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JORDAN BLOCK LINEAR STRUCTURE FOR A
1D VLASOV EQUATION

The article presents a formal study of the structure
of the linearized operator at a critical non homogeneous
stationary state with 0 eigenvalue, for a degenerate non
classical Hamiltonian system. We specify here this com-
putation for a generic 1D Vlasov equation, with bounded
spatial domain with periodic boundary condition, taken
to be [0, 2π) without loss of generality.

In position-momentum (q, p) variables, Vlasov equa-
tion for the phase space density F (q, p, t) reads

∂tF + p∂qF − ∂qV ∂pF = 0 (1)

with V [F ](q) =

∫∫
v(q − q′)F (q′, p′)dq′dp′, (2)

where v(q) is the two-body interaction potential. Thanks
to the periodic boundary condition, spatial Fourier series
are a natural expansion for the interaction potential and
the density; in an unbounded setting, one would have to
use other expansions. The 2-body potential is

v(q) =
∑
k∈Z

vke
ikq

and must be even from the law of action and reaction.
We can take v0 = 0 without loss of generality. We are
interested in functions whose total integral over phase
space is 1. This implies in particular that we will con-
sider perturbations with vanishing integral. We consider
a stationary state

Fstat(q, p) = F0(h(q, p)) , h(q, p) =
p2

2
+ V [Fstat](q).

The one particle Hamiltonian h is integrable, hence we
can introduce the associated angle-action variables (θ, J).
h is a function of J , so that we can write the stationary
state under the form F0(J). Writing F = F0 + f(θ, J, t),
the linearized evolution equation for f is, from (1):

∂tf = L · f , L · f = −Ω0(J)∂θf + F ′0(J)∂θV [f ], (3)

where Ω0(J) is the frequency of a trajectory with action
J , in the potential created by the stationary distribution.
We want to study the spectral structure of L when the
stationary state F0 is critical; hence we study the eigen-
value problem with eigenvalue 0. For a function g defined
on the phase space, introducing the Fourier transform
with respect to the angle variable is natural:

g(θ, J) =
∑
α∈Z

gα(J)eiαθ. (4)

We will need to switch between position-momentum and
angle-action coordinates; we introduce for this purpose
the functions

ck,α(J) =
1

2π

∫ 2π

0

eikq(θ,J)e−iαθdθ. (5)

Before entering into the details of the computations, we
give two remarks. The first remark is on the (θ, J) nota-
tion. The phase space may be divided into several parts
in each of which the angle-action variables are defined
separately. For instance, in the case v(q) = − cos q and
when the mean-field potential does not vanish, the phase
space has a separatrix and is divided into three parts
[1]: inside the separatrix, the upper side of separatrix,
and the lower side of separatrix. The above expressions
such as (4) or (5) then use the notation (θ, J) as a conve-
nient short-hand for this more complicated structure. To
give a precise example, in a one-dimensional Hamiltonian
system, we have to understand the definition (5) of the
function ck,α as follows: a periodic orbit ϕ corresponds
to an iso-J line, and ck,α is actually a function of this
orbit

ck,α(ϕ) =
Ω(ϕ)

2π

∫ T (ϕ)

0

eikϕq(t)e−iαΩ(ϕ)tdt, (6)

where T (ϕ) and Ω(ϕ) are the period and the frequency
of the orbit ϕ = (ϕq, ϕp), ϕq(t), ϕp(t) are the spatial and
momentum coordinates along the orbit ϕ and we assumed
Ω(ϕ) 6= 0.
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The second remark is on the symmetry of ck,α(J),
which is revealed by considering the time-reversed orbit
R[ϕ](t) = (ϕq(−t),−ϕp(−t)). The time-reversed orbit
exists thanks to the symmetry h(q,−p) = h(q, p). Be-
tween the two orbits ϕ and R[ϕ], we have the symmetry

ck,α(R[ϕ]) = ck,−α(ϕ). (7)

Later we will find integrations over the action J . This in-
tegration has to be understood as an integration over the
orbits foliating the phase space. Changing the foliation
from {ϕ} to {R[ϕ]}, roughly speaking, the symmetry (7)
permits to replace ck,α with ck,−α.

Computation of the eigenvector and generalized
eigenvectors

We rewrite (3) using the Fourier transform with re-
spect to θ:

(L · f)α = −iαΩ0(J)fα(J) + iαF ′0
∑
k∈Z

vkYk[f ]ck,α(J),

(8)
where

Yk[f ](J) = 2π
∑
α∈Z

∫
fα(J)c∗k,α(J)dJ. (9)

We assume that F0 is a critical stationary state: it has
a bifurcating 0 eigenvalue. We look for the associated
eigenvector ψ(0) which induces the generalized eigenvec-
tors ψ(n) and makes a Jordan block as large as possi-
ble. To obtain a solution to L · ψ(m+1) = ψ(m), for

α = 0, ψ
(m)
α=0 = 0 is necessary because we always have(

L · ψ(m+1)
)
α=0

= 0.

The first step is to find ψ(0), solving L · ψ(0) = 0.
From (8), we see that the equation for α = 0 is always

satisfied; hence we may choose any function for ψ
(0)
α=0(J).

As commented above, we take ψ
(0)
α=0(J) = 0 in order to be

able to find a first generalized eigenvector later. Notice

that this choice of ψ
(0)
0 corresponds to perturbations that

do not modify the values of the Casimir invariants at
linear order. For α 6= 0, we have:

ψ(0)
α (J) =

F ′0(J)

Ω0(J)

∑
l∈Z

vlYl[ψ
(0)]cl,α(J). (10)

The weak resonance hypothesis ensures that the above
expression is regular (or at least integrable): there are no
or few particles with 0 frequency (Ω−1

0 may have a loga-
rithmic divergence; this indeed happens whenever there
is a separatrix trajectory, and may be called “weak reso-
nance”). Both sides of (10) contain ψ(0), and therefore,
Yl[ψ

(0)] must be determined self-consistently. Inserting

(10) in (9) with the choice of ψ
(0)
0 = 0, we obtain∑

l∈Z
ΛklYl[ψ

(0)] = 0 (11)

with

Λkl = δkl − 2πvl
∑
α∈R

∫
F ′0(J)

Ω0(J)
c∗k,α(J)cl,α(J)dJ. (12)

The condition to obtain a non trivial solution eigenvector
is Ker(Λ) non trivial, which is consistent with the criti-
cality assumption of F0. The generic case is that Ker(Λ)
is of dimension 1, which we now assume. We call (yk) an
element of this kernel. Then we have for any α 6= 0:

ψ(0)
α (J) =

F ′0(J)

Ω0(J)

∑
l∈Z

vlylcl,α(J). (13)

We now look for a generalized eigenvector ψ(1), solving
L·ψ(1) = ψ(0). From (8), we see that the equation for α =

0 is again always satisfied thanks to the choice ψ
(0)
α=0 = 0,

and ψ
(1)
α=0 is free again. We choose again ψ

(1)
α=0 = 0 to

search a second generalized eigenvector. For α 6= 0, we
have:

ψ(1)
α (J) =

F ′0
Ω0

∑
l∈Z

vlYl[ψ
(1)]cl,α−

F ′0
iαΩ2

0

∑
l∈Z

vlylcl,α. (14)

Inserting (14) into (9), we obtain∑
l∈Z

ΛklYl[ψ
(1)] = −2π

∑
l∈Z

vlyl
∑
α6=0

∫
F ′0
iαΩ2

0

c∗k,αcl,αdJ.

(15)
Let us remember the remark after (7). In the right-
hand-side, changing the orbit ϕ to R[ϕ] does not change
F ′0(J)/(iαΩ2

0) but c∗k,αcl,α becomes c∗k,−αcl,−α. This im-
plies that the sum over α 6= 0 vanishes for any l ∈ Z. A
solution Yl[ψ

(1)] must be, therefore, chosen from Ker(Λ)
and the first term of (14) is proportional to ψ(0). There-
fore, we may choose Yl[ψ

(1)] ≡ 0 and, for α 6= 0,

ψ(1)
α (J) =

F ′0(J)

−iαΩ0(J)2

∑
l∈Z

vlylcl,α(J). (16)

We now look for a further generalized eigenvector ψ(2),
solving L·ψ(2) = ψ(1). From (8), we see that the equation

for α = 0 is again always satisfied, and ψ
(2)
α=0 is free again.

We will choose ψ
(2)
α=0 later. For α 6= 0, we have:

ψ(2)
α (J) =

F ′0
Ω0

∑
l∈Z

vlYl[ψ
(2)]cl,α +

F ′0
(−iα)2Ω3

0

∑
l∈Z

vlylcl,α.

(17)
The self-consistent equation for Yl[ψ

(2)] is∑
l∈Z

ΛklYl[ψ
(2)] = 2π

∑
l∈Z

vlyl
∑
α6=0

∫
F ′0

(iα)2Ω3
0

c∗k,αcl,αdJ

+ 2π

∫
ψ

(2)
0 c∗k,0dJ.

(18)
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If we choose ψ
(2)
0 = 0, the right-hand-side of (18) is non

zero and the linear equation (18) does not have a solution
in general. However, it is possible to choose appropriately

the function Ψ
(2)
0 (J) in order to ensure that the sum in

the right-hand-side vanishes, so that a solution exists,
we can take ∀k, Yk[ψ(2)] = 0. This only requires that the
ck,0 form a free family of functions. We have thus built
a second generalized eigenvector for the eigenvalue 0.

We can now summarize:

ψ(0) =

(
0

F ′0(J)
Ω0(J)

∑
l∈Z vlylcl,α(J)

)
(19)

ψ(1) =

(
0

F ′0(J)

−iαΩ2
0(J)

∑
l∈Z vlylcl,α(J)

)
(20)

ψ(2) =

(
ψ

(2)
0 (J)

F ′0(J)

(iα)2Ω3
0(J)

∑
l∈Z vlylcl,α(J)

)
, (21)

where, in each eigenvector, the upper line represents the
element for α = 0, and the lower one contains the ex-

pression for α 6= 0. Crucially, ψ
(2)
0 6= 0, which has two

consequences:

• The equation L ·ψ(3) = ψ(2) has no solution, hence
the characteristic space is only of dimension 3.

• ψ(2) has a non zero component in the direction that
modifies the values of the Casimir invariants, α = 0.

At the bifurcation point, the linearized operator L re-
stricted to the subspace Span{ψ(0), ψ(1), ψ(2)} is repre-
sented by the 3D Jordan block

L0 =

0 1 0
0 0 1
0 0 0

 (22)

as found in the main text on the basis of genericity ar-
guments.

Computations of the projections: adjoint problem

In order to concretely perform the non linear compu-
tations, we need to know the projection onto the gen-
eralized eigenspace we have just built. For this reason,
we study here in details the adjoint linear problem. The
adjoint linear operator of L with respect to the standard
scalar product is

L† · h = Ω0
∂h

∂θ
−
∑
k∈Z

vke
ikq

∫
∂h

∂θ
F ′0e
−ikq′dq′dp′.(23)

Making use of

eikq =
∑
α∈Z

ck,α(J)eiαθ,

this yields(
L† · h

)
α

= iαΩ0(J)hα(J)

−
∑
k∈Z

vkck,α(J)
∑
β∈Z

iβ

∫
hβ(J ′)F ′0(J ′)c∗k,β(J ′)dJ ′.

We first look for φ(0) such that L† · φ(0) = 0. For α = 0,
this imposes that for all k such that vk 6= 0∑

β∈Z
iβ

∫
φ

(0)
β (J ′)F ′0(J ′)c∗k,β(J ′)dJ ′ = 0.

Generically, this requires φ
(0)
α = 0, for all α 6= 0. Hence

φ(0)(θ, J) only has an α = 0 component, and φ
(0)
0 (J) is

undetermined at this stage. We now look for φ(1) such
that L† · φ(1) = φ(0). We obtain:

α = 0 : −
∑
k∈Z

vkZk[φ(1)]ck,0(J) = φ
(0)
0 (J) (24)

α 6= 0 : φ(1)
α (J) =

1

iαΩ0(J)

∑
k∈Z

vkZk[φ(1)]ck,α(J) (25)

with Zk[h] = 2π
∑
β∈Z

iβ

∫
hβ(J ′)F ′0(J ′)c∗k,β(J ′)dJ ′.(26)

Eq. (25) rewrites as

∀k ∈ Z ,
∑
l∈Z

ΛklZl[φ
(1)] = 0, (27)

where the Λ infinite matrix has been introduced in (12);
(27) then has a non trivial solution (yk). Then (24) fixes

the previously undetermined φ
(0)
0 (J). φ

(1)
0 (J) is a priori

undetermined. We now look for φ(2) such that L† ·φ(2) =
φ(1). We obtain:

α = 0 : −
∑
k∈Z

vkZk[φ(2)]ck,0(J) = φ
(1)
0 (J) (28)

α 6= 0 : φ(2)
α (J) =

1

iαΩ0(J)

∑
k∈Z

vkZk[φ(2)]ck,α(J)

+
1

[iαΩ0(J)]2

∑
k∈Z

vkykck,α(J) (29)

Using (7), (29) rewrites as

∀k ∈ Z ,
∑
l∈Z

ΛklZl[φ
(2)] = 0.

We may choose the solution ∀l , Zl[φ(2)] = 0. (28) then

implies that φ
(1)
0 = 0. We can now summarize the eigen-

vector and generalized eigenvectors of L†:

φ(0) =

( ∑
l∈Z vlylcl,0(J)

0

)
(30)

φ(1) =

(
0

1
iαΩ0(J)

∑
l∈Z vlylcl,α(J)

)
(31)

φ(2) =

(
φ

(2)
0 (J)

1
[iαΩ0(J)]2

∑
l∈Z vlylcl,α(J)

)
. (32)
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Furthermore, we want to impose that 〈φ(i), ψ(j)〉 = 0 if
i + j 6= 2, in order to ensure that the operator Π de-
fined below has the nice structure (34). This imposes

a constraint on φ
(2)
0 , which was fully undetermined un-

til now. The projection operator Π onto the subspace
Span{ψ(0), ψ(1), ψ(2)} is written as

Π · f =

2∑
j=0

ψ(j)〈φ(j), f〉, (33)

On the subspace Span{ψ(0), ψ(1), ψ(2)}, the representa-
tion matrix of Π, Πij = 〈φ(i), ψ(j)〉, has the structure

(Πij) =

0 0 ?
0 ? 0
? 0 0

 (34)

where the ? are non zero elements. The ? could be chosen
to be 1 with an appropriate normalization of the eigen-
vectors and eigenprojections.

Specification to the case v(q) = − cos q

The particular case v(q) = − cos q (HMF model) is
used as an example in the paper. We give here the ex-
pressions of the eigenvectors and eigenprojections in this
case, which are effectively used to derive an explicit re-
duced model and compare with the full dynamics. We
use then vk = 0 unless k = ±1, and v1 = v−1 = −1/2. It
will be useful to introduce the notation

Cα =
1

2π

∫
cos qe−iαθdθ =

1

2
(c1,α + c−1,α) (35)

M [g] =

∫
g(q, p) cos q dq dp = 2π

∑
α∈Z

∫
Cα(J)gα(J)dJ.

M [g] is the “magnetization” associated to the phase
space distribution g. Recalling (12), the only non trivial
part of the Λkl matrix is for l = ±1. Hence we have
to look at the block Λkl, k, l = ±1. Making use of the
symmetries of the trajectories in a cosine potential, we
conclude that the determinant of this 2 × 2 matrix van-
ishes if and only if

χ = 1 + 2π
∑
α6=0

∫
F ′0(J)

Ω0(J)
C2
α(J)dJ = 0 ; (36)

this convenient criterion makes the search for critical sta-
tionary states easier. Furthermore, under the criticality
condition ξ = 0, it turns out that Λ1,1+Λ1,−1 = 0. Hence
we can take y1 = y−1 = 2 as a representative of the ker-
nel of Λ (now considered as a 2 × 2 matrix). Then the

eigenvectors and generalized eigenvectors are

ψ(0) =

(
0

−F ′0(J)
Ω0(J)Cα(J)

)
(37)

ψ(1) =

(
0

F ′0(J)

iαΩ2
0(J)

Cα(J)

)
(38)

ψ(2) =

(
ψ

(2)
0 (J)

− F ′0(J)

(iα)2Ω3
0(J)

Cα(J)

)
. (39)

The normalization choice for y1, y−1 ensures that
M [ψ(0)] = 1. M [ψ(1)] = 0 because the α and −α terms
cancel each other. We impose M [ψ(2)] = 0 by choosing

ψ
(2)
0 (J) = a

(2)
0 C0(J) , with a

(2)
0 =

b2
2π
∫
C2

0 (J)dJ
,

where

b2 = 2π
∑
α∈Z∗

1

(iα)2

∫
F ′0(J)

Ω3
0(J)

C2
α(J)dJ.

The adjoint eigenvectors and generalized eigenvectors are

φ(0) =

(
C0(J)/b2

0

)
(40)

φ(1) =

(
0

−1
iαΩ0(J)Cα(J)/b2

)
(41)

φ(2) =

(
φ

(2)
0 (J)

− 1
[iαΩ0(J)]2Cα(J)/b2

)
, (42)

The normalization are chosen so that

∀k, l ∈ {0, 1, 2} , 〈φ(k), ψ(l)〉 = δk,2−l.

To enforce the normalization for k = 2, l = 0, we choose

φ
(2)
0 (J) = b

(2)
0 C0(J) ,

with

b
(2)
0 =

−2π
∑
α 6=0

1
α4

∫ F ′0(J)

Ω5
0(J)

C2
α(J)dJ

b22
.

These expressions can now be inserted into the non linear
computations of the next section, in order to obtain a
reduced model close to the bifurcation, with explicitly
computable coefficients.

NON LINEAR COMPUTATION AT QUADRATIC
ORDER FOR A 1D VLASOV EQUATION

Building on the results of the first section, we de-
rive now the reduced dynamics at quadratic order for
a generic 1D Vlasov equation. We perform here a stan-
dard central manifold computation, check that no diver-
gence appears (at variance with the resonant case [2, 3]),
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and remark in the end that the final equations have the
structure of a 3D bifurcating non canonical Hamiltonian
system, as was obtained in Eq. (8) of the main paper us-
ing genericity arguments. The present computations of
course provide explicit expressions for the coefficients of
the reduced Hamiltonian system, allowing for a quanti-
tative check of the theory.

Central manifold computation

The generalized eigenspace E0 = Span(ψ(0), ψ(1), ψ(2))
is invariant for the linearized dynamics. It is natural to
look for a 3D manifoldM, invariant for the whole dynam-
ics, tangent to E0 at the origin, which can be defined at
least locally, and represented as a graph over E0. Then,
any g ∈M can be written as

g(θ, J) =
2∑
i=0

Aiψ
(i) +H[A0, A1, A2](θ, J),

with H of order (A0, A1, A2)2. We consider now a fam-
ily of stationary states Fµ, with Fµ=0 the critical sta-
tionary state. We are interested in the regime µ > 0
and small, when there is a single small unstable eigen-
value. The linearized Vlasov operator then writes Lµ =
L0 + µδL+O(µ2), where Lµ was introduced in the pre-
vious section (denoted there for simplicity L), and E0

is the generalized eigenspace of L0 = Lµ=0. The O(µ2)
terms will be neglected. The Vlasov equation for the
perturbation g reads

∂tg = L0 · g + µδL · g +B(g, g)

where the nonlinear term is given by the quadratic oper-
ator

B(g, h) =
∂g

∂J

∂V [h]

∂θ
− ∂g

∂θ

∂V [h]

∂J
(43)

Expanding in angle Fourier series yields

B(g, h)α =
∑
k∈Z

vkYk[h]
∑
β

iβ
∂gα−β
∂J

ck,β

−
∑
k∈Z

vkYk[h]
∑
β

iβgβ
∂ck,α−β
∂J

and Yk[f ] has been defined in (9). At quadratic order,
we have to compute for 0 ≤ i, j, k ≤ 2:

Cijk = 〈φ(i), B(ψ(j), ψ(k))〉.
Using (19),(20),(21), (30),(31),(32), Yk[ψ(1)] = 0,
Yk[ψ(2)] = 0 and the symmetry (7), we can see
that many coefficients vanish. The non zero ones are
C100, C210, C120, C010. We also need to compute the con-
tributions of µδL. We have (emphasizing that all terms
have leading order µ):

µδL · g = −µ δΩ ∂θg − µ δF ′0 ∂θV [g].

We have a priori 9 terms to compute, 〈φ(i), δL · ψ(j)〉.
The non zero ones are

a = 〈φ(1), δL·ψ(0)〉 , b = 〈φ(2), δL·ψ(1)〉 , c = 〈φ(1), δL·ψ(2)〉 .

The final reduced equations are

Ȧ0 = (1 + µb)A1 + C210A0A1,

Ȧ1 = (1 + µc)A2 + µaA0 + C100A
2
0 + C120A0A2,

Ȧ2 = C010A0A1,

(44)

where the coefficients have to be computed numerically.

Hamiltonian form

We perform successively the near identity changes of
variables

X0 = A0 −
(

1

2
C210 +

1

6
C120

)
A2

0,

X1 = A1 −
1

3
C120A0A1,

X2 = A2 + C100A
2
0 −

1

3
C120A

2
1 +

2

3
C120A0A2,

(45)

then 
Y0 =

1

(1 + µc)(1 + µb)
X0

Y1 =
1

1 + µc
X1

Y2 = X2 + µaY0

(46)

and finally 
Z0 = Y0

Z1 = Y1

Z2 = Y2 −
1

2
rY 2

0 − µaY0

(47)

with r = C010 + 2C100. Truncating the equations of mo-
tion at quadratic order, and neglecting terms of order
µZ2 or µ2Z, they become

Ż0 = Z1

Ż1 = Z2 +
1

2
rZ2

0 + µaZ0

Ż2 = 0

(48)

This can be rewritten as a non canonical Hamiltonian
system, with degenerate Poisson operator:

Ż = J∇H(Z), (49a)

with

Z =

Z0

Z1

Z2

 , J =

 0 1 0
−1 0 0
0 0 0

 , (49b)



6

H(Z) =
1

2
Z2

1 −
1

6
rZ3

0 −
1

2
µaZ2

0 − Z0Z2. (49c)

Eq.(49c) is indeed of the same form as Eq.(8) in the
main paper.

EXPLICIT REDUCTION FOR THE HMF MODEL
AND NUMERICAL DETAILS

We provide here details on the simulations used in the
article. We compare the reduced dynamics Eq. (49) with
Direct Numerical Simulations (DNS) of the Vlasov-HMF
equation, Eqs. (1,2) of the main text, simulated via the
algorithm of Ref. [4] based on a second order time-split
algorithm with a local modified cubic-spline interpola-
tion.

In the DNS simulations the phase space (q, p) is divided
into Nq × Np grid elements with Nq = Np = 4096. We
have q ∈ [−π, π] and cut off the velocity region to pmax =
−pmin = 2 (which is enough to well capture the whole F
density). It corresponds to ∆q = 2π/Nq ' 1.5 · 10−3

and ∆p = 2pmax/Np ' 9.8 · 10−4. The time step is
∆t = 5 · 10−3.

We choose as a family Fµ of stationary states the non
homogeneous “Fermi-Dirac like” distributions

Fµ(H) = N−1 1

1 + eβ[H−(κ−µ)]
, (50)

and fix β = 40, κ = 0.6693. Then µ = 0 corresponds
to a bifurcation point, with a real positive eigenvalue
appearing for µ > 0 [7]. The critical stationary state
at µ = µc = 0 has magnetization M0 = 0.3361. In the
main text, we disturb a slightly unstable stationary state
with µ = 1.44 · 10−4, Mµ = 0.3360 (it has an associated
unstable eigenvalue λ = 8.62 · 10−3) as

F (t = 0)− Fµ = FT = ε cos qe−βT p
2

, (51)

with different perturbations ε and βT = 10. We then plot
the time evolution of the magnetization M(t)−Mµ (see
Fig. 2 of the main text) and compare it to the amplitude
Z0(t) of the reduced model, Eq. (49), which is obtained
analytically in the next section Eq. (54).

In the following we identify three challenges making
the comparison between the reduced model (3D) Eq. (49)
and the DNS difficult.

(I) Numerical error of DNS: The choices of the grid
elements number Nq, Np, maximum velocity pmax and
time step ∆t are crucial. Indeed, a large number of grid
elements is needed to resolve the fine scales in the region
of interest. In that sense a small pmax is good but at the
same time pmax has to be large enough to capture the tails
of the density F (q, p, t) which might affect the dynamics.
In addition, all the numerical parameters must respect
some Courant-Friedrichs-Lewy stability condition for the
numerical scheme to be stable. In order to know which

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

t

M
(t
)
−

M
µ

DNS → 1024× 1024

DNS → 4096× 4096
DNS → 2048× 2048

3D

FIG. 1. Magnetization as a function of time: comparison at
ε = 1 · 10−4 between direct numerical simulations (DNS) of
Eq. (1) for different phase space grid number Nq × Np and
the analytic theory (3D) of Eq.(49).

parameters gives a result closer to the “truth” we rely on
the computation of some conservation law. Namely the
energy conservation errE = (E(t) − E(0))/E(0) and the
norm conservation errN = (N (t) − N (0))/N (0) where
E(t) is the energy associated with the density F (q, p, t)
and N (t) the norm of F (t). The Vlasov equation should
exactly conserves these quantities, hence we compute and
find the parameters that minimize these errors. Typically
the errors at t = 200 are errN ∼ 10−13 and errE ∼ 10−9.

This way, we can verify that fewer grid elements in-
creases the numerical damping/shifting (all other param-
eters remaining constant) caused by the numerical solver
(and well known in Vlasov simulations [5]). We illustrate
the phenomenon, in Fig. 1, where we clearly see that
higher Nq, Np diminishes the effect of numerical damp-
ing and shifting. The DNS seem to converge toward the
reduced model with higher grid number Nq, Np.

(II) Initial Conditions: In order to have a quantitative
comparison between DNS and reduced model, we need to
compute the initial condition (Z0(0), Z1(0), Z2(0)) corre-
sponding to the perturbation FT into the DNS. They can
be explicitly computed by the following scalar products
A0(t = 0) = 〈φ(0), FT 〉, A1(t = 0) = 〈φ(1), FT 〉 = 0 (by
symmetry of FT ) and A2(t = 0) = 〈φ(2), FT 〉. Using that
Z(t = 0) = A(t = 0) + O(quadratic) ' A(t = 0), we
obtain the initial condition for the model Eq. (49). One
problem is that the actual initial perturbation of the DNS
is discretized onto the phase space grid which can affect
the effective initial values. Ideally we could choose an
initial perturbation along the eigenvectors ψ(i), however,
they have singular Cα(J) contributions at the separatrix
which is in practice hard to reproduce at the DNS grid
level. Hence, we focus on a smooth perturbation FT , as
in Eq. (51).

(III) Asymptotic validity: The reduced model Eq. (49)
is valid close to the bifurcation when µ → 0 and when
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the amplitude of the vector Z(t) remains small (so that
neglecting higher orders is valid). Hence, the steady state
F 0
µ determined by (µ,Mµ) must stay close to the bifur-

cation point (0,M0). Moreover, the initial perturbation
FT from Fµ must also be small. Since M [F ](t) −Mµ =
Z0(t)+O(quadratic), Z0(t) gives directly the magnetiza-
tion only in the small amplitude regime.

Keeping in mind these potential issues, one can from
Eq. (50) compute the coefficients in Eq. (44) associated
with the linear term at (µ, Mµ): µa ' 7.44 · 10−5, as
well as the ones involved in the quadratic terms C010 =
−0.409, C100 ' −0.181. The initial conditions are found
to be Z0(0) ' 1.42ε, Z1(0) = 0, Z0(0) ' 0.445ε. We see
that changing ε simultaneously affects Z0(0) and Z2(0).
Note that all coefficients and initial condition are explic-
itly computed with their derived expression and thus we
directly compare without any fitting parameters the DNS
and the reduced dynamics.

ANALYTIC SOLUTION OF THE REDUCED
DYNAMICS

We derive the explicit solution Z0(t) for the reduced
dynamics Eq. (48) in terms of the Weierstrass elliptic
function [8, 9]. First using that Z2(t) = Z2(0)) is con-
stant and Ż0 = Z1, we get

Z̈0 = Z2 + µaZ0 +
1

2
rZ2

0 ,

which, by simple manipulation and variable changes T =√
−r/12t and y = −(Z0 + µa

r ), can be cast into(
dy

dT

)2

(T ) = 4y3(T )− g2y(T )− g3, (52)

with

g2 =
12

r2

(
(µa)2 − 2rZ2

)
(53a)

g3 =
12

r2

((µa
r

+ Z0(0)
) (

(µa)2 − 2rZ2

)
− r2

3

(µa
r

+ Z0(0)
)3

+ rZ1(0)

)
. (53b)

Eq. (52) is sometimes used as a definition for the doubly-
periodic Weierstrass elliptic ℘−function and has for so-
lution y(T ) = ℘(T − T0; g2, g3) where T0 is determined
by the initial conditions [8, 9]. Hence,

Z0(t) = −
(
℘

(
2

√
3

−r t− T0; g2, g3

)
+
µa

r

)
. (54)

In our case Z1(0) = 0, g2 � g3 and r < 0, one can
show that T0 = ω1 + ω2 where ω1, ω2 are the two half
periods of the ℘−function associated with g2 and g3.

When g2 > 0 (corresponding for our numerical experi-
ment to ε > 0) the oscillation period of Z0(t) is asymp-

totically τ = 2
√
−12/rω1 ∼ 31/4

√
π Γ(1/4)

Γ(3/4)
1

((µa)2−2rZ2)1/4

(in this case ω2 is purely imaginary and has no clear
physical meaning). Moreover in that case (Z0)max ∼
−(
√

3((µa)2 − rZ2) + µa)/r. When Z2 � (µ)2, e.g.
when the perturbation is taken exactly along Ψ0 then
Z2 = 0, we have (Z0)max ∝ µ so that (Z0)max ∝ λ2.
When g2 < 0 (i.e. ε < 0), the function ℘(T −T0) despite
still being periodic encounters a pole in finite time and
thus no longer has physical meaning.

OBTENTION OF THE NORMAL FORM FOR
THE REDUCED HAMILTONIAN

The procedure to simplify a Hamiltonian in order to
obtain a normal form is classical. For self consistency,
we give here more details on how to use it to obtain
Hamiltonian (10) in the main text.

We consider the normal form of the noncanonical
Hamiltonian system

du

dt
= J∇uH(u, µ), u =

u0

u1

u2

 , (55)

around the origin u = 0, which is assumed to be station-
ary. The matrix J is defined in (49b). From the station-
arity of the origin and the use of the Casimir invariants
u2, we may assume ∇uH(0, 0) = 0.

The idea to obtain the normal form is to simplify
H(u, µ) by using the coordinate transform

u = T (U), (56)

which gives the transformed Hamiltonian

H̄(U, µ) := H(T (U), µ). (57)

To keep the Poisson structure expressed by the J matrix,
we introduce the constraint

[DT (U)]−1J [DT (U)]−T = J (58)

for the transform T , where DT (U) is the Jacobian matrix
of T (U) and the superscript −T represents the transpo-
sition of the inverse matrix. Under the constraint (58),
the transformed equations of motion is written as

dU

dt
= J∇U H̄(U, µ), U =

U0

U1

U2

 . (59)

We compute the normal form H̄(U, µ) up to the cubic
order of U . For this purpose, we expand the transform
as

T (U) = U + T2(U) +O(|U |2), (60)
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the original Hamiltonian as

H(u, µ) = H2(u, µ) +H3(u, µ) +O(|u|4) (61)

from ∇uH(0, 0) = 0, and the transformed Hamiltonian
as

H̄(U, µ) = H̄2(U, µ) + H̄3(U, µ) +O(|U |4). (62)

Substituting (60) into (61), we have

H̄2(U, µ) = H2(U, µ) (63)

and

H̄3(U, µ) = H3(U, µ) +∇uH2(U, µ) · T2(U). (64)

Our job is to simplify H̄3(U, µ) for a given H2(u, µ) by
using the transform T2 under the constraint of

(DT2)J − [(DT2)J ]T = O3, (65)

which comes from (58) and O3 is the zero matrix of size 3.
We first determine the explicit form of T2(U). The

general form of T2(U) is written as

T2(U) =



a1U
2
0 + a2U

2
1 + a3U

2
2 + a4U0U1 + a5U1U2

+ a6U2U0

b1U
2
0 + b2U

2
1 + b3U

2
2 + b4U0U1 + b5U1U2

+ b6U2U0

c1U
2
0 + c2U

2
1 + c3U

2
2 + c4U0U1 + c5U1U2

+ c6U2U0


(66)

where aj , bj and cj are real parameters. The constraint
(65) requires

(2a1 + b4)U0 + (a4 + 2b2)U1 + (a6 + b5)U2 = 0

2c1U0 + c4U1 + c6U2 = 0

2c2U1 + c4U0 + c5U2 = 0

(67)

and therefore,

T2(U) =


a1U

2
0 + a2U

2
1 + a3U

2
2 + a4U0U1 + a5U1U2

+ a6U2U0

b1U
2
0 + b2U

2
1 + b3U

2
2 + b4U0U1 + b5U1U2

+ b6U2U0

c3U
2
2


(68)

with

b2 = −a4

2
, b4 = −2a1, b5 = −a6. (69)

Now, a1, · · · , a6, b1, b3, b6 and c3 are the free parameters.
The simplification of H̄3(U, µ), (64), is realized by elimi-
nating terms of H3(U, µ) by using these free parameters
included in ∇uH2(U, µ) · T2(U).

The next step is to determine the quadratic Hamilto-
nian H2(u, µ). We set

H2(u, µ) =
u2

1 − µu2
0

2
− u0u2, (70)

which gives the linear part as

J∇uH2(u, µ) =

0 1 0
µ 0 1
0 0 0

u0

u1

u2

 . (71)

Thus, the choice of (70) permits to have the 3D Jordan
block at µ = 0, which is predicted in the general setting,
and to change stability of the origin at µ = 0 (unstable
for µ < 0 and stable for µ > 0).

Before computing the normal form, we remark that
|µ| is small and the dominant part of H̄3(U, µ) is given
by H̄(U, 0). Therefore, we use ∇uH2(U, 0) · T2(U) to
eliminate terms of H3(U, 0). The quadratic Hamiltonian
H2(u, µ), (70), with the transform T2(U), (68), give

∇uH2(U, 0) · T2(U)

=

(−a4

2

)
U3

1 + (−a3)U3
2 + (−a4 + b6)U0U1U2

+ b1U
2
0U1 − a1(U2

0U2 + 2U2
1U0) + (−a2 − a6)U2

1U2

+ (−a6 − c3)U2
2U0 + (−a5 + b3)U2

2U1.

(72)

Thanks to the 10 free parameters, we can eliminate al-
most all terms of H3(U, 0), but U3

0 can not be eliminated.
In addition, one of the two terms U2

0U2 or U2
1U0 survives

since they share the free parameter a1.
Finally, considering the scaling of U in the equations

of motion (59) with the scaling of t, we have the normal
form of H̄ up to the cubic order as

H̄norm =
U2

1 − µU2
0

2
− U0U2 + U3

0 + rU2
0U2 (73)

or

H̄norm =
U2

1 − µU2
0

2
− U0U2 + U3

0 + rU2
1U0, (74)

where r is the undetermined parameter. In the system
(73), we have two different stationary points if and only
if

(µ− 2rU2)2 + 12U2 > 0. (75)

Introducing the cubic order coordinate transform
T3(U) and using the free parameters in T2(U) and T3(U),
we find the terms of U4

0 and U2
0U

2
1 in the quartic order

normal form, H̄4. Depending on their signs, these terms
may confine orbits in a bounded region. Notice however
that i) a full reduction of the dynamics up to quartic or-
der would require to compute the curvature of the central
manifold, whereas considering its tangent space is enough
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up to cubic order; ii) while large amplitude periodic tra-
jectories appearing at quartic order are reminiscent of
the numerical results (see inset of Fig.2 of the article),
they go beyond the perturbative regime, so that we can-
not expect a quantitive agreement between reduced and
exact dynamics.
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