphism of Pk of algebraic degree
d ≥ 2. Let ε > 0 and let Rεn(f) be the set of repelling periodic points z of exact period n for f ,
such that

∣∣ 1
n log |Jacfn(z)| − L(f)

∣∣ ≤ 2ε. Then for n large enough, cardRεn(f) ≥ dnk(1− ε)3.

LEMMA 2.2. For all η ∈ C, L+
n (·, η)→ L pointwise and in L1

loc(M).

PROOF. In what follows, the notation O(·) denotes quantities that are bounded by con-
stants depending only on fλ and η, and not on n or ε. Fix η ∈ C and ε > 0. We have, for all
n ∈ N∗:

|L+
n (λ, η)| ≤ cardEn(λ)

dnk
sup
z∈Pk
‖Dfλ(z)‖

which is locally bounded from above. Moreover,

L+
n (λ, η) =

1

ndnk

 ∑
z∈Rεn(λ)

log |η − ηn(z, λ)|+
∑

z∈En(λ)\Rεn(λ)

log+ |η − ηn(z, λ)|


=

1

ndnk
(
∑

z∈Rεn(λ)

log |ηn(z, λ)|+O
(
(L(λ)− 2ε)−n

)
)

+O

(
cardEn(λ) \Rεn(λ)

ndnk
log(|η|+ (L(λ) + 2ε)n)

)
For any ε > 0 small enough, limn→∞(L(λ) − 2ε)−n = 0. By Lemma 2.1, for n large enough,
cardEn(λ)\Rεn(λ)

dnk
= O(ε). Hence, for n large enough,

L+
n (λ, η) =

1

ndnk

∑
z∈Rεn(λ)

log |ηn(z, λ)|+O(ε) = L(λ) +O(ε).

Therefore the sequence of maps L+
n converges pointwise to (λ, η) 7→ L(λ) onM×C. Since the

Ln’s are psh and locally uniformly bounded from above, by Hartogs lemma, the convergence
also happens in L1

loc. �

LEMMA 2.3. For all r > 0, Lrn → L pointwise and in L1
loc(M).

The proof is a straightforward adaptation of that of [BB09, Theorem 3.4 (2)].

PROOF OF THEOREM 2.5. First, note that the sequence Ln does not converge to −∞. In-
deed, denote by λ0 the parameter corresponding to the map [z0, z1, . . . zk] 7→ [zd0 , z

d
1 , . . . , z

d
k ].

For all n-periodic cycles at fλ0 , the eigenvalues at those cycles are either d or 0; in particular,
the modulus of the Jacobian takes values in the set {0} ∪ {dkn, n ∈ N}. Let us choose η0 := i:
we claim that (λ0, η0) /∈

⋃
n∈N∗ Pern. Indeed, for any ε > 0, there exists a neighborhood
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V of the map [z0, z1, . . . zk] 7→ [zd0 , z
d
1 , . . . , z

d
k ] such that for all λ ∈ V , any eigenvalue ρ of

any m-periodic cycle of fλ satisfies either |ρ| < εm or (d − ε)m < |ρ| < (d + ε)m. There-
fore, there exists N = N(ε) ∈ N such that the modulus of the Jacobian at any cycle of fλ
of period larger than N avoids the annulus {3

4 < |z| < 4
3}. Moreover, as mentioned above,

the map [z0, z1, . . . zk] 7→ [zd0 , z
d
1 , . . . , z

d
k ] has no cycles with Jacobian in the larger annulus

{1
2 < |z| < 2}. Since there are only finitely many cycles of period at most N , we con-

clude by continuity that up to restricting V , no fλ with λ ∈ V has a cycle with Jacobian in
{3

4 < |z| <
4
3}. In particular, the sequence Ln(λ0, η0) does not converge to −∞, as desired.

Let now φ : M × C→ R be a psh function such that a subsequence Lnj converges L1
loc to

φ. Let (λ0, η0) ∈M × C. We have to prove that φ(λ0, η0) = L(λ0).
First, let us prove that φ(λ0, η0) ≤ L(λ0). Take ε > 0 and let Bε be the ball of radius ε

centered at (λ0, η0) in M ×C. Using the submean inequality and the L1
loc convergence of L+

n ,
we have

φ(λ0, η0) ≤ 1

|Bε|

∫
Bε

φ ≤ 1

|Bε|
lim
j

∫
Bε

Lnj ≤
1

|Bε|
lim
j

∫
Bε

L+
nj ≤

1

|Bε|

∫
Bε

L.

Then letting ε→ 0, we have that φ(λ0, η0) ≤ L(λ0), which gives the desired inequality.
Now let us prove the opposite inequality. Assume for now that η0 6= 0. Let r0 = |η0|, and

let us first notice that

(5) for almost every t ∈ S1, lim sup
j

Lnj (λ0, r0e
it) = L(λ0).

Indeed, for any t ∈ S1 we have

(6) lim
j
Lnj (λ0, r0e

it) ≤ lim sup
j

L+
nj (λ0, r0e

it) = L(λ0)

and by Fatou’s lemma (applied to the functions t 7→ −Lnj (λ0, r0e
it), which are bounded from

below by a constant) and the pointwise convergence of Lr0n we get:

L(λ0) = lim
n
Lr0n (λ0) = lim sup

j

1

2π

∫ 2π

0
Lnj (λ0, r0e

it)dt

≤ 1

2π

∫ 2π

0
lim sup

j
Lnj (λ0, r0e

it)dt

which, together with (6), concludes the proof of (5).
Suppose now to obtain a contradiction that φ(λ0, η0) < L(λ0). Since L is continuous

and φ is upper semi-continuous, there is ε > 0 and a neighbourhood V0 of (λ0, η0) such
that φ(λ, η) − L(λ) < −ε for all (λ, η) ∈ V0, We may assume without loss of generality that
V0 = B0 × D(η0, γ), where B0 is a ball containing λ0. Hartogs’ Lemma then gives

lim sup
j

sup
V0

Lnj − L ≤ sup
V0

φ− L ≤ −ε.

But this contradicts (5).
Therefore, we have proved that any convergent subsequence of Ln in the L1

loc topology
of M × C must agree with L on M × C∗. Since M × {0} is negligible, this proves that Ln
converges in L1

loc to L on M × C. The proof is complete. �
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2.2. The family of quadratic skew-products. We now turn our attention to a very spe-
cific, low-dimensional family of endomorphisms of P2: the family of quadratic skew-products,
i.e., polynomial skew-products of (algebraic) degree 2, that are in this context the analogue
of the family z2 + c. By means of an affine change of coordinates, the dynamical study of this
family can be reduced to that of the family

(*) fλ : (z, w) 7→ (z2 + d,w2 + az2 + bz + c)

with d and λ := (a, b, c) as (complex) parameters. Since bifurcations due to the parameter d
are of one-dimensional nature, we fix here p(z) := z2 + d and consider the parameter space
C3 of the family Sk(p, 2) := {fλ : (a, b, c) ∈ C3}. Our goal here is to understand the geometry
of the bifurcation locus in this specific family.

2.2.1. Degeneration of Tbif near infinity. We are especially interested in parameters near
the boundary of this space, i.e., near the hyperplane at infinity, that we denote by P2

∞. The
following is our first main result, giving a complete description of the bifurcation locus near
P2
∞ from both a topological and measure-theoretical point of view. We denote by Jp the Julia

set of p. Given z ∈ C, we set Ez := {[a, b, c] : az2 + bz + c = 0} ⊂ P2
∞ and E := ∪z∈JpEz. An

analogous result for quadratic rational maps is proved in [BG15].

THEOREM 2.6. [AB23] The accumulation on P2
∞ of the bifurcation locus of the family (*)

coincides with E. Moreover, the bifurcation current Tbif on C3 extends as a positive closed current
˜Tbif to P3 = C3 ∪ P2

∞ and

˜Tbif ∧ [P2
∞] =

∫
Jp

[Ez]µp(z).

The proof of this result relies on several ingredients. The first is a decomposition for the
bifurcation current (and locus), see Theorem 2.8. We then prove that special dynamically
defined hypersurfaces Pervn(η) in C3 equidistribute towards the bifurcation current Tbif and
˜Tbif (Theorem 2.7 below). This last theorem is a straightforward adaptation to the skew-

product setting of the more general equidistribution theorem (Theorem 2.4) proved above.
Moreover, we can precisely control the intersections of these hypersurfaces with P2

∞. We
thus obtain the convergences

1

d2n
[Pervn(η)]→ ˜Tbif and

1

d2n
[Pervn(η)] ∧ [P2

∞]→
∫
z∈Jp

[Ez]µp.

Theorem 2.6 then reduces to proving that the convergences above imply that
1

d2n
[Pervn(η)] ∧ [P2

∞]→ ˜Tbif ∧ [P2
∞],

which is a problem of intersection of currents. To do this, we exploit the theory of horizontal
positive closed currents as developed by Dujardin [Duj04], see also [DS06]. This requires
proving some uniform estimates on the directions at which the bifurcation locus approaches
P2
∞.

DEFINITION 2.6. For any η ∈ C, we set Pervn(η) := {λ ∈M : P vn (λ, η) = 0}.

Let f(z, w) = (p(z), q(z, w)) be a polynomial skew-product, and letQnz (w) := π2◦fn(z, w).
We will say that f is vertically expanding if there exists constants C > 0 and A > 1 such that
for all n ∈ N and (z, w) ∈ J2(f), |Qnz (w)| ≥ CAn. This condition is a convenient adaptation
of the classical notion of hyperbolicity in the context of a skew-product.
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THEOREM 2.7. [AB23] Let (fλ)λ∈M be a holomorphic family of polynomial skew-products
of P2 of degree d ≥ 2 over a fixed base p. Assume that the family contains a vertical expanding
map. For all η ∈ C outside of a polar subset, we have d−kn[Pervn(η)]→ Tbif .

Finally, the last ingredient is a description of the bifurcation current as an average of
bifurcations associated to each fibers. The set Bifz denotes the bifurcation locus of the fiber
z ∈ Jp, which may be defined as the set of parameters around which the vertical Julia set
Jz (i.e. the non-normality locus of {Qnz : n ∈ N}) does not move locally holomorphically.
The current Tbif,z is an associated (1, 1) positive closed bifurcation current, whose support is
exactly Bifz.

THEOREM 2.8. [AB23] Let fλ(z, w) = (p(z), qλ(z, w)), λ ∈ M , be a holomorphic family of
polynomial skew-products of degree d over a fixed base. Then

Tbif =

∫
z∈Jp

Tbif,zµp and Bif ((fλ)λ∈M ) =
⋃
z∈Jp

Bifz.

We note that Theorem 2.8 has since been extended in [DT21] to the slightly more general
setting of an endomorphism of Pk preserving a linear fibration.

2.2.2. Hyperbolic components. Equipped with the description above of the geometry of
the bifurcation locus near infinity, we turn our attention to its complement, and in particular
to the characterization of the hyperbolic components. Notice that, in order for those to exist,
p must be hyperbolic; however, in Sk(p, d) the more natural notion is to ask for vertical
expansion rather than full hyperbolicity.

DEFINITION 2.7 ([Jon99]). Let f(z, w) = (p(z), q(z, w)) be a polynomial skew product and
Z ⊂ C be invariant for p. We say that f is vertically expanding over Z if there exist constants
c > 0 and K > 1 such that |(Qnz )′(w)| ≥ cKn for every z ∈ Z, w ∈ Jz and n ≥ 1.

For polynomials on C, hyperbolicity is equivalent to the fact that the closure of the post-
critical set is disjoint from the Julia set. In our situation, we have the following analogous
characterization.

THEOREM 2.9 ([Jon99]). Let f(z, w) = (p(z), q(z, w)) be a polynomial skew product. Then
f is vertically expanding over Z if and only if DZ ∩ JZ = ∅, and the following conditions are
equivalent:

(1) f is hyperbolic on its Julia set;
(2) DJp ∩ J = ∅;
(3) p is hyperbolic, and f is vertically expanding over Jp.

The stability of a polynomial skew product as in (*) is hence determined by the behaviour
of the critical points of the form (z, 0) with z ∈ Jp. As is the case for polynomials, when all
these points escape to infinity by iteration, the map is hyperbolic. It is however not clear a
priori that the presence of a hyperbolic map in a component forces all the other maps in the
same stability component to be hyperbolic.

In our next result we solve this general problem in the setting of polynomial skew-
products, thus giving meaning to the expression hyperbolic components here).

THEOREM 2.10. [AB23] Let (fλ)λ∈M be a stable family of polynomial skew-products, and
let λ0 be a parameter.
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(1) If (fλ)λ∈M has constant base p and fλ0 is vertically expanding over Jp, then for all
λ ∈M , fλ is vertically expanding over Jp.

(2) If fλ0 is hyperbolic, then for all λ ∈M , fλ is hyperbolic.

We note that the statement of Theorem 2.10 is still open in the full generality of endo-
morphisms of Pk. Since the proof of Theorem 2.10 is also not very long, we choose to include
it here.

LEMMA 2.4. Let f be a polynomial skew product with base p. Assume (z, w) ∈ Jp × C is
accumulated by DJp . Then there exists a sequence (zm, wm) ∈ Jp×C of iterates of critical points
such that (zm, wm)→ (z, w) and zm is a repelling periodic point for p.

PROOF OF LEMMA 2.4. By assumption, there is a sequence (ym, cm) ∈ Jp × C, such that
q′ym(cm) = 0 and fnm(ym, cm) → (z, w). Given any ε > 0, there exists M ∈ N such that
‖fnm(ym, cm)− (z, w)‖ ≤ ε for all m ≥M . Since fnm is continuous, there exists δm > 0 such
that if ‖(zm, c′m)− (ym, cm)‖ ≤ δm, then ‖fnm(zm, c

′
m)− fnm(ym, cm)‖ ≤ ε. This implies that

‖fnm(zm, c
′
m) − (z, w)‖ ≤ 2ε. Since repelling periodic points are dense in Jp, we can find z′m

periodic and repelling arbitrarily close to ym. We can then take c′m such that (z′m, c
′
m) ∈ CJp is

δm-close to (ym, cm). The point (zm, wm) := fnm(zm, c
′
m) is then 2ε-close to (z, w). Since z′m

is periodic and repelling for p, the same holds for zm = pnm(z′m). Since ε > 0 was arbitrary,
the lemma is proved. �

PROOF OF THEOREM 2.10. Assume by contradiction that there exists λ1 such that fλ1 is
not vertically expanding. We can replace our parameter space with any relatively compact
connected open subset containing λ0 and λ1. By Theorem 2.9, there exists (z, w) ∈ Jf(λ1)

such that (z, w) is accumulated by the post-critical set of fλ1 over Jp. By Lemma 2.4, there is
a sequence (zm, wm) of iterates of critical points such that zm is periodic for p and (zm, wm)→
(z, w).

We first treat the case where it is possible to follow holomorphically all critical points over
Jp as holomorphic functions of the parameter λ. Notice that this is the case in particular for
the polynomial skew-products of degree 2, whose critical points are of the form (z, 0) (and so
independent from λ). Set

hm(λ) := fnmλ (ym, cm(λ))

where fnmλ1 (ym, cm(λ1)) = (zm, wm), and (ym, cm(λ)) is a critical point of fλ. By definition we
have (λ, hm(λ)) is in the postcritical set. We write hm(λ) =: (zm, wm(λ)).

Since (z, w) ∈ Jf(λ1), there exists a sequence of repelling cycles of the form (zm, γm(λ1)
converging to (z, w) (by the lower semi-continuity of z 7→ Jz and the density of repelling
cycles). Since fλ is stable, repelling cycles can be followed holomorphically. We denote by
(zm, γm(λ)) the motion of (zm, γ(λ1)). Again by the stability of the family, since there are
no Misiurewicz parameters, we must have γm(λ) 6= wm(λ) for all m and for all λ. Since the
sequence γm is uniformly bounded, it is normal and we can assume that γm converges to
some holomorphic map γ with γ(λ1) = w.

CLAIM 1. The sequence (wm(λ)) is also normal.

Assuming this claim, we can get the desired contradiction by taking a limit w(λ) for the
sequence wm(λ). Indeed, recall that γ(λ) 6= wm(λ) for all λ and m. Since γ(λ1) = w(λ1), by
Hurwitz’s Theorem the only possibility if that γ(λ) ≡ w(λ) for all λ. Since γ(λ0) 6= w(λ0) by
assumption, this gives the desired contradiction.
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PROOF OF CLAIM 1. The argument is classical, see for instance [MSS83]. Since the family
is stable, wm(λ) avoids the repelling cycles for all m and λ. Let am(λ), bm(λ) be two sequences
of (holomorphic motions of) repelling periodic points in the fibre zm. Up to passing to sub-
sequences, we can assume that am(λ) → a(λ) and bm(λ) → b(λ) (as holomorphic functions
in λ). We can also assume that |am(λ) − bm(λ)| ≥ ε0 > 0 for all m and λ. Then, for all λ,
we have wm(λ) /∈ {am(λ), bm(λ),∞}. It follows that the family gm(λ) := wm(λ)−am(λ)

bm(λ)−am(λ) avoids
0, 1,∞, hence is normal by Montel Theorem and converges, up to extraction, to some g(λ).
Since |am(λ)− bm(λ)| ≥ ε0, the sequence wm(λ) = am(λ)+gm(λ) · (bm(λ)−am(λ)) converges
to w(λ) := a(λ) + g(λ) · (b(λ)− a(λ)). The claim is proved. �

We now explain how to adapt the above arguments in the case where it is not possible to
follow all critical points as holomorphic functions of λ. As before, we start with sequences of
integers nm and points ym ∈ Jp such that fnmλ1 (ym, cm) accumulates to some point in J(fλ1),
and cm is a critical point of qym,λ1 . The accumulation point in J(fλ1) can also be accumulated
by repelling periodic points (zm, γm(λ1)).

We now define the function

hm(λ) :=
∏
ci

(fnm(ym, ci)− γm(λ)),

where the product is taken over the set of critical points ci of qym,λ whose orbits are bounded.
Observe now that the function hm is holomorphic. Indeed, for a fixed m, it is always possible
to mark the critical points of qym,t as holomorphic functions ci(t), up to passing to a re-
parametrization φ(t) = λ, where φ is a finite branched cover.

Since the family is stable, each critical point ci(t) either has bounded orbit for all t or
unbounded orbit for all t. Therefore, t 7→ hm ◦ φ(t) is holomorphic, and since λ 7→ hm(λ)
is continuous and holomorphic outside the branch locus of φ, it is also holomorphic on the
whole family. Moreover, the sequence (hm) is locally uniformly bounded in λ, hence normal;
and for all m and λ we must have hm(λ) 6= 0 since otherwise this would create a Misiurewicz
parameter, contradicting the stability of the family. From there, the proof works as in the
previous case. �

For families of polynomial skew-products, it thus makes sense to talk about hyperbolic
components (respectively vertically expanding components), i.e., stable components whose el-
ements are (all) hyperbolic (respectively, vertically expanding). We now give a classification
of hyperbolic components that are analoguous to the so-called shift locus from dimension 1.

More precisely, let D be the set of parameters for which all critical points in Jp×C escape,
and let D′ ⊂ D be the subset of parameters λ for which there is an arc joining λ to P2

∞\E
inside D. We note that these are not the only unbounded hyperbolic components in Sk(p, 2),
see [AB23] for more details.

Set
Sp :=

{
s : π0(K̊p)→ {0, 1, 2} :

∑
U∈π0(K̊p)

s(U) ≤ 2
}
,

where π0(K̊p) denotes the set of bounded Fatou components of p.

THEOREM 2.11. [AB23] Let (fλ)λ∈Sk(p,2) be the holomorphic family of polynomial skew-
products above the base polynomial p. All connected components of D′ are hyperbolic compo-
nents, and there is a natural bijection between Sp and the connected components of D′.
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The proof of the first item of Theorem 2.11 is based on Jonsson’s characterization of hy-
perbolicity (and vertical expansion) (Theorem 2.9). The proof of the second item is topologi-
cal in nature. Our main task is to exclude that a given hyperbolic component can accumulate
two distinct components of P2

∞\E. To prove this, we show that the combinatorial invariants
s ∈ Sp encode the isotopy class of the Julia set in Jp × C, and that this isotopy class remains
the same within a hyperbolic component.

2.3. Higher order bifurcations. We present in this section the results of [AB22]. We
now consider the family Sk(p, d) of skew-products of degree d ≥ 2 above a given polynomial
base map p, and investigate the higher bifurcation currents T kbif within this family.

Recall that for families of rational maps, the current T kbif is known to equidistribute many
kinds of dynamically defined parameters, such as maps possessing k cycles of prescribed
multipliers and periods tending to infinity (see, e.g., [BB07, Gau16]). This gives rise to a
natural stratification of the bifurcation locus as

suppTbif ⊇ suppT 2
biff ⊇ · · · ⊇ suppT kmax

bif

where kmax is the dimension of the parameter space. The inclusions above are not equalities
in general, and are for instance strict when considering the family of all polynomial or rational
maps of a given degree (where kmax is equal to d − 1 and 2d − 2, respectively). Indeed, it
is enough to prove the existence of polynomials or rational maps with a prescribed number
of critical points captured by attracting cycles, and the other ones being strictly preperiodic
to repelling cycles. It is worth pointing out that this stratification is often compared with an
analogous stratification for the Julia sets of endomorphisms of Pk. We refer to [Duj11] for a
more detailed exposition.

The situation in families of higher dimensional dynamical systems is completely different
from the one-dimensional counterpart. Namely, we establish the following result.

THEOREM 2.12. [AB22] Let p be a polynomial with Julia set not totally disconnected, which
is neither conjugated to z 7→ zd nor to a Chebyshev polynomial. Let Sk(p, d) denote the family
of polynomial skew-products of degree d ≥ 2 over the base polynomial p, up to affine conjugacy,
and let Dd be its dimension. Then the associated bifurcation current Tbif satisfies

suppTbif ≡ suppT 2
bif ≡ · · · ≡ suppTDdbif .

Theorem 2.12 is stated for the full family Sk(p, d) of all polynomial skew-products of
degree d over p (up to affine conjugacy). One could ask whether such a result holds for
algebraic subfamilies of Sk(p, d): clearly, some special subfamilies have to be ruled out, such
as the family of trivial product maps of the form (p, q) : (z, w) 7→ (p(z), q(w)). A less obvious
example in degree 3 is given by the subfamily of polynomial skew-products over the base
polynomial z 7→ z3 of the form

fa,b : (z, w) 7→ (z3, w3 + awz2 + bz3), (a, b) ∈ C2.

One can check that fa,b is semi-conjugated to the product map

ga,b : (z, u) 7→ (z3, u3 + au+ b)

via the blow-up π : (z, w) 7→ (z, zw), that is, that fa,b ◦ π = π ◦ ga,b. It follows that
suppT 2

bif(Λ) ( suppTbif(Λ), where Λ := {fa,b, (a, b) ∈ C2}.
The proof of Theorem 2.12 indeed uses the fact that the family Sk(p, d) is general enough

so that it is possible to perturb a bifurcation parameter to change the dynamical behaviour of
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a critical point in a vertical fibre without affecting all other fibres. It would be interesting to
classify algebraic subfamilies of Sk(p, d) that, like Λ, are degenerate in the sense that a bifur-
cation in one fibre implies a bifurcation in all other fibres; for such families, the conclusion of
Theorem 2.12 will not hold.

The proof of Theorem 2.12 essentially consists of two ingredients, respectively of analyti-
cal and geometrical flavours.

The first is an analytical sufficient condition for a parameter to be in the support of T kbif .
This is inspired by analogous results by Buff-Epstein [BE09] and Gauthier [Gau12] in the
context of rational maps, and is based on the notion of large scale condition (Definition 1.6).

The second ingredient is a procedure to build these multiple independent bifurcations
at a common parameter starting from a simple one. The idea is to start with a parameter
with a Misiurewicz bifurcation, i.e., a non-persistent collision between a critical orbit and a
repelling point, and to construct a new parameter nearby where two – and actually, Dd –
independent Misiurewicz bifurcations occur simultaneously. Here we say that k Misiurewicz
relations are independent at a parameter λ if the intersection of the k hypersurfaces given by
the Misiurewicz relations has codimension k in Sk(p, d), and we denote by Bifk the closure
of such parameters.

This geometrical construction is our main technical result. Together with the analytic
arguments mentioned above (which give Bifk ⊆ suppT kbif for all 1 ≤ k ≤ Dd) and the trivial
inclusion suppTDdbif ⊆ suppTbif , it implies Theorem 2.12.

In order to construct the desired Misiurewicz parameter, we will consider the motion of a
sufficiently large hyperbolic subset of the Julia set near a parameter in the bifurcation locus.
This hyperbolic set needs to satisfy some precise properties, and this is where the assump-
tions on p come into play. The construction uses tools from the thermodynamic formalism
of rational maps, and more generally of endomorphisms of Pk. Once the hyperbolic set is
constructed, the proof proceed by induction. We show that, given a Misiurewicz relations
satisfying a given list of further properties, it is possible to construct, one by one, the extra
Misiurewicz relations happening simultaneously.

Our main theorems and the method developed for their proof have a number of conse-
quences and corollaries. We list here a few of them.

COROLLARY 2.1. [AB22] Let p be a polynomial with Julia set not totally disconnected, which
is neither conjugated to z 7→ zd nor to a Chebyshev polynomial. Near any bifurcation parameter
in Sk(p, d) there exist algebraic subfamilies Mk of Sk(p, d) of any dimension k < Dd such that
the support of the bifurcation measure of Mk has non-empty interior in Mk.

These families are given by the maps satisfying a given critical relation. Notice that d (and
thus Dd) can be taken arbitrarily large. This result is for instance an improvement of the main
result in [BT17b], where 1-parameter families with the same property are constructed.

More strikingly, in [Duj17, Taf21], Dujardin and Taflin construct open sets in the bifurca-
tion locus in the family Hd(Pk) of all endomorphisms of Pk, k ≥ 1, of a given degree d ≥ 2
(see also [Bie19] for further examples). Their strategy also works when considering the
subfamily of polynomial skew-products (and actually these open sets are built close to this
family). Combining Theorem 2.12 with their result we thus get the following consequence.



3. BIFURCATIONS FOR FINITE TYPE MEROMORPHIC MAPS 51

COROLLARY 2.2. [AB22] Let p be a polynomial with Julia set not totally disconnected, which
is neither conjugated to z 7→ zd nor to a Chebyshev polynomial. The support of the bifurcation
measure in Sk(p, d) has non empty interior.

Notice that it is not known whether the bifurcation locus is the closure of its interior (see
the last paragraph in [Duj17]). Hence, a priori, the open sets as above could exist only in
some regions of the parameter space. The last consequence of our main theorems is a uniform
and optimal bound for the Hausdorff dimension of the support of the bifurcation measure,
which is a generalization to this setting of the main result in [Gau12].

COROLLARY 2.3. [AB22] Let p be a polynomial with Julia set not totally disconnected, which
is neither conjugated to z 7→ zd nor to a Chebyshev polynomial. The Hausdorff dimension of the
support of the bifurcation measure in Sk(p, d) is maximal at all points of its support.

Notice that, in the family of all endomorphisms of a given degree, such a uniform estimate
is not known even for the bifurcation locus, see [BB18] for some local estimates. A stronger
question, asked by Dujardin, is whether robust bifurcations are dense in the bifurcation locus,
that is B̊if = Bif. This seems plausible.

REMARK 2.1. In the recent article [GTV23], Gauthier, Taflin and Vigny construct an open
subset U ⊂ Hd(Pk) such that U ⊂ suppµbif (and such that U does not contain any PCF en-
domorphism). There are some similarities between this construction and the one from [AB22],
with two main differences: first, the construction from [GTV23] is clearly taking place in a larger
family of maps with less structure (not skew-products), which makes things more difficult. But
on the other hand, the authors of [GTV23] just need the existence of one such open set anywhere
in parameter space, whereas in [AB22] we need to construct parameters in suppµbif near any
λ0 ∈ suppTbif . Indeed, this open set is constructed as a neighborhood of a product map.

3. Bifurcations for finite type meromorphic maps

In this last section devoted to bifurcations, we finally come back to the setting of complex
dimension one, but we exit the algebraic world to consider families of meromorphic maps
fλ : C → P1 with an essential singularity at ∞. Our goal is to present here the results of
[ABF21], which extend to this setting the theory of Mañé-Sad-Sullivan-Lyubich (Theorem
1.1). Note however that none of the potential-theoretic aspect of the theory carries over, as
transcendental maps always have infinite entropy and there is no obvious equivalent of the
Green function, the measure of maximal entropy or its Lyapunov exponent.

When trying to extend Mañé-Sad-Sullivan-Lyubich’s theorem to families of maps defined
on non-compact Riemann surfaces (such as the complex plane) one must deal with a new
possibility for the failure of periodic orbits being analytically continued, namely the possibility
of periodic orbits exiting the domain at a certain parameter value. As an example, one can
observe this new type of bifurcation occurring at λ0 = 0 for the family fλ(z) = z + λ + ez ,
where the fixed points disappear to infinity (the essential singularity) when considering curves
of parameters converging to 0. Eremenko and Lyubich [EL92] showed that this phenomenon
does not occur for entire maps of the complex plane with a finite number of singular values
(points where some branch of the inverse fails to be well-defined), namely entire maps that
are of finite type as defined in Chapter 1. Consequently, they were able to conclude that
J−stability is also dense in this class of functions.
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By Picard’s Theorem, the remaining cases of 1D-holomorphic maps in non-compact man-
ifolds require not only essential singularities but also the presence of poles (i.e. preimages of
the essential singularities). In this context, simple examples (e.g. z 7→ λ tan z for λ0 = π/2)
show that this new type of bifurcations of cycles disappearing to infinity do occur and hence
obstruct most of the arguments used for the Stability Theorem in [MSS83, Lyu83].

The results presented will prove that J -stability is dense also in this setting. This result
will be obtained by performing a detailed analysis of the new type of bifurcation. In par-
ticular we will see how these bifurcation parameters relate to the stability of singular orbits
(Theorems 3.2 and 3.3) and to parabolic parameters (Theorem 3.4), resulting in a Stabil-
ity Theorem (Theorem 3.5), from which we conclude that the bifurcation locus has empty
interior (Corollary 3.2).

One may wonder whether these results might extend beyond finite type (or in other
directions). In this respect, we show that density of J -stability may in general fail without the
finiteness assumption on singular orbits by constructing a natural family of entire maps (not
of finite type) which is not J−stable in any open subset of the complex plane. In the same
spirit, an unpublished result of Epstein and Rempe provides an example of a family of maps
with an infinite (but bounded) set of singular values (hence not of finite type) and infinitely
many attractors, in the spirit of the Newhouse pheonomenon [Buz97].

We start by giving some necessary definitions, starting by the holomorphic families which
are the object of our study.

DEFINITION 3.1 (Natural family). [ABF21] Let M be a complex connected manifold. A
natural family of finite type meromorphic maps is a family (fλ)λ∈M of the form

fλ = φλ ◦ fλ0 ◦ ψ
−1
λ ,

where f := fλ0 is a finite type meromorphic map, and φλ, ψλ are quasiconformal homeomor-
phisms depending holomorphically on λ ∈M , and such that ψλ(∞) =∞.

Under these conditions, one can check that fλ depends holomorphically on λ, (i.e. λ 7→
fλ(z) is holomorphic for every fixed z ∈ C).

Let S(f) denote the set of singular values (critical or asymptotic, see Definition 1.1) of a
meromorphic map f . If f is of finite type, then it can be embedded in a finite dimensional
complex manifold DefBA(f) (defined in Section 3, for instance with A a 3-cycle and B =
S(f) ∪ A). Hence natural families can be viewed (locally) as subfamilies in this natural
parameter space.

Many explicit, well-studied families are natural, like for example the exponential Eλ(z) =
λez, the tangent family Tλ(z) = λ tan(z) or the quadratic family Qλ(z) = z2 + λ. In these
three examples, the map φλ is conformal, and ψλ = id.

Notice that the singular values of fλ are marked points that can be followed holomorphi-
cally in λ ∈M , hence their number and their nature (critical or asymptotic) remain constant
throughout the entire family. The same is true for their preimages: both critical points and
asymptotic tracts can be followed holomorphically in λ and their multiplicity remains con-
stant. One may naturally ask how restrictive is the concept of a natural family. As we show
in Theorem 3.1, the answer is that the properties described above are necessary and suffi-
cient conditions for an arbitrary holomorphic family of maps to be locally natural. Hence,
since all of our main results are local in parameter space, they still apply if we replace the
assumption that (fλ)λ∈M is natural by the assumption that S(fλ) and f−1

λ (S(fλ)) both move
holomorphically over M .
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THEOREM 3.1 (Characterization of natural families). [ABF21] Let (fλ)λ∈M be a holomor-
phic family of finite type meromorphic maps, on which S(fλ) and f−1

λ (S(fλ)) both move holo-
morphically. Then for every λ ∈ M , there is a neighborhood V of λ such that (fλ)λ∈V is a
natural family.

Next we define the concept of a cycle disappearing to infinity or exiting the domain (both
terms will be used indistinctively).

DEFINITION 3.2 (Cycle disappearing to infinity). Let (fλ)λ∈M be a holomorphic family of
meromorphic maps. We say that a cycle of period m ≥ 1 disappears to infinity at λ0 ∈ M (or
exits de domain at λ0) if there exist two continuous curves t 7→ λ(t) and t 7→ z(t) such that:

(1) for all t > 0, λ(t) ∈M and z(t) ∈ C, with fmλ(t)(z(t)) = z(t)

(2) limt→+∞ λ(t) = λ0 ∈M and limt→+∞ z(t) =∞.

As mentioned above, Eremenko and Lyubich [EL92] showed that cycles cannot exit the
domain for holomorphic families of entire functions.

The phenomenon of cycles disappearing to infinity was previously observed in several
particular slices of meromorphic functions starting with the early studies of the tangent family
Tλ(z) = λ tan(z) by Devaney, Keen and Kotus [KK97, DK89, DK88], followed by several other
families with two asymptotic values [CK19, CJK22] and generalized to some dynamically
defined one-dimensional families in [FK21]. Following the terminology in the literature we
define virtual cycles which, as we will see, describe limits of actual cycles after they disappear
at infinity.

DEFINITION 3.3 (Virtual cycle). Let f : C → P1 be a meromorphic map. A virtual cycle of
length n is a finite, cyclically ordered set z0, z1, . . . , zn−1 such that for all i, either zi ∈ C and
zi+1 = f(zi), or zi =∞ and zi+1 is an asymptotic value for f , and at least one of the zi is equal
to∞. If zi =∞ only for one value of i then we say that the virtual cycle has minimal length n.

If a virtual cycle remains after perturbation within the family, then it is called persistent.

DEFINITION 3.4 (Persistent virtual cycle). Let (fλ)λ∈M be a holomorphic family of mero-
morphic maps, let λ0 ∈ M and assume that fλ0 has a virtual cycle z0, . . . , zn−1. If there exist
holomorphic germs λ 7→ zi(λ) defined near λ0 in M such that

(1) zi(λ0) = zi
(2) zi(λ) ≡ ∞ if zi =∞
(3) and z0(λ), . . . , zn−1(λ) is a virtual cycle for fλ,

then we say that z0, . . . , zn−1 is a persistent virtual cycle.

In particular in a holomorphic family, if v(λ0) is an asymptotic value such that

fnλ0(v(λ0)) =∞
for some n ≥ 0, then (v(λ0), fλ0(v(λ0)), . . . ,∞) is a virtual cycle of minimal length n + 1.
(The case n = 0 corresponds to the situation where ∞ itself is an asymptotic value). This
virtual cycle is persistent if and only if the singular relation fnλ (v(λ)) =∞ is satisfied in all of
M . If this is not the case, i.e. if a virtual cycle for λ0 is non-persistent, we will say that λ0 is a
virtual cycle parameter.

Our next and last definition concerns the concept of activity or passivity of a singular
value. Compared to the definition already introduced for rational maps, we need to account
for the fact that the orbit of a point may land after finitely many iterations on the essential
singularity. In such a situation, we will also say that the singular value in question is active.
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DEFINITION 3.5 (Passive (active) singular value). Let (fλ)λ∈M be a holomorphic family of
finite type rational, entire or meromorphic maps. Let v(λ) be a singular value (or a critical point)
of fλ depending holomorphically on λ near some λ0 ∈ M . We say that v(λ) is passive at λ0 if
there exists a neighborhood V of λ0 in M such that:

(1) either fnλ (v(λ)) =∞ for all λ ∈ V ; or
(2) the family {λ 7→ fnλ (v(λ))}n∈N is well-defined and normal on V .

We say that v(λ) is active at λ0 if it is not passive.

We are now ready to state our first result, which connects the three concepts defined
above: cycles disappearing to infinity, virtual cycles and the activity of a singular value.

THEOREM 3.2 (Activity Theorem). [ABF21] Let (fλ)λ∈M be a natural family of finite type
meromorphic maps, and assume that a cycle of period n disappears to infinity at λ0 ∈M . Then,
this cycle converges to a virtual cycle for fλ0 , which contains (at least) either an active asymptotic
value, or an active critical point.

Note that by definition, activity means here that there exists parameters arbitrarily close
to λ0 for which one of the critical points or asymptotic values in the virtual cycle does not
remain in the backward orbit of∞.

Let us observe how Theorem 3.2 implies that cycles cannot disappear at infinity in the
finite type entire setting, hence recovering the main theorem [EL92, Theorem 2]. Indeed,
because of the lack of poles, it is easy to see that if a cycle of period n disappears at infinity,
then every point of the cycle must converge to infinity (and not just one). This means that
the limit virtual cycle is of the form ∞, . . . ,∞. In particular, it does not contain any critical
points; Theorem 3.2 then asserts that∞ itself must be an active asymptotic value for fλ0 . But
this is impossible, since for families of finite type entire maps∞ is always a passive asymptotic
value.

Finally, we remark that if the virtual cycle contains an active asymptotic value, then this
virtual cycle is non-persistent (see Definition 3.3). It would be interesting to know if there
are examples of such limit virtual cycles in which all asymptotic values are passive.

We do not include here the full proof of Theorem 3.2, but the following lemma shows
easily the link between cycles disappearing and virtual cycles:

LEMMA 3.1 (Cycle exiting the domain implies virtual cycle for fλ0). Let (fλ)λ∈M be a
natural family of meromorphic maps, and

Pn := {(λ, z) ∈M × C : fnλ (z) = z}.
Let t 7→ (λ(t), z(t)) be a continuous real curve in Pn with limt→+∞ λ(t) = λ0 ∈ M and
limt→+∞ z(t) = ∞. Then there exists a cyclically ordered set ∞ = a0, . . . , an−1 ∈ P1 such
that:

(1) for all 0 ≤ m ≤ n− 1, am = limt→+∞ f
m
λ(t)(z(t));

(2) if am ∈ C, then am+1 = fλ0(am);
(3) if am =∞, then am+1 is an asymptotic value of fλ0 (possibly equal to∞) and am−1 is

either∞ or a pole of fλ0 .

In other words, the set a0, . . . , an−1 is a virtual cycle for fλ0 . Notice that the lemma implies
that, as t → ∞ (and hence λ(t) → λ0), either the whole cycle corresponding to z(t) tends to
infinity (in which case ∞ must be an asymptotic value for fλ0), or there exists at least one
finite asymptotic value and one pole in the virtual cycle (possibly more, if there is more than
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one ai which equals infinity). We also observe that the finite type assumption is not needed
for this lemma.

PROOF. To simplify notation, let us denote xm(t) := fmλ(t)(z(t)), and f = fλ0 . By assump-
tion limt→+∞ f

n−m
λ(t) (xm(t)) = limt→+∞ z(t) = ∞, so any finite accumulation point of the

curve t 7→ xm(t) must be a pre-pole of f of order at most n−m. In particular, the set of finite
accumulation points of this curve is discrete, and so limt→+∞ xm(t) exists (and is possibly∞).
Let am := limt→∞ xm(t) ∈ P1. Item (2) follows easily.

Next, assume that am = ∞ for some 0 ≤ m ≤ n − 1. Since {fλ}λ∈M is a natural family,
we have

xm+1(t) = fλ(t)(xm(t)) = φλ(t) ◦ f ◦ ψ−1
λ(t)(xm(t)),

where f := fλ0 , φλ, ψλ : Ĉ → Ĉ are quasiconformal homeomorphisms depending holomor-
phically on λ, and φλ0 = ψλ0 = id. Therefore, we have

f ◦ ψ−1
λ(t)(xm(t)) = φ−1

λ(t)(xm+1(t)),

and limt→+∞ ψ
−1
λ(t)(xm(t)) = am = ∞, whereas limt→+∞ φ

−1
λ(t)(xm+1(t)) = am+1 since φ−1

λ(t)

tends to the identity. Therefore am+1 is indeed an asymptotic value of f .
Finally, still under the assumption that am = ∞, it follows from item (2) that if am−1 is

finite then it is a pole. �

It is therefore quite easy to see that a disappearing cycle must converge to a virtual cycle.
We emphasize here that the key content of Theorem 3.2 is the claim that at least one asymp-
totic value or one critical point in the limiting virtual cycle is active, or in other words, that it
is possible to destroy the virtual cycle by perturbation in M . The proof, inspired from [EL92],
is a proof by contradiction involving careful estimates of the respective speed of convergence
of the curves t 7→ ψ−1

λt
◦ fkλt(zt).

We now state our second result, which in a sense is a converse to Theorem 3.2.

THEOREM 3.3 (Accessibility Theorem). [ABF21] Let (fλ)λ∈M be a natural family of finite
type meromorphic maps, and λ0 ∈ M be such that fλ0 has a non-persistent virtual cycle of
minimal length n+ 1

v(λ0), fλ0(v(λ0)), . . . , fn(v(λ0)) =∞.
Then there is a cycle of period n+ 1 exiting the domain at λ0. Moreover, this cycle can be chosen
so that its multiplier goes to zero as it disappears to infinity.

In particular, by the definition of a virtual cycle, v(λ0) is an asymptotic value (finite or
infinite) and hence λ0 is a virtual cycle parameter. In the terminology of [FK21], the Acces-
sibility Theorem states that every virtual cycle parameter is also a virtual center (since the
multiplier of the disappearing cycle is tending to 0 at the limit parameter), and it is accessible
from the interior of a component in parameter space for which the analytic continuation of
this cycle remains attracting. This proves the main conjecture in [FK21] in much greater
generality than originally stated.

Putting together Theorems 3.2 and 3.3, we obtain the following immediate corollary.

COROLLARY 3.1. [ABF21] Let (fλ)λ∈M be a natural family of finite type meromorphic maps,
and assume that this family does not have any persistent virtual cycle. Let λ0 ∈M . Then a cycle
disappears to infinity at λ0 if and only if fnλ0(v(λ0)) =∞ for some asymptotic value v(λ0).
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Up to this point we have described the new type of bifurcation that occurs in the presence
of poles and asymptotic values. Observe that this phenomenon is a priori unrelated to the
collision of periodic orbits forming parabolic cycles, in contrast to what occurs for rational
or entire maps for which this is the only possible obstruction for the holomorphic motion of
the Julia set. Our next result shows that, nevertheless, when an attracting cycle disappears at
some parameter value, this can be approximated by parabolic parameters.

THEOREM 3.4 (Approximation by parabolic parameters). [ABF21] Let (fλ)λ∈M be a nat-
ural family of finite type meromorphic maps, and assume that an attracting cycle of period n
disappears to infinity at λ0 ∈ M . Then there exists a sequence λk → λ0 such that fλk has a
non-persistent parabolic cycle of period at most n.

In particular, by Theorem 3.3, this happens at every virtual cycle parameter. With some
extra work, it follows from Theorem 3.4 that parabolic parameters are dense in the bifurcation
locus.

We now state the last main result of this section, which is an extension of Mañe-Sad-
Sullivan’s and Lyubich’s bifurcation theory in the setting of finite type meromorphic maps.
We stress here the fact that the proof relies in a crucial way on both Theorems 3.2 and 3.3.

THEOREM 3.5 (Characterizations of J -stability). [ABF21] Let (fλ)λ∈M be a natural family
of finite type meromorphic maps. Let U ⊂ M be a simply connected domain of parameters. The
following are equivalent:

(1) The Julia set moves holomorphically over U (i.e. fλ is J -stable for all λ ∈ U)
(2) Every singular value is passive on U .
(3) The maximal period of attracting cycles is bounded on U .
(4) The number of attracting cycles is constant in U .
(5) For all λ ∈ U , fλ has no non-persistent parabolic cycles.

In view of Theorem 3.5 it makes sense to define the bifurcation locus of the natural family
as

Bif = {λ ∈M | fλ is not J -stable},
or equivalently as the set of parameters for which some of the conditions in Theorem 3.5
is not satisfied. Since J − stable parameters form an open set by definition, following the
arguments in [MSS83] we obtain the following statement, well-known for rational maps:

COROLLARY 3.2 (J - stable parameters form an open and dense set in M). [ABF21] If
(fλ)λ∈M is a natural family of finite type meromorphic maps, then Bif(M) has no interior or,
equivalently, J−stable parameters are open and dense in M .

Our last Corollary gives meaning to the notion of hyperbolic components in our setting.

COROLLARY 3.3. [ABF21] If (fλ)λ∈M is a natural family of finite type meromorphic maps,
and U is a connected component of M \Bif(M) containing a parameter λ0 such that all singular
values of fλ0 are captured by attracting cycles, then the same holds for every λ ∈ U .

4. Perspectives

4.1. Higher order bifurcations for polynomials and rational maps. Although bifurca-
tions of rational maps in one complex variable have already been the focus of a lot of research
activity, there remains many interesting questions.
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In particular, despite the results of e.g. [BE09], [DF08] and [AGMV19], we are still
lacking a good understanding of the support of µbif inMd or Polyd, and in particular of the
difference between the intersection of the activity loci of the critical points and the support of
µbif .

For instance, the following example is due to Douady ([DF08], Example 6.13): let f(z) :=
z + 1

2z
2 + z3 ∈ Poly3. The polynomial map f has one parabolic fixed point which attracts

both critical points, so they are both active at f in the family Poly3. However, f is parabolic
attracting, which means that any small perturbation of f has as either a parabolic or attracting
fixed point. It follows that f /∈ supp µbif . A more subtle example is given in [IM20] by Inou
and Mukherjee. They construct a real-analytic interval (ft)t∈I of parabolic repelling cubic
polynomials, for which both critical points are also captured by the parabolic fixed point,
such that none of the ft are in the support of µbif . To my knowledge, these are the only
examples of rational maps that are in the intersection of the activity loci of the critical points
but not in the support of µbif .

We may therefore ask the more general question:

QUESTION 1. Let P3 (resp. R2) denote the set of cubic polynomials (resp. quadratic ratio-
nal maps) with one parabolic fixed point capturing both critical points. Which f ∈ P3 are in
supp µbif? Same question for R2.

We can expect this question to be related to the bifurcations of the family of horn maps
(e2iπσhλ)(σ,λ)∈C×M , where hλ is the normalized horn map of fλ ∈ M , M = P3 or R2 (see
Section 1.2 next chapter for a definition of horn maps).

We also observe that both Douady’s and Inou-Mukherjee’s examples have a complex pa-
rameter of deformations (their Teichmüller space has positive dimension). It is therefore also
natural to ask:

QUESTION 2. Let M = Polyd orMd, and λ0 ∈M . Assume that all critical points are active
at λ0, and that fλ0 is rigid, in the sense that dim Teich(fλ0) = 0. Must λ0 lie in the support of
µbif?

In the case where all critical points are in the Julia set, this is probably a very difficult
question, as it is a lot more general than Theorem 1.13 (indeed, it is known that Collet-
Eckmann rational maps, or even summable rational maps, are rigid, see [Ast22]).

4.2. Higher order bifurcations for endomorphisms of Pk, k ≥ 2. A natural goal is to
extend the results of [AB22] to the total family Hd(Pk) of degree d ≥ 2 endomorphisms of
Pk, or at least to Hd(P2).

QUESTION 3. Is it true that suppTbif = suppµbif in Hd(Pk)?

Let us mention a few of the difficulties involved when going from skew-products to gen-
eral endomorphisms.

In the arguments from [AB22], we used crucially the following fact: if (z, w) is a repelling
periodic point for a skew-product f for which the most repelling eigenvalue is the vertical,
then {z}×C intersects J2(f). This follows easily from the fibered structure of J2(f) described
in [Jon99].

For the general case of an endomorphism of say P2, we are led to the following question.
Let f ∈ Hd(P2), and let x ∈ P2 be a repelling periodic point in J2(f), with eigenvalues
of different modulus. Let v ∈ TxP2 be an eigenvector associated to the strongest repelling
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eigenvalue, and let W uu
loc(x) denote the local strongly unstable manifold, tangent to v at x.

Must we have W uu
loc(x) ∩ J2(f)? It would be enough to construct hyperbolic sets with this

property, such as the blenders used in [GTV23]. However, while in [GTV23] the authors only
need to construct one open set with good properties anywhere in parameter space, we would
need to do it near any parameter in the bifurcation locus.

Another delicate issue appearing both in [AB22] and [GTV23] is that contrary to the
case of dimension one, Misiurewicz loci need not intersect transversally in higher dimen-
sion (indeed, in dimension k ≥ 2 there are infinitely many critical points, so a single map
f ∈ Hd(Pk) may have infinitely many different Misiurewicz relations; but Hd(Pk) is still
finite-dimensional). But some kind of transversality is required for an m-Misiurewicz map to
be in the support of Tmbif (i.e. in order to satisfy the large scale condition or a similar crite-
rion, see definition 1.6). In order to construct parameters in suppµbif , it is then necessary
to not only construct parameters satisfying a large number of Misiurewicz relations, but also
to ensure that the loci where these Misiurewicz relations are preserved intersect with the
right codimension in parameter space. In [AB22], this is done using in part a description
of the intersection at infinity of certain dynamically defined algebraic hypersurfaces in pa-
rameter space, and in part due to a result of Gorbovickis ([Gor16]) on the independance of
multipliers of one-variable polynomials. The approach of [GTV23], which relies on Berteloot-
Bianchi-Dupont’s theorem (Theorem 2.3) and on a weak version of McMullen’s theorem on
the generic finiteness of the multiplier map, seems to be a useful variation of these ideas.

4.3. Bifurcations for finite type maps. Another natural goal is to extend the results of
[ABF21] to families of finite type maps (not necessarily meromorphic), and in particular to
families of horn maps or generalized horn maps appearing in [AT22]. This is an ongoing
project with A.M. Benini and N. Fagella.

The most serious difficulty seems to be the following. For a natural family of finite type
maps (fλ)λ∈M , the correct notion of a periodic point disappearing (generalizing definition
3.2) would be this:

DEFINITION 4.1. A periodic point of period n disappears at λ0 ∈ M if there exists a real,
continuous curve t 7→ (λt, zt) ∈ M × P1 such that fnλt(zt) = zt, λt → λ0 as t → 0 and
zt → ∂W (fλ0) as t→ 0.

In other words, a periodic point of period n disappears at λ0 if and only if λ0 is an asymp-
totic value of the projection π1 : Pern →M , where

Pern := {(λ, z) ∈M × P1 : fnλ (z) = z}.
The difficulty is that this allows the curve t 7→ zt to accumulate on a continuum in ∂W (fλ0).
If the maps fλ are meromorphic, then ∂W (fλ) = {∞} and so this situation does not occur.
Most of our arguments in [ABF21] would break down in the event of such behaviour of the
curve t 7→ zt.

On the other hand, Theorem 4.3 still indicates a strong link between J -stability and sta-
bility of singular orbits.



CHAPTER 3

Parabolic implosion and wandering domains in dimension 2

1. Fatou coordinates, Lavaurs maps, horn maps

We recall in this section the definition of Fatou coordinates of one-variable holomorphic
maps, as well as some classical facts about their respective domains of definitions, asymptotic
expansion near the parabolic fixed point, and covering properties. We will always restrict
ourself to the case of a non-degenerate parabolic germ or map, i.e. of the form f(z) =
z + a2z

2 +O(z3), with a2 6= 0.

1.1. Fatou coordinates.
1.1.1. Local properties. We start by recalling local properties of Fatou coordinates; here,

f may be just a germ. Unless otherwise stated, we refer the reader to [[ABD+16], Appendix]
for the proofs of the statements appearing in this Subsection.

Consider a holomorphic germ f(z) = z + a2z
2 + a3z

3 + O(z4) where a2 6= 0. For r > 0
small enough we define incoming and outgoing petals by

Pιf = {|a2z + r| < r} and Pof = {|a2z − r| < r}.

The incoming petal Pιf is forward invariant, and all orbits in Pιf converge to 0. The
outgoing petal Pof is backwards invariant, with backwards orbits converging to 0.

On Pιf and Pof one can define incoming and outgoing univalent Fatou coordinates φιf :

Pιf → C and φof : Pof → C, solving the functional equations

φιf ◦ f(z) = φιf (z) + 1 and φof ◦ f(z) = φof (z) + 1.

Moreover, the set φιf (Pιf ) contains a right half plane and φof (Pof ) contains a left half plane.
Neither the incoming nor the outgoing Fatou coordinates may be extended to a mero-

morphic function in a neighborhood of the origin in general; however they do satisfy the
following asymptotic expansion as z → 0 inside Pι/of respectively:

(7) φιf (z) = − 1

a2z
− b log

(
− 1

a2z

)
+ o(1)

and

(8) φof (z) = − 1

a2z
− b log

(
1

a2z

)
+ o(1)

where b := 1− a3
a22

.
Fatou coordinates are only unique up to an additive constant; from now on, we will work

with the unique normalized Fatou coordinates for which the asymptotic expansions above
hold, with no constant terms.

59
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From the estimate (7), we first deduce that
(
φιf

)−1
(Z) ∼ − 1

a2Z
as ReZ → +∞. Then,

substituting
(
φιf

)−1
(Z) = − 1

a2Z
+ o

(
1
Z

)
in 7 again, we obtain:

(9)
(
φιf
)−1

(Z) = −a−1
2

(
Z + b log

(
− 1

a2Z

)
+ o(1)

)−1

.

1.1.2. Global properties. We now recall global properties of Fatou coordinates. From now
on, we will assume that f is a globally defined map (entire or rational).

Any orbit which converges to 0 but never lands at 0 must eventually be contained in Pιf .
Therefore, we have the following description of the parabolic basin:

Bf =
⋃
n≥0

f−n(Pιf ).

Using the relation φιf ◦ fn = φιf + n, the incoming Fatou coordinates can be uniquely
extended to the parabolic basin Bf . On the other hand, the inverse of φof can be extended to
an entire map denoted by ψof , which satisfies the functional equation

f ◦ ψof (Z) = ψof (Z + 1).

This entire function is then called an outgoing Fatou parametrization.
1.1.3. Covering properties of Fatou coordinates. We first record here the covering proper-

ties of φιf and ψof , in the next two propositions :

PROPOSITION 1.1 ([BE02], Proposition 2). The set of critical points of the map φιf : Bf → C
is exactly

crit(φιf ) =
⋃
n∈N

f−n (Crit ∩ Bf ) .

Moreover, φιf : Bf → C is a branched cover.

PROPOSITION 1.2 ([BE02], Proposition 3). A point Z ∈ C is a critical point of ψof if and only
if there exists n ∈ N∗ such that ψof (Z − n) ∈ Crit(f). Moreover, the map ψof : C \ (ψof )−1(Pf )→
C \ Pf is a covering, where Pf :=

⋃
n≥1 f

n(Crit) is the post-critical set of f .

1.2. Lifted horn maps, horn maps and Lavaurs maps.

DEFINITION 1.1. The Lavaurs map of phase σ ∈ C is the map Lf,σ : Bf → C defined by

Lf,σ(w) := ψof

(
φιf (w) + σ

)
.

In order to better study the dynamics of Lf,σ, it is convenient to introduce the following
map which is semi-conjugated to it:

DEFINITION 1.2. The lifted horn map of phase σ ∈ C is the map defined on Uf := (ψof )−1(Bf )

by Ef,σ(W ) := φιf ◦ ψof (W ) + σ. We will simply denote by Ef the lifted horn map of phase 0.

The open set Uf has at least two connected components, one containing an upper half-
plane and the other containing a lower half-plane. We record here the following property of
the lifted horn maps:

PROPOSITION 1.3 ([BE02], Proposition 4). The set of critical values of Ef is

CV(Ef ) = {φιf (c) + n, c ∈ Crit(f) ∩ Bf and n ∈ Z.}
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It is not difficult to check that Ef (W + 1) = Ef (W ) + 1, so that Ef (and Ef,σ, for any
σ ∈ C) descends to a well-defined map on the cylinder C/Z. Then, identifying C/Z with C∗,
we obtain a unique map h : U → C∗ such that

h(e2iπW ) = exp(2iπEf (W )),

where U is the image of Uf = (ψof )−1(Bf ) under W 7→ e2iπW . The map h is called the horn
map of f , and the horn map of phase σ is hσ := e2iπσh. It can be proved that it extends holo-
morphically at 0 and∞, and that this extension fixes both points (see [[ABD+16], Appendix]
and references therein).

Moreover, by [[BÉE13], Prop. 7.3], it is a finite type map as defined in Chapter 1, with
A(h) = {0,∞} and

CV(h) = {e2iπW : W ∈ CV(Ef )} = {e2iπφιf (z) : z ∈ Crit(f) ∩ Bf}.
In particular, it has exactly 2 asymptotic values which are fixed, and at least one critical

value.
1.2.1. Lavaurs’ theorem. We now give the statement of Lavaurs’ theorem, which has

found important applications in one-dimensional complex dynamics (see e.g. [Shi98]):

THEOREM 1.1. [Lav89] Let εj → 0, nj ∈ N and σ ∈ C satisfy nj − π
εj
→ σ as j → ∞.

Then
f
nj
εj → Lf,σ

locally uniformly on Bf .

There are more general versions of Lavaurs’ theorem applying to maps of the form f(z) =

e2iπp/qz +O(z2), see e.g. [Shi98], [Shi00], [Oud99], [Kap22].
Some proofs of (strong versions of) Lavaurs’ theorem use the Measurable Riemann map-

ping theorem, and are not suitable to the higher dimensional generalization that we will
expose in the following. We refer the reader to [BSU17] for a more self-contained proof of
Theorem 1.1. It is also explained in [ABD+16] how the proof of the main technical result
may be adapted to recover a proof of Theorem 1.1.

1.2.2. Topological and analytic classification in dimension 1. In dimension one, the topo-
logical classification of germs tangent to the identity is simply given by the parabolic multi-
plicity ([Cam78], [Shc82]). In other words, all germs of the form

f(z) = z + akz
k +O(zk+1)

(with ak 6= 0) are topologically conjugated in a neighborhood of 0.
However, the analytic classification of germs tangent to the identity is considerably more

complicated: by a result proved independantly by Écalle and Voronin ([Vor81], [É85]) the
germs of the horn maps (defined above) at 0 and ∞ are complete invariants for analytic
conjugacy in the family of germs of the form

(10) f(z) = z + a2z
2 +O(z3), a2 6= 0

These invariants may also be described by a pair of power series, and are also called Écalle-
Voronin invariants. Since horn maps fix 0 and ∞, the constant terms in these two power
series must be 0; and the two degree 1 coefficients ρ± are linked by the equation ρ+ρ− =

e2π2(1−a3/a22). Aside from these relations, any pair of power series at 0 and ∞ is realizable
as the horn map of a parabolic germ. In particular, there are uncountably many analytic
conjugacy class among maps of the form (10), and they do not depend on any finite k-jet.
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These results extend to more parabolic germs of higher multiplicity, although the exposi-
tion becomes more technical.

2. Characteristic directions, parabolic curves, parabolic domains

Let P be a holomorphic germ of (C2, 0) which is tangent to the identity of order k ≥ 2,
i.e. a map with a homogeneous expansion

P = Id + Pk + Pk+1 + . . .

where the Pj are homogeneous degree j polynomial maps from C2 to C2, and Pk 6≡ 0. We
say that v ∈ C2 \ {(0, 0)} is a characteristic direction for P if there exists a λ ∈ C so that
Pk(v) = λv. If λ 6= 0 then v is said to be non-degenerate; otherwise it is degenerate. We
shall denote by v 7→ [v] the canonical projection of C2\{(0, 0)} onto P1. The director of a
characteristic direction v is the eigenvalue of the linear operator

d(Pk)[v] − id : T[v]P1 → T[v]P1.

A parabolic curve for P is an injective holomorphic map ϕ : ∆ → C2, satisfying the
following properties:

(1) ∆ is simply connected domain in C with 0 ∈ ∂∆
(2) ϕ is continuous at the origin and ϕ(0) = (0, 0),
(3) ϕ(∆) is invariant under P and Pn|ϕ(∆) → (0, 0) uniformly on compact subsets.

It is important to keep in mind that the map ϕ can typically not be extended holomor-
phically at 0, just like Fatou coordinates cannot be extended meromorphically near 0, even
though both admit a formal, in general divergent asymptotic expansion.

We say that a parabolic curve is tangent to [v] ∈ P1 if [ϕ(ξ)] → [v] as ξ → 0 in ∆. This
implies that for any point given point z in the parabolic curve the orbit (Pn(z)) converges to
the origin tangentially to v, i.e. [Pn(z)] → [v] in P1. We now recall the following classical
result due to Écalle ([É85]) and Hakim ([Hak94, Hak98]):

THEOREM 2.1. Let P : C2 → C2 be a holomorphic germ fixing the origin which is tangent
to the identity of order k + 1 ≥ 2. Then for any non-degenerate characteristic direction v there
exist (at least) k parabolic curves for P tangent to [v]. Moreover, if the real part of the director
of a non-degenerate characteristic direction v is strictly positive, then there exists an invariant
parabolic domain in which every point is attracted to the origin along a trajectory tangent to v.

Additionnally, by [[Hak98], Section 3], when the director of a non-degenerate parabolic
curve is not a natural number, then the corresponding parabolic curve is asymptotic to a
unique (in general divergent) invariant formal power series.

EXAMPLE 1. Let f(z, w) := (p(z), q(z, w)) be a polynomial skew-product of the form p(z) =
z − z2 + O(z3) and q(z, w) = w + w2 + bz2 + O(‖(z, w)‖3), with b ∈ C∗ (such maps will
be investigated extensively in Section 4). Its characteristic directions [z : w] are given by the
equations {

−z2 = λz
w2 + bz2 = λw.

It follows that aside from the trivial non-degenerate characteristic direction (0, 1), there are
two other non-degenerate characteristic directions (1, c±), where c± are the roots of

(11) u2 + u+ b = 0.
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Note that c± = −1
2 ± ic where c is the solution of c2 = b − 1

4 satisfying Re (c) ≥ 0. Clearly,
Im (c) = 0 if and only if b ≥ 1

4 . Moreover, for b = 1
4 we have c+ = c− = −1

2 . The directors
of the characteristic directions (1, c±) are ∓2ic; in particular, when b ∈]1

4 ,+∞[, neither of them
are natural numbers.

It follows from Theorem 2.1 that aside from the trivial parabolic curve contained in the
invariant line z = 0, there are two parabolic curves which are tangent to the non-degenerate
characteristic directions (1, c±) respectively. By Hakim’s construction, these parabolic curves may
be written as holomorphic graphs z 7→ (z, ζ±(z)) over a small petal Pιp = D(r, r). Since parabolic
curves are invariant under f , the functions ζ± satisfy the functional equations

qz(ζ
±(z)) = ζ±(p(z)).

When the characteristic direction is degenerate, the question of the existence of para-
bolic curves is more delicate. In [LHR20], Lopez-Hernanz and Rosas give a more complete
description of the picture in dimension 2:

THEOREM 2.2. [LHR20] Let F : (C2, 0)→ (C2, 0) be a germ tangent to the identity of order
k + 1, and let [v] ∈ P1 be a characteristic direction of F . Then at least one of the following
possibilities hold:

(1) There exists an analytic curve pointwise fixed by F and tangent to [v].
(2) There exists at least k invariant sets Ω1, . . . ,Ωk where each Ωi is either a parabolic

curve tangent to [v] or a parabolic domain along [v] and such that all the orbits in
Ω1 ∪ . . . ∪ Ωk are mutually asymptotic. Moreover, at least one of the Ωj is a parabolic
curve.

(3) There exists at least k parabolic domains Ω1, . . . ,Ωk along [v], where each Ωi is foliated
by parabolic curves and such that all the orbits in Ω1∪. . .∪Ωk are mutually asymptotic.

In particular, if F does not have a curve of fixed points, then F has at least one parabolic
curve along each of its characteristic directions. This is for instance the case for skew-products
of the form

(12) f(z, w) = (z − z3 +O(z4), w + w2 + bz2 +O(w3))

which appear in [ABD+16] and [ABTP23], for which (0, 1) is a non-degenerate characteristic
direction (with a "trivial" parabolic curve {0} × D(−r, r)), and two degenerate characteristic
directions (1,±

√
−b).

The methods from [LHR20] are involved: they use a comparison of F with the formal
time 1 flow of a formal vector field, and Camacho-Sad’s theorem on the existence of sepa-
ratrices in dimension 2. In [ABTP23], we give (independantly) an elementary but delicate
construction of the parabolic curves for maps of the form (12), based on a graph transform
argument.

3. Wandering domains and Lavaurs map with Siegel disks

We present in this section the results of [ABTP23], with H. Peters and L. Boc Thaler. To
this end, we must first recall here the main theorem of [ABD+16]:

THEOREM 3.1. [ABD+16] Let p(z) = z − z2 + O(z3) and q(w) = w + w2 + O(w3) be
polynomial maps, such that the Lavaurs map Lq,0 has an attracting fixed point. Then the map

f : (z, w) 7→
(
p(z), q(w) +

π2

4
z

)
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has a wandering Fatou component.

The main technical tool is the following non-autonomous version of Lavaurs’ theorem
(compare Theorem 1.1):

THEOREM 3.2. [ABD+16] Let p(z) = z − z2 + O(z3) and q(w) = w + w2 + O(w3) be
polynomial maps, and f : (z, w) 7→

(
p(z), q(w) + π2

4 z
)
. Then

f2n+1(pn
2
(z), w) =

(
p(n+1)2(z),Lq,0(w) + o(1)

)
.

The choice of coefficient π2

4 is there to ensure that it takes about 2n iterations to "go
through the eggbeater" and converge to the Lavaurs map, compare Theorem 1.1. We give
here a quick proof of how Theorem 3.1 may be deduced from Theorem 3.2.

PROOF OF THEOREM 3.1. Let w0 ∈ B(q0) be an attracting fixed point for Lq,0, and let
z0 ∈ B(p). Choose r > 0 small enough that Lq,0(D(w0, r)) ⊂ D(w0, kr), for some 0 < k < 1.
Let n0 ∈ N be large enough that for all n ≥ n0 and all (z, w) ∈ D(z0, r)× D(w0, r),

π2 ◦ f2n+1(pn
2
(z), w) ∈ D(w0, kr)

(here we use Theorem 3.2). Let U be a connected component of f−n
2
0(pn

2
0(D(z0, r)×D(w0, r)).

Then for all (z, w) ∈ U and all n ≥ n0,

Pn
2
(z, w) ∈ B(p)× D(w0, r)

which implies that U belongs to the Fatou set of f , hence is contained in a Fatou component
Ω and that Pn

2

|Ω → (0, w0). On the other hand, it is not difficult to prove that if V is a
preperiodic component with fn+p(V ) = fn(V ) and (nj)j∈N is a subsequence such that fnj|V
converges to ξ ∈ C2, then fn+p(ξ) = fp(ξ). But since (0, w0) is not preperiodic for f , Ω0

cannot be preperiodic either and therefore must be wandering.
�

Now that the existence of wandering Fatou components is known, it is natural to ask
questions on their dynamical properties, and in particular the properties of the maps obtained
as adherence values of iterates. This leads us to the following definition:

DEFINITION 3.1. Let Ω be a Fatou component of an endomorphism f : Pk → Pk. We call
Fatou limit map on Ω any adherence value of the sequence of maps (fn|Ω)n∈N.

We define the rank of a Fatou component Ω as the maximal rank of dhx, where x ∈ Ω and h
ranges over all Fatou limit maps on Ω.

Note that for endomorphisms of P2, any wandering domain either has rank 0 (all Fatou
limits are constant) or rank 1. A slightly more careful examination of the proof of Theorem 3.1
above shows that all Fatou limits of the wandering domain Ω are constant, and their values
are either (0, 0) or of the form (0, wn), with qn0 (wn) = w0. In particular, they have rank 0. In
the paper [BB23], which came out around the same time as [ABTP23], Berger and Biebler
construct by completely different methods Hénon maps with wandering Fatou components;
their methods also provide new examples of endomorphisms of P2 with wandering Fatou
components. These new examples also have rank 0, which leads to the question:
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QUESTION 4. Does there exist an endomorphism f : P2 → P2 with a wandering Fatou
component of rank 1?

It turns out that the answer is yes, but this will only proved in the later work [AT22].
Motivated by this question, we investigated in [ABTP23] the case of maps of the form

f : (z, w) 7→
(
p(z), q(w) +

π2

4
z

)
where Lq,0 has a fixed Siegel disk instead of an attracting fixed point.

The idea is that by Theorem 3.2, suitable iterates of f will be compositions of maps that
are close to the limit map Lq,0 which has a linearizable Siegel fixed point; then one may hope
that the composition of these iterates converges to a non-constant map (z, w) 7→ (0, h(w)).
More generally, we may ask:

QUESTION 5. Let f1, f2, . . . be a sequence of holomorphic germs, converging locally uniformly
to a holomorphic function L having a Siegel fixed point at 0. Under which conditions does there
exist a trapping region?

By a trapping region we mean the existence of arbitrarily small neighborhoods U, V of 0
and n0 ∈ N such that

fm ◦ · · · ◦ fn(z) ∈ V
for all z ∈ U and m ≥ n ≥ n0. In other words, any orbit (zn)n≥0 that intersects U for
sufficiently large n will afterwards be contained in a small neighborhood of the origin. Note
that this in particular guarantees normality of the sequence of compositions fm ◦ . . . ◦ f0 in a
neighborhood of z0.

We are particularly interested in the case where the differences fn − L are not absolutely
summable, i.e. when ∑

n≥n0

‖fn − L‖U =∞

for any n0 and U . In this situation, the existence of a trapping region is not clear.
We assume that

(13) fn(z)− L(z) =
h(z)

n
+O

(
1

z1+ε

)
,

where h is a holomorphic germ, defined in a neighborhood of the origin.

THEOREM 3.3. [ABTP23] There exists κ ∈ C, a rational expression in the coefficients of f
and h, such that the following holds:

(1) If Re(κ) = 0, then there is a trapping region, and all limit maps have rank 1.
(2) If Re(κ) < 0, then there is a trapping region, and all orbits converge uniformly to the

origin.
(3) If Re(κ) > 0, then there is no trapping region. In fact, there can be at most one orbit

that remains in a sufficiently small neighborhood of the origin.

REMARK 3.1. The non-autonomous dynamics of the functions fn satisfying (13) is closely
related to the autonomous dynamics of the quasi-parabolic map

F (z, w) = (z − z2 +O(z2), f(w) + zh(w) +O(z2)).

The case Re(κ) < 0 in Theorem 3.3 corresponds to F being dynamically separating and parabol-
ically attracting, using the terminology of [BZ13], hence by [BZ13, Corollary 6.3] the map F
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has a connected basin of attraction at the origin. In particular this implies the existence of a
trapping region for the sequence (fn)n∈N.

In order to apply Theorem 3.3, it is necessary to refine Theorem 3.2 to obtain not just the
convergence but also an equivalent of the error term. The computations become considerably
more involved, and so we made the simplifying assumption that q has the form q(w) =
w + w2 + w3 + O(w4), instead of simply q(w) = w + w2 + O(w3). Under this technical
assumption, the computation of the error term was achieved with the next result:

THEOREM 3.4. [ABTP23] Let f(z, w) = (p(z), q(w) + π2

4 z), where p(z) = z − z2 + O(z3)

and q(w) = w+w2 +w3 +O(w4). Let Bp,Bq denote the parabolic basins of p and q respectively.
There exists a holomorphic function h : Bp × Bq → C such that

f2n+1(pn
2
(z), w) = (0,Lf (w)) +

(
0,
h(z, w)

n

)
+O

(
log n

n2

)
,

uniformly on compact subsets of Bp × Bq. More explicitly:

h(z, w) =
L′q(w)

(φιq)
′(w)

·
(
C + φιq(w)− φιp(z)

)
,

where C ∈ C is a constant.

In particular, we can apply Theorem 3.3 to the non-autonomous compositions of the maps
fn,z(w) := π2 ◦ f2n+1(pn

2
0(z), w), which all converge to the map L := Lq,0 by Theorem 3.2.

We think of the maps fn,z as maps in w depending on a parameter z, so that the index κ from
Theorem 3.3 becomes a map z 7→ κ(z) defined on B(p). Surprisingly, it turns out that when κ
is constant, its value must be equal to 1:

PROPOSITION 3.1. [ABTP23] Let f(z, w) = (p(z), q(w)+ π2

4 z), where p(z) = z−z2 +O(z3)

and q(w) = w + w2 + w3 + O(w4). Assume that Lq,0 has a Siegel fixed point w0. There are
exactly 2 possibilities:

(1) either κ is constant equal to 1 on Bp,
(2) or κ is a non-constant holomorphic map on Bp.

In view of Theorem 3.3, we deduce:

COROLLARY 3.1. Let p, q, f, w0, κ be as in Proposition 3.1 above.
(1) If κ ≡ 1, then f has no wandering domain whose orbit accumulates (0, w0).
(2) Otherwise, there is a rank 0 wandering domain accumulating (0, w0). All its limit

Fatou fonctions are constants equal to (0, 0) or (0, wn), where qn(wn) = w0.

In case (2), Theorem 3.3 implies that there exists vertical Fatou disks contained in the
boundary of the wandering domains (corresponding to values of z for which Reκ(z) = 0),
and that these Fatou disks have admit a rank 1 limit of iterates. However, such a disk must
always be on the boundary of a Fatou component and cannot lie inside the Fatou set.

4. Generic polynomial skew-products of C2 tangent to the identity

We now present the results of [AT22]. After [ABD+16] and [ABTP23] which focused on
skew-products with very specific forms, the purpose of this work is to investigate the generic
case of skew-products P which are tangent to the identity.
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By this we mean holomorphic maps P : C2 → C2 of the form

P (z, w) =

z +
∑
i≥2

aiz
i, w +

∑
i+j≥2

bi,jz
iwj


with a2 6= 0, b2,0 6= 0 and b0,2 6= 0. Since the results will be mostly local, we do not necessarily
assume that P is a polynomial map, or that P is regular (i.e. extends holomorphically to P2),
although that will be the main case we have in mind.

Up to conjugacy by a linear automorphism of C2, such maps may be reduced to a map of
the form

P : (z, w) 7→
(
z − z2 +O(z3), w + w2 + bz2 +O(‖(z, w)‖3)

)
,

and after a second conjugacy by an automorphism of C2 of the form

(z, w) 7→ (z, eAzw +Bz2),

we may finally assume that P is of the form P (z, w) = (p(z), q(z, w)) with

(14)
{
p(z) := z − z2 + az3 +O(z4)
q(z, w) := w + w2 + bz2 + b0,3w

3 + b3,0z
3 +O(‖(z, w)‖4)

where a, b, b0,3, b3,0 ∈ C.

A study of the local dynamics of skew-products in the case b = 0 in (14) has been under-
taken in [Viv20], where a full description of the dynamics on a neighborhood of a parabolic
fixed point at the origin was achieved. However, most of the difficulty and richness of the
dynamics (including the phenomenon of parabolic implosion and the existence of wandering
domains) comes precisely from this term bz2.

In fact, although maps of the form (14) are generic among polynomial skew-products
which are tangent to the identity (after analytic conjugacy), we will see that they have con-
siderably complicated local dynamics. We see the investigation of those maps (14) and the
results presenter here as a first step (generic case) towards the systematic analysis of the local
dynamics of all polynomial skew-products which are tangent to the identity.

We begin by discussing the existence of parabolic domains for maps of the form (14),
which depends only on b:

THEOREM 4.1. [AT22] Let P be a map of the form (14). Then
(1) If b ∈ (1

4 ,+∞), the map P has an invariant parabolic domain which is not tangent to
any directions.

(2) If b ∈ C\(1
4 ,+∞), the map P has an invariant parabolic domain which is tangent to

one of its non-degenerate characteristic directions.

The main novelty here lies in the first statement of this theorem, while the second state-
ment can be deduced from results of Hakim and Vivas. Invariant parabolic domains which
are not tangent to any direction are also sometimes called spiral domains. Such domains
were first constructed by Rivi in her thesis [Riv98, Proposition 4.4.4]. In [Ron14], Rong gave
sufficient conditions for the existence of spiral domains for some class of maps tangent to the
identity (see [Ron14, Theorem 1.4]). However, his result does not apply to maps of the form
(14).

From now on we will assume that b > 1
4 , and we introduce the following notations:
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(15) c :=

√
4b− 1

2
, α0 := eπ/c, β0 := (b0,3 − a)(α0 − 1).

Observe that since b > 1
4 , we have c > 0 and α0 > 1.

In what follows we will see that in the case b > 1
4 and β0 ∈ R, there is parabolic implosion,

which has many interesting dynamical consequences.

DEFINITION 4.1. Let P be of the form (14), and α, σ ∈ C. Its generalized Lavaurs map of
phase σ and parameter α is defined as

(16) L(α, σ; z, w) := ψoq0
(
αφιq0(w) + (1− α)φιp(z) + σ

)
,

where φιp is the incoming Fatou coordinate of p, φιq0 the incoming Fatou coordinates of q0 and
ψoq0 the outgoing Fatou parametrization of q0.

The generalized Lavaurs map is defined for (z, w) ∈ Bp×Bq0 , where Bp and Bq0 are basins
of a parabolic fixed point at the origin for p and q0 respectively, and takes values in C. If
α = 1, then the map w 7→ L(α, σ; z, w) does not depend on z and coincides with the classical
Lavaurs map of phase σ of the one-variable polynomial q0. Moreover, generalized Lavaurs
maps satisfy the following functional relation:

(17) L(α, σ; p(z), q0(w)) = q0 ◦ L(α, σ; z, w) = L(α, σ + 1; z, w)

for all (z, w) ∈ Bp × Bq0 .

DEFINITION 4.2. Given real numbers α > 1 and β ∈ R, we say that a strictly increasing se-
quence of positive integers (nk)k≥0 is (α, β)-admissible if and only if its phase sequence (σk)k≥0,
defined by σk := nk+1 − αnk − β lnnk, is bounded. In the case where β = 0, we will simply call
such a sequence α-admissible.

Observe that for any α > 1 and β ∈ R, there always exists (α, β)-admissible sequences:
it suffices to define inductively nk+1 := bαnk + β lnnkc and take n0 ∈ N large enough,
where b·c denotes the floor function. For this particular type of (α, β)-admissible sequence,
we have σk ∈ (−1, 0] for all k ∈ N. However, describing the phase sequence is in general
a difficult problem; for instance, even in the particular case of the 3

2 -admissible sequences
of the form nk+1 = b3

2nkc, the phase sequence is not fully understood (see [Dub09]). An
interesting question is the existence of (α, β)-admissible sequences with converging phase
sequence, which will be discussed in detail below.

The following is the main technical result of [AT22]:

THEOREM 4.2. [AT22] Let P be a map of the form (14). Let α0, β0 be as in (15), and assume
that b > 1

4 and β0 ∈ R. Let (nk)k≥0 be an (α0, β0)-admissible sequence and let (σk)k≥0 denote
its phase sequence. Then

Pnk+1−nk(pnk(z), w) = (0,L(α0,Γ + σk; z, w)) + o(1) as k → +∞

with uniform convergence on compacts in Bp × Bq0 , and where Γ is a constant depending
only on a, b, b0,3, b3,0 (see (18) for its explicit expression).
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The constant Γ is given by the explicit expression

(18) Γ := (e
π
c − 1)

(
a− b0,3 + b3,0

2b
+ a+

1

2
(1− b0,3) + (b0,3 − 1) ln c

)
+ (b0,3 − a)

π

c

+ e
π
c (1− b0,3)

∫ π
c

0
e−u ln sin(cu)du.

As the expression of Γ may suggest, the computations involved in the proof of Theorem
4.2 are quite heavy, and we will not try to give details on the proof beyond the following
heuristic: let zj := pnk+j(z). The orbit of (pnk(z), w) "rotates" in C2 around the two parabolic
curves ζ± given by Hakim’s theorem (see Theorem 2.1 and Example 1), with an angle of
about czj per iteration. Using the classical estimate zj ∼ 1

nk+j (which may be deduced from

(7)), the number N of iterates required to "do a full turn" must satisfy
∑N

j=0
c

nk+j ≈ 2π, and

since
∑N

j=0
c

nk+j ≈ c
∫ nk+N
nk

dt
t = c ln

(
1 + Nk

nk

)
, we obtain Nk ≈ (e2π/c− 1)nk ≈ nk+1−nk, as

expected.

The usefulness of Theorem 4.2 (and of similar results, such as Theorem 3.2, is that by
applying it successively, one can estimate more and more precisely certain high iterates of P
in terms of iterates of the maps Lz : w 7→ L(α0,Γ + σk; z, w). Therefore, one can transfer
dynamical properties of Lz to obtain information on the dynamics of P . These maps Lz are
quite complicated (they are non-explicit, transcendental maps, with infinitely many critical
points and in general infinitely many critical values). However, by thinking of them as a
one-parameter family of maps (Lz)z∈Bp , we can use ideas from one-dimensional bifurcation
theory to obtain information on the dynamics of Lz for certain values of z. Moreover, under
the additional assumption that α0 ∈ N≥2, we prove that these maps are semi-conjugated to
finite type maps, much in the same way that classical Lavaurs maps are semi-conjugated to
horn maps. This allows us to obtain a more precise understanding of their dynamics, and in
turn, of the dynamics of P .

We list below some consequences of Theorem 4.2.

4.1. Existence of wandering domains and Pisot numbers. The first examples of poly-
nomial maps with wandering Fatou components were introduced in [ABD+16] by Buff, Du-
jardin, Peters, Raissy and the first author (see also [ABTP23]); other examples were con-
structed by Berger and Biebler in [BB23], by completely different methods, for Hénon maps
and polynomial endomorphisms of P2. In the opposite direction, Ji gave in [Ji23] and [Ji20]
sufficient conditions to guarantee the absence of wandering domains near an attracting in-
variant fiber for a skew-product map.

The examples from [ABD+16] are polynomial skew-products of the form

(z, w) 7→
(
p(z), q(w) +

π2

4
z

)
with p(z) = z − z2 + O(z3) and q(w) = w + w2 + O(w3), and are not tangent to the identity
at the origin. One can simplify the investigation of these maps by passing to a finite branched
cover y2 = z. This brings these maps to a form that is tangent to the identity, but with
degenerate second order differential at the origin. In particular, these maps are not of the
form (14), which explain the difference in dynamical features.
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THEOREM 4.3. [AT22] Let P be a map of the form (14), and assume that there exists an
(α0, β0)-admissible sequence with converging phase sequence. Then P has a wandering domain
of rank 1.

Recall the definition of the rank of a Fatou component (Definition 3.1). Theorem 4.3 gives
the first (and so far only) examples of rank 1 wandering domains in complex dimension 2.

We are therefore led to the question: for which values of α and β does such a sequence
exist? Before stating an answer, recall the definition of Pisot numbers:

DEFINITION 4.3. A real algebraic integer α > 1 is called a Pisot number if all of its Galois
conjugates are in the open unit disk in C (in particular, integers ≥ 2 are Pisot numbers).

The next definition is not standard terminology, but it will be convenient for our purposes:

DEFINITION 4.4. We say that α > 1 has the Pisot property if there exist ζ ∈ R∗ such that
‖ζαk‖ → 0, where ‖ · ‖ denotes the distance to the nearest integer.

We recall here two classical results from number theory that justify the terminology of
"Pisot property":

Theorem ([Pis46]) Let α > 1 be an algebraic number with the Pisot property. Then α is a
Pisot number and ζ lies in the field Q(α).

Theorem ([Pis46]) There are only countably many pairs (ζ, α) of real numbers such that
ζ 6= 0, α > 1, and the sequence ({ζαk})k≥0 has only finitely many limit points. Moreover if
(ζ, α) is such a pair where α is an algebraic number, then α is a Pisot number and ζ lies in the
field Q(α). Here {·} denotes the fractional part of the number.

In particular, an algebraic number has the Pisot property if and only if it is a Pisot number.
Moreover, it is a long-standing conjecture known as the Pisot-Viiayaraghavan problem that
Pisot numbers are the only real numbers with the Pisot property.

DEFINITION 4.5. We say that a sequence (σk)k≥0 converges to a cycle of period ` if the
subsequence (σk`+j)k≥0 converges for every 0 ≤ j < `.

We can now state an almost sharp condition on α and β for the existence of an (α, β)-
admissible sequence with converging phase:

THEOREM 4.4. [AT22] Let α > 1 and β ∈ R. Then
(1) There exists an α-admissible sequence with phase sequence converging to a cycle if and

only if α has the Pisot property. Moreover, in that case there exists an α-admissible
sequence with phase sequence converging to 0.

(2) (a) If there exists an (α, β)-admissible sequence with phase sequence converging to a
periodic cycle, then α has the Pisot property.

(b) Conversely, if α has the Pisot property and β = α−1
lnα

k1
k2

, where k1 and k2 are
coprime integers with k2 ≥ 1, then there exists an (α, β)-admissible sequence
whose phase sequence converges to a cycle of period k2.

Note that if the Pisot-Viijayaraghavan conjecture is true, then there exists an α-admissible
sequence with converging phase sequence if and only if α is a Pisot number.

It is natural to ask whether the condition of Theorem 4.3 is necessary or not. In the case
that there are no (α, β)-admissible sequences whose phase sequence converge to a periodic
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cycle, it means that any wandering Fatou component whose orbit remains in Bp × Bq0 would
have to remain bounded under a sequence of non-autonomous compositions of generalized
Lavaurs maps with non-periodic sequences of phases. Proving rigorously whether such a
thing is possible or not is likely to be very difficult, but it seems reasonable to expect that for
generic values of α it is not the case.

If we now specialize to the case of degree 2, Theorems 4.3 and 4.4 imply that for any
Pisot number α0 > 1, the map

(19) (z, w) 7→
(
z − z2, w + w2 +

(
1

4
+

π2

(lnα0)2

)
z2

)
has a wandering domain of rank 1. Those are the first completely explicit 1 examples of
polynomial maps with wandering domains, as well as the first examples in degree 2 and the
first examples of wandering domains with rank 1.

Recall that two Fatou components Ω1 and Ω2 are in the same grand orbit (of Fatou com-
ponents) for P if there exists n1, n2 ∈ N such that Pn1(Ω1) = Pn2(Ω2). One may ask whether
for polynomial endomorphisms of P2 there exists a bound on the number of grand orbits of
wandering domains that would depend only on the degree. The following theorem gives a
negative answer:

THEOREM 4.5. [AT22] Let P be of the form (19) and let α0 > 1 be an integer. Then P has
countably many distinct grand orbits of rank 1 wandering domains.

For this result, we need to assume that α0 is integer rather than Pisot. Note that contrary
to e.g. arguments involving the classical Newhouse phenomenon, we do not use perturbative
arguments in the proof of Theorem 4.5, and the maps considered are completely explicit. In
fact, more precisely, we construct an injective map from the set of hyperbolic components
in a specific family of modified horn maps into the set of grand orbits of wandering Fatou
components of P .

4.2. Topological invariants and horn maps. We will now investigate a few consequences
of Theorem 4.2 on the topological classification of skew-products tangent to the identity (com-
pare Section 1.2.2 for some historical remarks on the topological and analytic classification
of parabolic germs in one complex variable).

To our knowledge, no complete topological classification is available for germs tangent to
the identity in C2. Our results imply that such a classification must also be complicated even
in the seemingly simple class of skew-products; in fact, it resembles the analytic classification
for one-dimensional parabolic germs.

A first remarkable consequence of Theorem 4.2 is that the coefficient b is a topological
invariant, among maps of the form (14):

THEOREM 4.6. [AT22] Let P1 and P2 be two maps of the form (14), and assume that there
exists a homeomorphism h defined near the origin, with h(0, 0) = (0, 0), such that

h ◦ P1 = P2 ◦ h.

1 In [ABD+16], there are explicit examples of polynomial maps for which numerical experiments strongly
indicates the existence of wandering domains. It is possible that a rigorous argument could be made to prove the
existence of wandering domains for these explicit maps as well.
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Let bi, αi, βi (with 1 ≤ i ≤ 2) be as in (15), and assume that bi > 1
4 and βi ∈ R. If both pairs

(αi, βi) admit an (αi, βi)-admissible sequence with a converging phase sequence then (α1, β1) =
(α2, β2), and so in particular b1 = b2.

In [Aba05] Abate asked whether maps of the form

(3u,v,1) : f(z, w) = (z+ uz2 + (1− u)zw,w+ vw2 + (1− v)zw), with u+ v 6= 1 and u, v 6= 0

are topologically conjugated to each other. Using Theorem 4.6 we can now answer this
question negatively. Indeed, observe that for u = 1 and v 6= 0 this map is conjugate, via a
linear automorphism, to the map

(20) (z, w) 7→
(
z − z2, w + w2 +

1− v2

4
z2

)
which is of the form (14). In particular, when v ∈ iR∗ in (20), such maps satisfy b > 1

4
and β = 0. Then Theorem 4.6, together with Theorem 4.4, asserts that all maps of the form
(3u,v,1) with u = 1 and v = 2πi/ ln(ρ), where ρ is a Pisot number, belong to different local
topological conjugacy classes.

We now turn to a slightly stronger equivalence relation than local topological conjugacy:

DEFINITION 4.6. We define an equivalence relation ∼ on maps of the form (14) by :
P1 ∼ P2 ⇔ there exists a homeomorphism h defined near the origin, with h(0, 0) = (0, 0),

such that h ◦ P1 = P2 ◦ h and h is of the form h(z, w) = (f(z), g(z, w)).

We now introduce a two-dimensional analogue of horn maps and lifted horn maps:

DEFINITION 4.7. Let P be a map of the form (14). Let us define the lifted horn map of P of
phase σ by

(21) H̃σ(Z,W ) := (Z,α0 · Eq0(W ) + (1− α0)Z + σ) =: (Z, H̃Z,σ(W ))

The map H̃σ satisfies the functional relation H̃σ(Z+1,W+1) = H̃σ(Z,W )+(1, 1), so it descends
to a map Hσ defined on C2/〈(1, 1)〉, which we call the horn map of phase σ of P .

In fact, we have the two following relations:

H̃σ(Z + 1,W ) = H̃σ(Z,W ) + (1, 1− α0)

H̃σ(Z,W + 1) = H̃σ(Z,W ) + (0, α0).

Therefore, the map H̃σ descends to a map on C2/Z2 if and only if α0 ∈ N. However, even
when α0 /∈ N, it always descends to the horn map defined above, on C2/〈(1, 1)〉.

THEOREM 4.7. [AT22] Let P1 and P2 be of the form (14), with bi >
1
4 and βi ∈ R, and

assume that P1 ∼ P2. Let H i
σ denote their respective horn maps. Then there exists σ1, σ2 ∈ C

such that H1
σ1 and H2

σ2 are topologically conjugated on C2/〈(1, 1)〉.

Finally, using Theorem 4.7, we obtain:

COROLLARY 4.1. Under the same assumptions as Theorem 4.7, the number of critical points
of qi in Bqi is the same. In particular, for any k ∈ N, there exists P1, P2 of the form (14) such
that P1(z, w)− P2(z, w) = O(‖(z, w)‖k), but P1 6∼ P2.

Note that the maps P1 and P2 are by assumption globally defined maps on C2, assumed
to be topologically conjugated only on a neighborhood of the origin.
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4.3. Fatou components with historic behaviour. In [BB23], Berger and Biebler con-
struct wandering Fatou components Ω for some maps f (which are Hénon maps or endo-
morphisms of P2) that have historic behaviour, meaning that for any x ∈ Ω, the sequence of
empirical measures

en(x) :=
1

n

n∑
k=1

δfk(x)

does not converge.
To our knowledge, these are the only known examples so far of Fatou components for

endomorphisms of Pk or for Hénon maps with historic behaviour. Note that in the case of
the wandering Fatou components constructed in [ABD+16] and [ABTP23], the sequences
(en)n∈N converge to the Dirac mass centered at the parabolic fixed point at the origin. In
dimension 1, it follows easily from the Fatou-Sullivan classification that no Fatou component
of a rational map on P1 can have historic behaviour; and for moderately dissipative Hénon
maps, it follows from the classification of Lyubich and Peters [LP14] that periodic Fatou
components cannot have historic behaviour.

Using Theorem 4.2, we give here new, explicit examples of polynomial skew-products
(which may be chosen to extend to endomorphisms of P2) which have a Fatou component
with historic behaviour:

THEOREM 4.8. [AT22] Let P (z, w) = (p(z), q(z, w)) be a polynomial skew-product satisfying
the following properties:

(1) p(z) = z − z2 +O(z3)
(2) P has two different fixed points tangent to the identity of the form (0, w1) and (0, w2),

which both satisfy the conditions that αi ∈ N∗ and βi = 0, with the same notations as
in Theorem 4.2 and in appropriate local coordinates.

Then P has a Fatou component Ω with historic behaviour. More precisely, for any (z, w) ∈ Ω,
the sequences (en(z, w))n∈N accumulate on

µ1 :=
α1α2 − α2

α1α2 − 1
δ(0,w1) +

α2 − 1

α1α2 − 1
δ(0,w2)

and on

µ2 :=
α1 − 1

α1α2 − 1
δ(0,w1) +

α1α2 − α1

α1α2 − 1
δ(0,w2).

More explicitly, these conditions are given by:

(1) p(z) = z − z2 +O(z3)
(2) P has two different fixed points tangent to the identity of the form (0, w1) and

(0, w2), with q′′0(wi) = 2
(3) p′′′(0) = q′′′0 (w1) = q′′′0 (w2)

(4) If bi := 1
2
∂2q
∂z2

(0, wi), then bi > 1
4 , and αi := e

2π√
4bi−1 ∈ N∗.

EXAMPLE 2. With
p(z) := z − z2 +O(z4)

and q(z, w) := q0(w) + a(z) with

q0(w) := w + w2 − 5w4 + 6w5 − 2w6
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and

a(z) :=

(
1

4
+

π2

(ln 2)2

)
z2(1− z)2,

the map P satisfies the conditions above, with w1 = 0 and w2 = 1, αi = 2 and βi = 0.

Note that we could replace p by z 7→ z − z2 + z6 in the previous example to obtain an
example which extends to an endomorphism of P2.

Although we believe that the Fatou component constructed in Corollary 4.8 is wandering,
we were not able to prove so. Note however that if it is not the case, then this would be
the first example of an invariant (for some iterate of P ) non-recurrent Fatou component
whose limit sets depend on the limit map, which would give an affirmative answer to [LP14,
Question 30] for the case X = C2 and X = P2.

4.4. Proof of Theorem 4.5 and families of finite type maps. Finally, we close this
chapter by giving some details on the proof of Theorem 4.5, which ties in with the material
exposed in Chapter 1 on finite type maps and their Teichmüller space.

Let fb(z, w) := (z + z2, w+w2 + bz2), and assume that b = 1
4 + π2

(lnα0)2
, where α0 ∈ N and

α ≥ 2. Then p(z) := z + z2 and q0(w) := w + w2.
We let ĥ denote the classical horn map of q0 (see Section 1.2), and observe that

(22) e2iπ(1−α0)Z+2iπσĥ(e2iπW )α0 = e2iπH̃Z,σ(W )

where H̃Z,σ is the lifted horn map of fb as defined in Definition 4.7. We let h := ĥα0 , and
consider the family (hλ)λ∈C∗ , defined by hλ := λh. Observe that by the choice of q0, the maps
hλ have exactly 3 singular values:

(1) 0 and∞, which are asymptotic values that are also superattracting fixed points
(2) one free critical value vλ := λv, where v := e2iπφιq0 (− 1

2
).

In particular, if hλ has an attracting cycle different from 0 and∞, then it must capture vλ.
Moreover, the family (hλ)λ∈C∗ is natural in the sense of Definition 4.5 (with φλ(z) := λz and
ψλ := id).

DEFINITION 4.8. A hyperbolic component of period m in the family (hλ)λ∈C∗ is a connected
component of the set of λ ∈ C∗ such that hλ has an attracting cycle of period m different from 0
and∞.

In order to prove that the Fatou components that we construct are indeed wandering, we
will use the following result, which also has intrinsic interest:

THEOREM 4.9. [AT22] Hyperbolic components in the family (hλ)λ∈C∗ are simply connected.

Before proving Theorem 4.9, we introduce some further notations:

DEFINITION 4.9. We let Pm := {(λ, z) ∈ C∗×C∗ : z = hmλ (z)}, and ρ̃ : Pm → C be the map
defined by ρ̃(λ, z) = (hmλ )′(z).

Let U be a hyperbolic component of period m and D ⊂ C the unit disk. Then U =
proj1(Π), where Π is a connected component of ρ̃−1(D) and proj1 : C2 → C is the projection
on the first coordinate. Since for every λ ∈ C∗, hλ has only one free singular value, it may
have at most one attracting cycle different from 0 and ∞; therefore if (λ, z1) and (λ, z2) are
in a same fiber of the map proj1 : Π → U , then z1 and z2 must be periodic points of the
same attracting cycle. This means that the function ρ̃ : Π → D descends to a well-defined
holomorphic function ρ : U → D satisfying ρ̃ = ρ ◦ proj1.
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LEMMA 4.1. Let U0 := U\ρ−1({0}). The map ρ : U0 → D∗ is a covering map.

PROOF. We will prove this using a classical surgery argument, originally due to Douady-
Hubbard for the case of the quadratic family ([DH84]). Let λ0 ∈ U0, and let V be a simply
connected open subset of D∗ containing ρ(λ0). Using a standard surgery procedure, we con-
struct for any t ∈ V a quasiconformal homeomorphism gt such that gt ◦ hλ0 ◦ g

−1
t is holo-

morphic, and gt(z0) is a periodic point of period m and multiplier t. We refer to [ABTP23,
Proposition 6.7], for the details (see also e.g. [[FK21], Theorem 6.4]).

We let φ : V → Teich(hλ0) be the holomorphic map induced by t 7→ µt, where µt is the
Beltrami form associated to gt and Teich(hλ0) is the dynamical Teichmüller space of hλ0 .

Let V̂ ⊂ U0 be a simply connected domain containing λ0. We let φ̂ : V̂ → Teich(hλ0)
denote the map given by Theorem 4.3, which applies here since the only singular relations
are hλ(0) = 0 and hλ(∞) = ∞, which are persistent. Let ξ := d

dλ |λ=λ0
ĝλ, and observe that

since ĝλ(vλ0) = vλ = λv, we have ξ(vλ0) 6= 0. By [Ast17, Proposition 5], the derivative φ̂′(λ0)

is therefore non-zero. Therefore, up to restricting V , we may assume that φ(V ) ⊂ φ̂(V̂ ) and
that there exists a well-defined inverse branch φ̂−1 : φ(V ) → V̂ . Let c : V → V̂ be the map
defined by c := φ̂−1 ◦ φ. Then c is a holomorphic local inverse of ρ, which maps ρ(λ0) to
λ0; since this construction is valid for any simply connected domain V ⊂ D∗, the Lemma is
proved. �

PROOF OF THEOREM 4.9. By the lemma above, ρ : U0 → D∗ is a covering map. There are
two cases: either it is a finite cyclic cover, or an infinite degree universal cover.

In the first case, there exists λ0 ∈ U such that U0 = U\{λ0}, and U0 is isomorphic to a
punctured disk and U to a disk; then we are done.

In the second case, U0 = U is isomorphic to a disk and we are also done. �

We state here a slightly more precise statement of Theorem 4.5:

THEOREM 4.10. [AT22] To each hyperbolic component U of the family (hλ)λ∈C∗ , we can
associate a wandering Fatou component ΩU of fb. Moreover, if U1 6= U2, then ΩU1 and ΩU2 are
in different grand orbits of fb.

We sketch the proof of Theorem 4.10 below.
Since α0 is an integer, we may choose an α0-admissible sequence (nk) to be simply nk =

αk0 , which has zero phase sequence, and where n0 ∈ N∗. By Theorem 4.2, we have that
f
nk+1−nk
b (pnk(z), w)→ (0,L(α0, σ; z, w)) uniformly on compacts in Bp×Bq0 . Here σ is simply

the constant Γ from Theorem 4.2, since the phase sequence of (nk)k∈N is zero. Let (λ0, x0) ∈
C∗×C∗ be such that x0 is an attracting periodic point of exact period ` for hλ0 . Let (z0, w0) ∈
Bp × Bq0 be such that e2iπ(1−α0)φιp(z0)+2iπσ = λ0 and e2iπφoq0 (w0) = x0: then w0 is an attracting
fixed point of L(α0, σ; z0, ·) with same multiplier.

With an argument similar to that of the proof of Theorem 3.1, we may prove that the point
(z0, w0) is contained in a Fatou component of fb, which we will denote by Ω. By construction,
there is a Fatou limit map on Ω of the form (z, w) 7→ (0, η(z)), where η(z) is an attracting
periodic point of period ` of the map L(α0, σ; z0, ·), and such that η(z0) = w0.

Let us first justify that Ω is wandering. Indeed, if it were say fixed, then there would be
a continuous curve contained in Ω and joining (z0, w0) to fb(z0, w0). Composing with η ◦ π1,
we obtain a curve t 7→ η(zt) (with z1 = p(z0)) such that η(zt) is an attracting periodic point of
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period ` for L(α0, σ; z0, ·). Transporting this to the family (hλ)λ∈C∗ via the semi-conjugating
map

(23) e : (z, w) 7→ (e2iπ(1−α0)φιp(z)+2iπσ, e2iπφιq0 (w)),

we obtain an essential loop in C∗, contained in a hyperbolic component. But this contradicts
Theorem 4.9.

The proof of the fact that two different hyperbolic components in the family (hλ)λ∈C∗ give
rise to two different grand orbits of wandering domains is similar: if two Fatou components
Ω1 and Ω2 given by the construction above are in the same grand orbit of Fatou components,
then there exists mi ∈ N∗, (zi, wi) ∈ Ωi and a continuous curve joining fmib (zi, wi) inside a
third Fatou component Ω3 (with 1 ≤ i ≤ 2). Lifting this curve to the family (hλ)λ∈C∗ using
the maps η and e as above, we obtain a curve t 7→ λt in C∗ such that hλt is hyperbolic for all
t > 0. Therefore, it must be contained in a single hyperbolic component.

5. Perspectives

5.1. Local dynamics of parabolic skew-products. We have treated in [AT22] the case
of a skew-product tangent to identity

(24) f(z, w) =

z +
∑
i≥2

aiz
2, w +

∑
i+j≥2

bi,jz
iwj


under the generic assumption

(25) a2 6= 0, b0,2 6= 0 and b2,0 6= 0.

Another natural question is to investigate the general case of maps of the form (24),
without these assumptions.

QUESTION 6. Which maps or germs of the form (24) exhibit some form of parabolic implo-
sion?

Here, by parabolic implosion we mean a renormalization property such as Theorem 4.2
(which does not involve any actual perturbation of the map f). When (25) holds, it follows
from the results of [AT22] that the condition is b2,0 ∈ (1

4 ,+∞); this is related to the directors
of the two non-trivial parabolic curves of f , see Theorem 2.1 and the discussion in Example
1.

In the general case of maps of the form (24), the discussion will involve the number of
parabolic curves (which depends on the order of vanishing of f − id at (0, 0)), their directors,
and whether or not they are degenerate. It is analoguous to parabolic implosion for perturba-
tions of general one-dimensional maps or germs f(z) = z+akz

k+O(zk+1), k ≥ 2 and ak 6= 0,
which involves a discussion of the nature of the small cycles created near 0 by perturbation.
Even in dimension one, these questions are far from easy (see [Oud99]); this complexity is
also cited by Bedford, Smillie and Ueda in [BSU17] as the reason why their paper only deals
with the non-degenerate parabolic case.

The following question remains as a motivation for Question 6:

QUESTION 7. Which maps or germs of the form (24) have wandering domains?

This could be a potential topic for a future PhD student.
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5.2. Perturbations of a parabolic map in dimension 2. F. Bianchi has studied in [Bia19b]
actual parabolic implosion of a map tangent to the identity in C2. More precisely, he considers
a family of maps of the form

(26) Fε(x, y) =
(
x+ (x2 + ε2)αε(x, y), y(1 + ρx+ βε(x, y))

)
where ρ > 1, and (ε, x, y) 7→ αε(x, y) and (ε, x, y) 7→ βε(x, y) are holomorphic.

In particular, F0 is tangent to the identity and leaves invariant both axes x = 0 and
y = 0. Moreover, the condition ρ > 1 implies, by Hakim’s work, that [1, 0] is a non-degenerate
characteristic direction contained in a parabolic basin B (see Theorem 2.1).

F. Bianchi then proves:

THEOREM 5.1 ([Bia19b]). Let εj → 0 and nj → +∞ be such that nj − π
εj
→ σ ∈ C. Then

for every compact K ⊂ B ∩ (y = 0), there is a neighborhood U of K in C2 and a subsequence
jk → +∞ such that

F
njk
εjk
→ L

locally uniformly , where L is a non-constant holomorphic map.

Compare with Lavaurs’ theorem in dimension one (Theorem 1.1). While the limit map L
is a priori not unique in Theorem 5.1, it does satisfy φo ◦ L = φι + σ, where φo and φι are
Fatou coordinates for the map F0, wherever both sides are well-defined.

In an ongoing project with L. Lopez-Hernanz and J. Raissy, we aim to improve Theorem
5.1 in several ways:

(1) We wish to remove the very strong assumption that F0 fixes any complex line, and
only assume a generic non-vanishing condition on the quadratic part of F0, as well as
a natural condition on the real part of a director of a characteristic direction (similar
to the condition ρ > 1) ensuring that this direction is contained in a parabolic basin.

(2) We wish to obtain a global convergence on B and not only locally near the charac-
teristic direction y = 0.

(3) We wish to obtain an actual convergence to a Lavaurs map of phase σ, without
having to take subsequences.

It is our hope that such a general statement on 2-dimensional parabolic implosion could
have applications to the study of the bifurcations in e.g. the family Hd(P2).

5.3. Local dynamics of general non-degenerate parabolic germs. Finally, another di-
rection of generalization of the results from [AT22] is to remove the assumption that f is a
skew-product, and work e.g. with maps of the form

f(x, y) = (x+ x2 +O(‖(x, y)‖3), y + y2 + bx2 +O(‖(x, y))‖3)).

This project may seem very close to the one described in Section 5.2, since they would
apply to more or less the same class of maps. There are however two main differences: first,
here we do not study perturbations of f but the dynamics of f itself. Additionnally, in the
previous project, the region where the convergence to the Lavaurs map is expected to take
place is the parabolic basin B containing the characteristic curve tangent to [1 : 0], where the
dynamics of f is trivial. On the other hand, the region considered here is a neighborhood
of the characteristic curve [0 : 1], on which the dynamics is much more complicated, as the
results of [AT22] attest.
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This is certainly a more challenging and long-term project. A motivation for the extension
of the results of [AT22] to generic maps tangent to the identity is the following (probably
even more difficult) question:

QUESTION 8. Let Wd ⊂ Hd(P2) be the set of degree d ≥ 2 endomorphisms of P2 with a
wandering Fatou component. IsWd dense in the bifurcation locus?

For now, the best result available towards answering this question is obtained in [BB23],
and is the fact that the closure ofWd contains an open subset of Hd(P2) for d ≥ 5.
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Résumé :

Ce manuscrit d’HDR regroupe les travaux effectués depuis mon arrivée à Orléans, en 2016.
Il comporte trois parties : la première est consacrée à un panorama synthétique sur les applications
de type fini, introduites par Epstein. La théorie de Fatou/Julia y est développée dans ce cadre,
suivie d’une étude des déformations quasiconformes de la dynamique, reposant sur des outils de
théorie de Teichmüller.
La seconde porte sur les bifurcations de familles de systèmes dynamiques holomorphes, dans
différents cadres : en une variable complexe (fractions rationnelles, applications méromorphes tran-
scendantes, ou applications de type fini) ou en dimension supérieure (endomorphismes d’espaces
projectifs). Dans le cadre algébrique (fractions rationnelles et endomorphismes d’espaces projec-
tifs), on dispose d’outils de théorie ergodique et du pluripotentiel, qui permettent notamment de
définir et d’étudier une stratification du lieu de bifurcation.
Enfin, la troisième partie porte sur la construction et l’étude de composantes de Fatou errantes pour
certaines classes d’endomorphismes du plan projectif complexe (produits fibrés), ainsi que sur la
dynamique semi-locale près d’un point fixe tangent à l’identité.
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Wandering domains and bifurcations in holomorphic dynamics

Abstract :

This HDR manuscript compiles the work done since my arrival in Orléans in 2016. It con-
sists of three parts: the first is devoted to a synthetic overview of finite type maps, which were
introduced by Epstein. The theory of Fatou/Julia is developed within this framework, followed by a
study of quasiconformal deformations of dynamics, based on tools from Teichmüller theory.
The second part focuses on bifurcations of families of holomorphic dynamical systems, in different
settings: in one complex variable (rational maps on the Riemann sphere, transcendental meromor-
phic maps, or finite type maps) or in higher dimension (endomorphisms of projective spaces). In the
algebraic setting (rational maps and endomorphisms of projective spaces), there are tools from er-
godic theory and pluripotential theory, which notably allow the definition and study of a stratification
of the bifurcation locus.
Finally, the third part deals with the construction and study of wandering Fatou components for
certain classes of endomorphisms of the complex projective plane (skew-products), as well as on
the semi-local dynamics near a fixed point tangent to the identity.
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