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Abstract: We are interested in the existence and properties of limits of invariant
measures for Brownian diffusions started at distance ϵ from the boundary of a given
domain and stopped when they hit back this boundary, when ϵ goes to 0.

1 Introduction

The motivation of the following work has its origin in experimental physics. Some long

molecules are solvable in a liquid (for instance imogolite in water or DNA in lithium) and

the molecules forming the liquid show an intermittent dynamics, alternating diffusion in

the bulb and adsorption on the long molecules. For the physicist’s point of view, it is very

important to have as precise as possible knowledge of the statistics of these brownian flights.

In [GKL+06] a connection is established between the statistics of the long flight lengths

and the geometry of the long molecules (more precisely their Minkowski dimension). This

connection has been made rigorous in [BLZ11],[BZ10].

Nevertheless, the initial distribution of the starting point for these statistics is particularly

important.The aim of this paper is to describe the stable starting distributions. We will show

that the uniform distributionis stationnary with respect to Brownian flights and therefore

the associated statistics are relevant.

To prove our theorems we will suitably discretize Brownian motion, following [BL96] and

[LS84] and apply an adapted version of the Perron-Frobenius theorem to a finite Markov

chain.

2 Some Backgound

In the sequel, Ω will always denote a domain in Rd with compact boundary. The crucial tool

we need to use is the notion of Whintey cubes. We thus recall the

Proposition 2.1 (cf. [Gra08], p. 463) Given any non-empty open proper subset Ω of Rd,

there exists a family W of closed dyadic cubes {Qj}j such that

�

⋃
j Qj = Ω and the cubes Qj’s have disjoint interiors
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�

√
dℓ(Qj) ≤ dist(Qj, ∂Ω) ≤ 4

√
dℓ(Qj)

� if Qj and Qk touch then ℓ(Qj) ≤ 4ℓ(Qk)

� for a given Whitney cube Qj there are at most 12d Whitney cubes Qk’s that touch Qj.

In this statement, ℓ(Q) stands for the side-length of the cube Q and, for λ > 0, λQ is the

cube of the same center and of sidelength λℓ(Q). For k ∈ Z, we denote by Qk, the collection

of Whitney cubes Qj with ℓ(Qj) = 2k. We also recall the definition of the Minkowski sausage:

for r > 0,

Mr = {x ∈ Ω ; dist(x, ∂Ω) ≤ r}

and

Γr = {x ∈ Ω ; dist(x, ∂Ω) = r}

We then define Sr as the collection of Whitney cubes intersecting Γr. Notice that Sr is

a finite set.

Definition 2.1 Let ε > 0. We will call Brownian flight the random process Ft, t ≥ 0

consisting in picking at random with equiprobability one of the dyadic Whitney cubes of Sε

and starting from the center of the cube a Brownian motion gt killed once it reaches ∂Ω. We

denote by τΩ = inf{t ; Ft /∈ Ω} the lifetime of this process.

Definition 2.2 The Minkowski dimension of K is

dM(K) = lim sup
j→∞

log2(Nj)

j

We can define similarly the Whitney dimension of ∂Ω as

dW = dW (∂Ω) = lim sup
j→∞

log2(Wj)

j
, (1)

where Wj is the number of elements of Qj.

Under very mild conditions (see [Tri83], [Bis96], [JK82], [BLZ11]) these two dimensions

coincide. If the boundary of Ω has some self similarity we can moreover say that there is a

constant c > 0 such that
1

c
εdM ≤ #Sε ≤ cεdM , (2)

for all ε ≤ RΩ, where dM = dM(∂Ω).

We also suppose that the domain Ω satisfies so-called ∆-regularity condition (see also

[JW88], [Anc86], [HK93]): there exists L > 0 such that for all x ∈ Ω, if dx = dist(x, ∂Ω) <

RΩ then

ωx
B(x,2dx)∩Ω (∂Ω) ≥ L, (3)
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where ωx
B(x,2dx)∩Ω is the distribution law of the hitting point of Brownian motion starting at

x and killed when reaching the boundary of B(x, 2dx) ∩ Ω. This is a very mild condition

(satisfied, for instance, by all domains in R2 with non-trivial connected boundary) that

appears frequently in related literature in various forms (for instance “uniform capacity

condition” or Hardy inequality).

The following result has been proven in [BLZ11]:

Theorem 2.3 Let ε < r < RΩ. The probability that the hitting point of F is at distance

greater than r from the starting point x is comparable to

�
#Sr

#Sε

�dM (r
ε

)d−2

(4)

Notice that we do not assume (2) for this theorem. If we do, we have

�
#Sr

#Sε

�dM (r
ε

)d−2

∼
(r
ε

)dM−(d−2)

(5)

3 Discretization of Brownian Motion

We will modify the continuous diffusion process into a discrete one, with the same potential

theory. In this section, Ω is a Green domain, Bt stands for Brownian motion in Ω, τΩ is the

exit time (for brownian motion) of Ω, ie. the hitting time of ∂Ω.

If G denotes the Green function of the domain Ω ⊂ Rd and Q is a cube in Ω, recall that

there exist a constant C such that for all y ∈ Q

log
ℓ(Q)

|xQ − y|
≤ G(xQ, y) ≤ log

Cℓ(Q)

|xQ − y|
,

C depending on Ω ⊂ R2 and

1

||xQ − y||d−2
− 1

ℓ(Q)d−2
≤ G(x, y) ≤ 1

||xQ − y||d−2
,

for domains Ω ⊂ Rd, d ≥ 3. Moreover,

log
ℓ(Q)

2|xQ − y|
≤ GQ(xQ, y) ≤ log

2ℓ(Q)

|xQ − y|
,

and
1

||xQ − y||d−2
− C

ℓ(Q)d−2
≤ GQ(x, y) ≤

1

||xQ − y||d−2
−

√
d

ℓ(Q)d−2
,

for d ≥ 3, GQ being the Green function of the cube Q.

We denote by N be the collection of the centers of cubes in W and we consider the

complete graph G associated. Let xQ ∈ N be the center of a Whitney cube Q ∈ W .
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3.1 Planar domains

We consider separately planar domains not (only) because of the recurrence of brownian

motion in R2 but in order to better explain the ideas of the proof.

Let FQ(η) = {y ∈ Ω ; GQ(xQ, y) ≥ η}. Clearly, FQ(η) is a compact connected set, such

that xQ ∈ FQ. Furthermore, by the preceeding observations and the definition of Whitney

cubes we can deduce that, for η big enough, FQ = FQ(η) ⊂ Q̊ and that there is a constant

c0 < 1 not depending on Q such that c0Q ⊂ F̊Q, where cQ will denote the (contracted) cube

centered at xQ but of sidelength ℓ(cQ) = cℓ(Q).

The triplet (N ,F,W), where F = {FQ ; Q ∈ W}, and W = {Q̊ ; Q ∈ W} is a balanced

Lyons-Sullivan data, defined in [BL96]. For convienience of the reader we remind hereby the

principal facts of this paper.

1. The collection F is recurrent for Brownian motion in Ω, ie.

Px(∃t < τΩ ; Bt ∈
⋃
F

FQ) = 1 for all x ∈ Ω.

2. xQ ∈ FQ ⊂ Q̊, for all Q ∈ W ,

3. FQ ∩Q′ = ∅, for all Q ̸= Q′ ∈ W ,

4. there exists a constant c such that for all Q ∈ W , any positive harmonic function h in

Q̊ and all z ∈ FQ we have
1

c
h(xQ) ≤ h(z) ≤ ch(xQ)

Following [BL96] we define a Markov chain X on N : for y ∈ F =
⋃

F FQ denote by

ϕ(y) ∈ N the center of the unique cube Q = Qy ∈ W containing y. For a path ξ in the space

of brownian paths Ξ starting at y ∈ F , let S0(ξ) be the exit time of ξ from Qy. Recursively,

we define the stopping times Rn and Sn in the following way

� Rn(ξ) = inf{t > Sn−1(ξ) ; ξ(t) ∈ F}

� Sn(ξ) = inf{t > Rn−1(ξ) ; ξ(t) /∈ Q̊ξ(Rn−1(ξ))}.

Recall that, if V is an open set and for any x ∈ V we denote by ωx
V the harmonic measure

of V at x. By our hypothesis, there exist C such that for all Q ∈ W and all y ∈ FQ,

1

C
dω

xQ

Q̊
≤ dωy

Q̊
≤ Cdωx

Q̊
.

Let now

κn(ξ) =
1

C

dω
ϕ(ξ(Rn(ξ)))

Q̊ϕ(ξ(Rn(ξ)))
(ξ(Sn(ξ)))

dω
ξ(Rn(ξ))

Q̊ϕ(ξ(Rn(ξ)))
(ξ(Sn(ξ)))

≤ 1
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Using these stopping times Ballmann and Ledrappier consider the probability space

(Ξ̃ = Ξ× [0, 1]N, P̃y = Py ⊗ λN),

λ being the Lebesgue measure in [0, 1]. For (ξ, α) ∈ Ξ̃ define recursively

� N0(ξ, α) = 0

� Nk(ξ, α) = inf{n > Nk−1(ξ, α) ; αn < κn(ξ)}

One can then define a Markov chain (discrete random walk) Xi on N the centers of cubes

in W with time homogeneous transition probabilities

pQ,Q′ = P̃xQ
(ξ(N1(ξ, α)) = xQ′).

Let g be the Green function of this Markov chain on N . The Markov chain is hence

irreducible and aperiodic.

In [BL96, LS84] it is shown that for all x = xQ ∈ N and all y ̸= x

g(y, x) =
1

C

∑
n∈N

Py(ξ(Rn(ξ)) ∈ FQ) (6)

and also that

G(y, x) =
∑
n∈N

∫
FQ

GQ̊(z, x)Py(ξ(Rn(ξ)) ∈ dz) (7)

By the choice of FQ = FQ(η) and relations (6) and (7) we deduce that

g(x, y) = CηG(x, y) (8)

and, moreover, that the transition probabilities of the Markov chain pQ,Q′ are symmetric in

Q,Q′, ie. pQ,Q′ = pQ′,Q.

3.2 Domains in higher dimensions

We consider now bounded domains Ω ⊂ Rd, d ≥ 3. In this setting we can not choose the sets

FQ(η) in the same way. Such a choice would be in contradiction with the fourth definition

property of Lyons-Sullivan data.

We will choose η = η(Q) proportionnal to the distance of Q to the boundary. To start

with, remark that, by the definition of Whitney cubes, if Q ∩ Γs ̸= ∅, then necessarily

Q ∩ Γs/4
√
d = ∅. Let b = 1/(4

√
d). For Q ∈ W put η(Q) = bn(d−2) if Q ∩ Γbn ̸= 0 for some n

and η(Q) = ℓ(Q)d−2 otherwise.

All previous definitions and properties stay valid except for (8). This equality must now

be replaced by the following one : ∀x ̸= y ∈ N such that for some n ∈ N both Qx, Qy are in

Sbn (ie. Qx ∩ Γbn ̸= ∅ and Qx ∩ Γbn ̸= ∅) we have
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g(x, y) = CbnG(x, y) (9)

and transition probabilities pQ,Q′ are symmetric under the same conditions.

Potential theory for this Markov chain is equivalent to the potential theory for Brownian

motion in Ω: in fact, the positive harmonic functions of the Markov chain are precisely the

traces on N of positive harmonic functions in Ω, [Anc90].

4 An equivalent discrete model for Brownian flights

Let us now modify the initial model to make it “compatible” with discretized Brownian

motion. The idea is to adapt the following remark (in fact Perron-Frobenius theorem) :

if we replace brownian motion by Xk, a symmetric simple random walk on a graph, say

T = (Z/n)d, we can consider the random process that consists on picking a boundary point

x of T with probability distribution µ , starting random walk at this point and consider the

first time τ the random walk gets back to the boundary of T . Clearly, the uniform measure

ν on the boundary of T is invariant by the process ν(y) =
∑

x ν(x)Px(Xτ = y).

Recall that S2−n is the collection of Whitney cubes intersecting Γ2−n (essentially the

cubes at distance 2−n to the boundary). Let us also assume, for the moment, that ∂Ω is

bounded, of diameter say 1.

The dynamical system we are interested in is the following. Given a (discrete) probability

measure µ on S2−n , choose a cube Q ∈ S2−n with probability µ(Q). Consider the Markov

chain (QXk) defined above started at the center of Q, X0 = xQ. Since Ω is Greenian (random

walk and Brownian motion are transient) so is the Xk on N . Therefore, there is, almost

surely, a finite time τn = sup{k ≥ 0 ; QXk ∈ S2−n}, the last exit time of the random walk

from the union of cubes in S2−n .

We consider the function π assigning at every µ the exit distribution of QXτn . It is now

clear that there is a discrete invariant measure for this function, µn (we have identified the

cubes in S2−n with their centers N ∩ S2−n).

The same tools used in [BLZ11] can now be used to prove the analogue of theorem 2.3:

Theorem 4.1 Choose Q at random with uniform law within S2−n. The probability that the

distance ||xQ − QXτn|| > r is comparable to

�
#Sr

#S2−n

�dM

(r2n)d−2 (10)

Recall that the domain Ω is assumed to verify the ∆-regularity condition (3). Under the

same hypothesis we also have the main result:

Theorem 4.2 There is a constant γ independent of n such that for all Q ∈ S2−n,

1

γ#S2−n

≤ µn(Q) ≤ γ

#S2−n

,
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ie. the measure µn is uniformly equivalent to the uniform measure on S2−n. Moreover, for

any measure µ on S2−n we have that limk π
k(µ) = µn.

Proof For Q,Q′ ∈ S2−n , denote by

gQ,Q′ = g(xQ, xQ′) = δxQ
(x′

Q) +
∞∑
k=1

PxQ
(QXk = xQ′)

the mean time the random walk QXk started at xQ spends inside Q′.

It follows on the construction of the random walk that there is a constant η > 0 such that

gQ,Q′ = gQ′,Q = ηG(xQ, xQ′). Let us point out here that for domains in higher dimension we

need to pay attention that all Q ∈ S2−n have the same η.

Let us now consider, for Q ∈ S2−n the probability rQn that random walk definitely leaves

S2−n immediately after reaching Q, that is rQn = PQ (τn = 0) by the Markov property.

Lemma 4.3 There exists a constant c > 0 such that for all n ∈ N and all Q ∈ S2−n, rQn ≥ c.

We assume this lemma for the moment. The random walk being transient on G, using the

Markov property we get :

1 =
∞∑
k=0

∑
Q′∈S2−n

PxQ
(QXk = xQ′ , τn = k)

=
∞∑
k=0

∑
Q′∈S2−n

PxQ
(τn = k | QXk = xQ′)PxQ

(QXk = xQ′)

=
∞∑
k=0

∑
Q′∈S2−n

PxQ′ (τn = 0)PxQ
(QXk = xQ′)

=
∑

Q′∈S2−n

∞∑
k=0

PxQ′ (τn = 0)PxQ
(QXk = xQ′)

=
∑

Q′∈S2−n

PxQ′ (τn = 0)
∞∑
k=0

PxQ
(QXk = xQ′)

=
∑

Q′∈S2−n

gQ,Q′rQ
′

n ,

for all Q ∈ S2−n . Consider the measure µn on S2−n defined by

µn(Q) =
rQn∑

Q′∈S2−n
rQ

′
n

.

The probability that the probability that random walk started at Q definitely leaves S2−n

through Q̃ is given by

bQ,Q̃ =
∞∑
k=1

PxQ
(QXk = xQ̃ , τn = k).
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Clearly, for any Q̃ ∈ S2−n

∑
Q∈S2−n

µn(Q)bQ,Q̃r
Q̃
n =

∑
Q∈S2−n

rQn∑
Q′∈S2−n

rQ
′

n

bQ,Q̃r
Q̃
n

=
rQ̃n∑

Q′∈S2−n
rQ

′
n

∑
Q∈S2−n

gQ,Q̃r
Q
n

=
rQ̃n∑

Q′∈S2−n
rQ

′
n

∑
Q∈S2−n

gQ̃,Qr
Q
n ,

because gQ̃,Q = gQ,Q̃. Since
∑

Q∈S2−n
gQ̃,Qr

Q
n = 1 we get that µn is invariant:

∑
Q∈S2−n

µn(Q)gQ,Q̃r
Q̃
n = µn(Q̃).

By lemma 4.3, for all Q ∈ S2−n , c ≤ rQn ≤ 1. Hence, there is a constant γ = 1
c
such that

1

γ#S2−n

≤ µn(Q) ≤ γ

#S2−n

,

which is the first claim of the theorem.

The second claim follows on the fact that (gQ,Q′rQ′)Q,Q′∈S2−n
is a stochastic matrix with

strictly positive coefficients. •

We now turn to the proof of the lemma which strongly relies on the ∆-regularity hypothesis.

Proof of lemma 4.3 First observe that, by the definition of Whitney cubes, ∀Q ∈ W there

is a Whitney cube Q′ ⊂ 8
√
dQ such that ℓ(Q)

64
√
d
2 ≤ ℓ(Q′) ≤ ℓ(Q)

16
√
d
.

Moreover, if Q ∈ S2−n and Q′ as above, there is a constant c > 0 depending only on

dimension such that the probability that Brownian motion stating at xQ hits F at Q′ for the

first time, ω
xQ

Ω\F (FQ′) is greater than c. Hence, there is a constant c′ > 0 (depending only on

the Lyons-Sullivan data) such that PxQ
(X1 = xQ′) ≥ c′.

On the other hand, it follows on (3) that,

ω
xQ′

Ω∩B(xQ′ ,8
√
dℓ(Q′))

(∂Ω) ≥ L.

We deduce that there exist c′′ such that

PxQ′ (Xn ∈ B(xQ′ , 8
√
dℓ(Q′)) , ∀n ∈ N) ≥ c′′.

And finally, by Markov’s property rQn ≥ c′c′′, which is the claim of the lemma. •
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Theorem 4.2 has a continuous version for quasi-disks ; Let Ω ⊂ C be a quasiconformal

perturbation of the disc with small quasiconformal norm. In this case it is shown in [BLZ11]

that the level lines Γr are locally Lipschitz graphs.

Consider the following operation. For x ∈ Γr, let Bx be Brownian motion started at x

and killed on hitting ∂Ω. Let τ be the hitting time of ∂Ω and σ = sup{t < τ ; Bx
t ∈ Γr}.

Consider the random variable Bx
σ that assigns to x the exit point of Bx from Γr and the

distribution function associated νx. By usual fixed point arguments we get that there is an

invariant measure νr :

νr(dz) =

∫
Γr

νx(dz)νr(dx).

Theorem 4.4 There is a constant γ such that, for r > 0, the invariant measure νr verifies
1
γ
|dx| ≤ νr(dx) ≤ γ|dx|, where |dx| stands for the (normalized) surface measure on Γr.

Let us point out that, under (3), the probability Px (|Bx
σ − Bτ | > s) ≤ cps/r, where p < 1

and c are constants depending only on L (see [BZ10] for a complete proof). Therefore, the

point Bx
σ is very close to the exit point Bx

τ .

Moreover, in the case of quasidisks we can define the mass transport differently. First of

all remark that if the case of quasi-disks, for any x ∈ Γr there exist an internal ray (Green

line) γx intersecting Γr at x only and with a well-identified (unique) endpoint on ∂Ω. The

set of all endpoints of Green lines forms a set of harmonic measure 1. Instead of taking Bx
σ

we associate to x the unique point Bx
τ↑ on Γr lying on the Green line (internal ray) that

has its endpoint at Bτ . The invariant measure ν ′
r associated will be equivalent to νr defined

above. The proof of this statement follows on the arguments of theorem 4.2 and on remarks

in [BLZ11].

The proof of theorem 4.4 relies on theorem 4.2 but needs a few more arguments.

Proof We first show that for a dyadic Whitney cube Q centered on Γr we have that

1

γ
|Q ∩ Γr| < νr(Q) < γ|Q ∩ Γr|. (11)

If we assume this inequality we use Harnack’s principle to conclude : Observe first that by

the definition of Whitney cubes, we have
√
dQ ∩ ∂Ω = ∅, for all cubes Q ∈ W .

Therefore, there exist C > 0 such that for every positive harmonique function h in
√
dQ

and all x, y ∈ ∂(
√
d+1
2

) we get 1
C
h(y) ≤ h(x) ≤ Ch(y).

•

The following result is a corollary of theorem 4.2.

Theorem 4.5 Suppose that ∂Ω is an Alhfors s-regular set of finite Hausdorff measure Hs.

There is a constant γ such that every weak limite µ of the sequence µn satisfies

1

γ
rs ≤ µ(Br) ≤ γrs,
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where Br is any ball of radius r centered on ∂Ω.

The uniqueness of the weak limit is false in general. Nevertheless, if the boundary is self-

similar it is probable that the limit exists. Let us point out that, is ∂Ω is smooth enough,

the above limit exists and is equal to the normalized surface measure. We must also cite

here the results of [GS03] in the same vein.
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