Anneaux

Exercice 1 – Anneau de fonction. Soit A un anneau et I un ensemble.

- a) Montrer que l'ensemble $\mathscr{F}(I,A)$ des fonctions de I dans A est un anneau (commutatif si A l'est). Quel est l'élément neutre pour l'addition, la multiplication?
- **b)** On suppose que I est un espace métrique et $A = \mathbb{R}$. Montrer que les fonctions continues sur I forment un sous-anneau de $\mathscr{F}(I, A)$.
- c) Pour $x \in I$, montrer que l'application

$$\operatorname{ev}_x \colon \left\{ \begin{aligned} \mathscr{F}(\mathbf{I},\mathbf{A}) &\longrightarrow \mathbf{A} \\ f &\longmapsto f(x) \end{aligned} \right.$$

est un morphisme d'anneaux appelé morphisme d'évaluation en x

- **d)** Déterminer les diviseurs de 0 dans $\mathscr{C}(\mathbb{R}, \mathbb{R})$.
- e) Déterminer les éléments inversibles de $\mathscr{F}(I,A)$? de $\mathscr{C}(\mathbb{R},\mathbb{R})$?
- **f)** Soit $x_0 \in \mathbb{R}$. Montrer que l'ensemble $\{f \in \mathscr{C}(\mathbb{R}, \mathbb{R}), f(x_0) = 0\}$ est un idéal maximal de $\mathscr{C}(\mathbb{R}, \mathbb{R})$. Est-il principal? Que se passe-t-il si on remplace $\mathscr{C}(\mathbb{R}, \mathbb{R})$ par $\mathbb{R}[X], \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}), \mathscr{F}(\mathbb{R}, \mathbb{R})$?
- **g)** Existe-t-il des éléments nilpotents non nuls dans $\mathscr{C}(\mathbb{R},\mathbb{R})$?
- h) Soit U un ouvert de \mathbb{C} et \mathcal{H} l'anneau des fonctions holomorphes sur U. Montrer que \mathcal{H} est intègre si et seulement si U est connexe.

Exercice 2 - Diviseurs de 0.

- a) Déterminer les diviseurs de 0 dans $\mathbb{Z}, \mathbb{D}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}[X]$.
- **b)** Déterminer les diviseurs de 0 dans $\mathbb{Z}/4\mathbb{Z}$.
- c) Déterminer les diviseurs de 0 dans $\mathbb{Z}/n\mathbb{Z}$.
- d) Dans un anneau commutatif, montrer que le produit ab est régulier si et seulement si a et b le sont.
- e) Montrer qu'un sous-anneau d'un anneau intègre est intègre.
- f) Un produit d'anneaux est-il intègre? un corps?

Exercice 3 – Éléments inversibles. Soit A un anneau.

- a) Montrer que l'ensemble A[×] des éléments inversibles de A est un groupe pour la multiplication.
- **b)** Déterminer les éléments inversibles de \mathbb{Z} , \mathbb{D} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{R}[X]$.
- c) Déterminer les éléments inversibles de $\mathbb{Z}/4\mathbb{Z}$.
- **d)** Déterminer les éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$.
- e) Montrer que si u est inversible et x nilpotent et ux = xu alors u + x est inversible. En particulier, montrer que 1 + x est inversible. Quel est l'inverse?
- f) Montrer que si $f: A \to B$ est un morphisme d'anneaux alors f induit par restriction un morphisme de groupes de A^{\times} dans B^{\times} . On suppose que f est surjectif, le morphisme de A^{\times} dans B^{\times} induit est-il surjectif?
- g) Montrer que $\mathbb{Z}/n\mathbb{Z}$ est intègre si et seulement si $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

Exercice 4 – Morphismes d'anneaux. Soit $f: \mathbb{R} \to \mathbb{R}$ un endomorphisme d'anneau.

- a) Calculer f(n) pour $n \in \mathbb{Z}$ puis pour $f \in \mathbb{Q}$.
- **b)** Montrer que $f(x) \ge 0$ si $x \ge 0$ (on caractérisera la positivité d'un réel en terme algébrique).
- c) En déduire que f est croissante.
- **d)** En déduire que $f = id_{\mathbb{R}}$.
- e) Soit $f: \mathbb{C} \to \mathbb{C}$ un endomorphisme d'anneau. Montrer l'équivalence
 - (i) f est l'identité ou la conjugaison;
 - (ii) f est continu;

- (iii) $f(\mathbb{R}) \subset \mathbb{R}$;
- (iv) f(x) = x pour tout $x \in \mathbb{R}$.

Exercice 5 – Sous-corps. Soit K un corps. Un sous-corps de K est un sous-anneau de K qui est un corps.

- a) Montrer qu'une intersection de sous-corps est un corps.
- b) En déduire une notion de sous-corps engendré par une partie. Donner une description de ses éléments.
- c) Montrer qu'un corps K admet un plus petit sous-corps appelé sous-corps premier de K.
- **d)** Quel est le sous-corps de \mathbb{R} engendré par $\sqrt{2}$? le sous-groupe engendré par $\sqrt{2}$? le sous-groupe de \mathbb{R}^{\times} engendré par $\sqrt{2}$? le sous-anneau engendré par $\sqrt{2}$?

Exercice 6 - Caractéristique.

- a) Montrer que le sous-anneau premier de A est isomorphe à $\mathbb{Z}/\operatorname{car}(A)\mathbb{Z}$.
- **b)** Montrer que si A est un sous-anneau de B alors car(A) = car(B).
- c) Montrer que si $f: A \to B$ est un morphisme d'anneau. Comparer la caractéristique de A et celle de B. En déduire que si car(A) et car(B) sont premiers entre eux alors il n'y a pas de morphisme d'anneaux entre A et B
- **d)** Quelle est la caractéristique de $\mathbb{Z}/n\mathbb{Z}$, de \mathbb{Z} , \mathbb{Q} , \mathbb{R} , $\mathbb{R}[X]$?
- e) Quelle est la caractéristique de $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$? et celle de $\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$?
- **f)** Quelle est la caractéristique de $\prod_{n \in \mathbb{N}} \mathbb{Z}/n\mathbb{Z}$?
- g) Quelle peut être la caractéristique d'un anneau intègre? d'un corps?
- h) Montrer qu'il n'existe pas de morphisme de corps entre deux corps n'ayant pas la même caractéristique.
- i) Montrer qu'un anneau de caractéristique p (premier) peut être muni d'une structure d'espace vectoriel sur le corps $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- **j)** Montrer que si A et B sont deux anneaux de caractéristique p et $f: A \to B$ un morphisme d'anneaux alors f est \mathbb{F}_p linéaire pour la structure définie dans la question précédente.

Exercice 7 – Matrice triangulaire. Soit k un corps. On considère le sous-anneau de $M_2(k)$

$$\mathbf{A} = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}, \quad a, b, c \in k \right\}$$

- a) Déterminer les éléments nilpotents de A?
- **b)** Déterminer les inversibles de A?
- c) Déterminer les éléments réguliers à droite, à gauche?
- d) Déterminer les idéaux de A et les quotients correspondants.

Exercice 8 – Anneau produit et idéaux. On considère l'anneau produit $A = A_1 \times \cdots \times A_n$.

- a) Soit I un idéal bilatère de A. Montrer que $I = I_1 \times \cdots \times I_n$ où I_j est un idéal bilatère de A_j . Quel est le quotient?
- **b)** On suppose que tous les A_i sont non nuls et commutatifs. Décrire les idéaux premiers de A? les idéaux maximaux de A?
- c) On suppose que les A_j sont des corps. Combien A admet-il d'éléments maximaux? En déduire qu'un produit de deux corps n'est jamais isomorphe à un produit de trois corps.

Exercice 9 - Opérations sur les idéaux. Soit A un anneau.

- a) Soit I et J deux idéaux à gauche (resp. à droite, bilatère). Montrer que $I + J = \{i + j, i \in I, j \in J\}$ est un idéal à gauche (resp. à droite, bilatère).
- b) Soit I et J deux idéaux à gauche (resp. à droite, bilatère). Montrer que

$$IJ = \left\{ \sum_{k=0}^{n} i_k j_k, \quad n \in \mathbb{N}, i_k \in I, j_k \in J \right\}$$

est un idéal à gauche (resp. à droite, bilatère).

c) Montrer que (I + J) + K = I + (J + K), (IJ)K = I(JK), (I + J)K = IK + JK et I(J + K) = IJ + IK. Montrer 0 + I = I + 0 = I et AI = I (si I est un idéal à gauche). A-t-on IA = I?

Exercice 10 - Éléments nilpotents.

- a) Déterminer les éléments nilpotents de $\mathbb{Z}/n\mathbb{Z}$.
- b) On suppose que A est un anneau commutatif. Montrer que l'ensemble des éléments nilpotents de A est un idéal de A? Le résultat s'étend-il à un anneau commutatif?
- c) On suppose encore que A est commutatif. On considère un idéal I de A. Montrer que l'ensemble

$$\sqrt{\mathbf{I}} = \{ x \in \mathbf{A}, \quad \exists n \in \mathbb{N}, \ x^n \in \mathbf{I} \}$$

est un idéal contenant I. Que vaut $\sqrt{0}$? Calculer $\sqrt{\sqrt{1}}$?

- **d)** Décrire l'idéal de A/I correspondant à \sqrt{I} .
- e) Montrer que l'intersection des idéaux premiers de A contenant I est $\sqrt{1}$ (c'est une question difficile : on pourra montrer que si $x \notin \sqrt{1}$, l'ensemble des idéaux contenant I ne rencontrant pas l'ensemble $\{x^n, n \in \mathbb{N}\}$ est non vide et admet un élément maximal qui est un idéal premier de A).
- f) Montrer que $A/\sqrt{0}$ est un anneau réduit (c'est-à-dire n'a pas d'élément nilpotent non nul).

Exercice 11

- a) Montrer qu'un anneau intègre fini est un corps.
- b) Donner des exemples d'anneaux non intègres et finis.
- c) Déterminer les anneaux à 2,3 et 4 éléments.

Exercice 12 Soit A un anneau tel que $a^2 = a$ pour tout $a \in A$.

- a) Montrer que A est commutatif.
- **b)** Dans cette question (et dans cette question seulement), on suppose que A est intègre. Montrer que A est un corps et que A à deux éléments.
- c) Montrer que tout idéal premier de A est maximal.

Exercice 13 Soit A un anneau tel que $a^3 = a$ pour tout $a \in A$.

- a) Déterminer les éléments nilpotents de A.
- **b)** Soit $e \in A$ tel que $e^2 = e$ et $a \in A$ et b = ea(1 e). Calculer b^2 et en déduire que ea = ae.
- c) En déduire que pour tout $x \in A$ alors $x^2 \in ZA$.
- **d)** Montrer que $2x \in ZA$ pour tout $x \in A$.
- e) Montrer que $3x^2 + 3x = 0$. En déduire que $3x \in ZA$.
- f) Montrer que A est commutatif.

Exercice 14

- a) Soient m, n deux entiers supérieurs ou égaux à 1. Combien y a-t-il de morphismes d'anneaux de $\mathbb{Z}/m\mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$?
- **b)** Combien y a-t-il de morphismes de groupes de $\mathbb{Z}/m\mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$?
- c) Combien y a-t-il de morphismes de groupes, d'anneaux de $\mathbb{Z}/m\mathbb{Z}$ dans \mathbb{C} ?

Exercice 15 Soit $A = \mathbb{Z}/3^45^27\mathbb{Z}$.

- a) Déterminer les idéaux de A.
- b) Quels sont les idéaux premiers de A, les idéaux maximaux?
- c) Donnez les inclusions des idéaux les uns dans les autres.

Exercice 16 – Anneaux de fonctions continues sur un compact. Soit A l'anneau des fonctions continues de [0,1] dans \mathbb{R} .

- a) Soit $x \in [0,1]$. Montrer que $I_x = \{f \in A, f(x) = 0\}$ est un idéal maximal de A. Quel est le quotient A/I_x ?
- b) Tous les idéaux de A sont-ils maximaux? premiers?
- c) I_x est-il principal?

- **d)** Montrer que $(I_x)^2 = I_x$.
- e) Montrer que tout idéal maximal de A est de la forme I_x (question difficile).

Exercice 17

- a) Soit A un anneau intègre. Montrer que si A contient un nombre fini d'idéaux alors A est un corps (indication : on pourra considérer les idéaux de la forme (a^n) .
- **b)** Soit A un anneau commutatif. Montrer qui si A contient un nombre fini d'idéaux alors tout idéal premier est maximal.
- c) Soit A un anneau tel que tout idéal est premier. Montrer que A est un corps.