Matthieu ASTORG

Intérêts mathématiques

Dynamique complexe, théorie de Teichmüller

Mots clés : Analyse quasiconforme, espaces de Teichmüller, implosion parabolique, domaines errants, bifurcations


- Astorg, M., & Bianchi, F. (2022). Higher bifurcations for polynomial skew-products. Journal of Modern Dynamics, vol. 18, n.3 pdf

- Astorg, M., Boc Thaler, L., & Peters, H. (2019). Wandering domains arising from Lavaurs maps with Siegel disks. Accepté à Analysis & PDE. pdf

- Astorg, M. (2016). Summability condition and rigidity for finite type maps. Accepté à Annali della Scuola Normale Superiore di Pisa. pdf

- Astorg, M., Gauthier, T., Mihalache, N., & Vigny, G. (2019). Collet, Eckmann and the bifurcation measure. Inventiones mathematicae, 217(3), 749-797. pdf

- Astorg, M. (2018). Dynamics of post-critically finite maps in higher dimension. Ergodic Theory and Dynamical Systems, 1-20. pdf

- Astorg, M. (2017). The Teichmüller space of a rational map immerses into moduli space. Advances in Mathematics, 313, 991-1023. pdf

- Astorg, M., Buff, X., Dujardin, R., Peters, H., & Raissy, J. (2016). A two-dimensional polynomial mapping with a wandering Fatou component. Annals of mathematics, 263-313. arXiv


- Astorg, M., Boc Thaler, L. (2022). Dynamics of skew-products tangent to the identity. pdf

- Astorg, M., Benini A.M., & Fagella N. (2021). Bifurcation loci of families of finite type meromorphic maps. pdf

- Astorg, M. & Bianchi, F. (2018). Hyperbolicity and bifurcations in holomorphic families of polynomial skew-products. pdf


Théorie de Teichmüller dynamique infinitésimale et domaines errants