Commutant d'un endomorphisme

Soit A un anneau commutatif unitaire. Pour deux A-modules M et N, on note $\operatorname{Hom}_A(M,N)$ le A-module des applications A-linéaire de M dans N et $\operatorname{End}_A(M)$ le A-module des endomorphismes de M.

Lemme 1 – Morphisme issu de A. Soit M un A-module. Les applications

$$\alpha \colon \begin{cases} \mathbf{M} \longrightarrow \mathrm{Hom}_{\mathbf{A}}(\mathbf{A}, \mathbf{M}) \\ m \longmapsto (f_m : a \mapsto am) \end{cases} \quad \text{et} \quad \beta \colon \begin{cases} \mathrm{Hom}_{\mathbf{A}}(\mathbf{A}, \mathbf{M}) \longrightarrow \mathbf{M} \\ f \longmapsto f(1) \end{cases}$$

sont des isomorphismes de A-modules réciproques l'un de l'autre.

Preuve. L'application $f_m: a \mapsto am$ est A-linéaire. En effet, pour $a, a' \in A$, on a

$$f_m(a+a') = am + a'm$$
 et $f_m(aa') = (aa')m = a(a'm) = af_m(a')$.

Montrons que α est A-linéaire. Pour $m, m' \in \mathcal{M}$ et $a \in \mathcal{A}$, on a, pour tout $a' \in \mathcal{A}$,

$$f_{m+m'}(a') = a'(m+m') = a'm + a'm' = f_m(a') + f_{m'}(a')$$
 et $f_{am}(a') = a'am = a(a'm) = (af_m)(a')$.

Pour $m \in M$, on a $\beta \alpha(m) = f_m(1) = m$. Réciproquement, pour $f \in \text{Hom}_A(A, M)$, on a, pour tout $a \in A$

$$(\alpha\beta(f))(a) = af(1) = f(a) ;$$

la dernière égalité résultant de la linéarité de f. On en déduit que α et β sont des bijections réciproques l'un de l'autre et donc β est A-linéaire.

Lemme 2 – Morphisme issu d'un quotient de A. Soient M un A-module et $a \in A$. On note $\pi : A \to A/\langle a \rangle$ la surjection canonique et $\operatorname{Ann}_a(M)$ le sous-module de M des éléments de M annulés par a:

$$Ann_a(M) = \{ m \in M, \quad am = 0 \}.$$

Les applications

$$\alpha_a \colon \begin{cases} \operatorname{Ann}_a(\mathbf{M}) \longrightarrow \operatorname{Hom}_{\mathbf{A}}(\mathbf{A}/\langle a \rangle, \mathbf{M}) & \text{et} \\ m \longmapsto (f_m : \pi(b) \mapsto bm) & \end{cases} \quad \text{et} \quad \beta_a \colon \begin{cases} \operatorname{Hom}_{\mathbf{A}}(\mathbf{A}/\langle a \rangle, \mathbf{M}) \longrightarrow \operatorname{Ann}_a(\mathbf{M}) \\ f \longmapsto f(\pi(1)) \end{cases}$$

sont des isomorphismes de A-modules réciproque l'un de l'autre.

Preuve. Montrons que les bijections α et β se restreignent en des bijections entre

$$\{f \in \operatorname{Hom}_{\Lambda}(A, M), f(\langle a \rangle) = 0\}$$
 et $\operatorname{Ann}_{a}M$.

Soit $f \in \text{Hom}_A(A, M)$ tel que $f(\langle a \rangle) = 0$, on a alors af(1) = f(a) = 0. Ainsi $f(1) = \beta(f) \in \text{Ann}_a M$. Réciproquement, si $m \in \text{Ann}_a(M)$ alors, pour $b = ac \in \langle a \rangle$, on a

$$f_m(b) = bm = acm = cam = 0.$$

Par ailleurs, pour V un A-module, U un sous-module de V et W un A-module, la propriété universelle du quotient dit que l'application

$$\Delta \colon \left\{ \begin{aligned} \operatorname{Hom}_{\mathcal{A}}(\mathcal{V}/\mathcal{U},\mathcal{W}) &\longrightarrow \{ f \in \operatorname{Hom}_{\mathcal{A}}(\mathcal{V},\mathcal{W}), f(\mathcal{U}) = 0 \} \\ g &\longmapsto g \circ \pi \end{aligned} \right.$$

est un isomorphisme de A-modules dont la bijection réciproque est donnée par $f \mapsto \overline{f}$ où \overline{f} est l'application définie par $\overline{f} : \pi(x) \mapsto \overline{f}(\pi(x)) = f(x)$ (qui est bien définie).

En appliquant ce résultat avec V = A, $U = \langle a \rangle$ et W = M et en composant avec les restrictions de β et α , on obtient les isomorphismes de A-modules α_a et β_a .

On suppose à présent que A est un anneau principal. On choisit une famille $\mathscr P$ de représentants des éléments premiers de A modulo la relation d'équivalence « être associé ».

L'objectif des lemmes suivants est de déterminer $\operatorname{Hom}_{\mathcal{A}}(\mathcal{A}/\langle a\rangle,\mathcal{A}/\langle b\rangle)$ lorsque $a\mid b$ et $b\mid a$. D'après le lemme 2, il suffit de déterminer l'annulateur de a dans $\mathcal{A}/\langle b\rangle$. On va en fait traiter le cas général.

Lemme 3 – Annulateur dans un quotient de A. Soient $a, b \in A \setminus \{0\}$. On note

$$a = u_a \prod_{p \in \mathscr{P}} p^{\nu_p(a)}$$
 et $b = u_b \prod_{p \in \mathscr{P}} p^{\nu_p(b)}$

la décomposition de a et b en facteurs premiers (c'est-à-dire $u_a, u_b \in \mathcal{A}^{\times}, \nu_p(a), \nu_p(b) \in \mathbb{N}$ et le nombre de $\nu_p(a)$ et de $\nu_p(b)$ non nuls est fini). On définit $\mathcal{P}_{a,b} = \{p \in \mathscr{P}, \ \nu_p(b) - \nu_p(a) \geqslant 0\}$ et

$$d = \prod_{p \in \mathcal{P}_{a,b}} p^{\nu_p(b) - \nu_p(a)} = b/(a \wedge b).$$

On a alors

$$\operatorname{Ann}_a(A/\langle b \rangle) = \{c \in A/\langle b \rangle, \quad ac = 0\} = dA/\langle b \rangle.$$

Par ailleurs, si $a \mid b$, on a alors da = b; si $b \mid a$, on a d = 1; et si $a \land b = 1$ alors d et b sont associés.

Preuve. Commençons par vérifier qu'on a $d = b/(a \wedge b)$. On est dans un anneau factoriel donc,

$$(a \wedge b) = u \prod_{p \in \mathscr{P}} p^{\inf(\nu_p(a), \nu_p(b))}$$
 avec $u \in A^{\times}$.

On choisit $u = u_b$. On a alors

$$b/(a \wedge b) = \prod_{p \in \mathscr{P}} p^{\nu_p(b) - \inf(\nu_p(a), \nu_p(b))} = \prod_{p \in \mathcal{P}_{a,b}} p^{\nu_p(b) - \nu_p(a)} \prod_{p \notin \mathcal{P}_{a,b}} p^{\nu_p(b) - \nu_p(b)} = d.$$

Soit $c \in A/\langle b \rangle$ tel que ac = 0 et $c' \in A$ tel que $c = \pi(c')$. Par hypothèse, on a $b \mid ac'$. Or, par définition de d, on peut écrire $b = d(a \wedge b)$ et $a = (a \wedge b)a'$ avec $a' \wedge d = 1$. En simplifiant par $a \wedge b$, on obtient que $d \mid a'c'$. Or $d \wedge a' = 1$ donc $d \mid c'$ et $c \in dA/\langle b \rangle$. Réciproquement si $c \in dA/\langle b \rangle$, on a c = dx avec $x \in A/\langle b \rangle$. On a alors $ac = adx = a'(a \wedge b)dx = a'bx = 0$.

Lemme 4 – Simplification. Soient $d, b \in A \setminus \{0\}$ avec $d \mid b$. On note $c \in A$ tel que b = dc. On a $dA/\langle b \rangle \stackrel{\text{A-mod}}{\simeq} A/\langle c \rangle$.

Preuve. On note $\pi: A \to A/\langle b \rangle$ la surjection canonique. On considère l'application A-linéaire $f_{\pi(d)}: A \to A/\langle b \rangle$ donnée par $f_{\pi(d)}(a) = a\pi(d) = \pi(ad)$ pour tout $a \in A$ (voir le lemme 1). De plus, comme $f_{\pi(d)}(a) = d\pi(a)$, l'image de $f_{\pi(d)}$ est $dA/\langle b \rangle$. Par ailleurs le noyau de $f_{\pi(d)}$ est $\{a \in A, b \mid ad\} = \{a \in A, c \mid a\} = \langle c \rangle$. Ainsi $f_{\pi(d)}$ passe au quotient par $A/\langle c \rangle$ et définit un morphisme injectif $f: A/\langle c \rangle \to A/\langle b \rangle$ dont l'image est $dA/\langle b \rangle$. On obtient ainsi l'isomorphisme souhaité.

Corollaire 5 – Morphisme entre quotients de A. Soient $a, b \in A \setminus \{0\}$. On a

$$\operatorname{Hom}_{\mathcal{A}}(\mathcal{A}/\langle a\rangle,\mathcal{A}/\langle b\rangle) \overset{\text{\tiny A-mod.}}{\simeq} \mathcal{A}/\langle a\wedge b\rangle\,.$$

En particulier, si $a \mid b$, on a

$$\operatorname{Hom}_{\mathcal{A}}(\mathcal{A}/\langle a \rangle, \mathcal{A}/\langle b \rangle) \overset{^{\mathcal{A}\operatorname{-mod.}}}{\simeq} \mathcal{A}/\langle a \rangle \overset{^{\mathcal{A}\operatorname{-mod.}}}{\simeq} \operatorname{Hom}_{\mathcal{A}}(\mathcal{A}/\langle b \rangle, \mathcal{A}/\langle a \rangle) \,.$$

Soient $a, b \in A$ tel que $a \wedge b = 1$. On a

$$\operatorname{Hom}_{\mathbf{A}}(\mathbf{A}/\langle a \rangle, \mathbf{A}/\langle b \rangle) \stackrel{\text{A-mod.}}{\simeq} 0$$
.

Preuve. Le lemme 2 montre que

$$\operatorname{Hom}_{\mathcal{A}}(\mathcal{A}/\langle a \rangle, \mathcal{A}/\langle b \rangle) \stackrel{\text{A-mod.}}{\simeq} \operatorname{Ann}_{a}(\mathcal{A}/\langle b \rangle).$$

Le lemme 3 assure que $\operatorname{Ann}_a(A/\langle b \rangle) = b/(a \wedge b)A/\langle b \rangle$. Enfin, le lemme 4 appliqué à $b, d = b/(a \wedge b)$ et $c = (a \wedge b)$ assure que $b/(a \wedge b)A/\langle b \rangle = A/\langle a \wedge b \rangle$. Finalement on obtient l'isomorphisme voulu.

Proposition 6 – Commutant d'un endomorphisme. Soient E un k-espace vectoriel de dimension finie et $f: E \to E$ un endomorphisme de E. On note C(f) l'ensemble des endomorphismes de E qui commutent avec f et $P_1 \mid P_2 \mid \cdots \mid P_s$ la suite des invariants de similitude de f.

On a alors

$$\dim(C(f)) = \sum_{i,j} \min(\deg P_i, \deg P_j) = \sum_{j=1}^{s} (2s - 2j + 1) \deg P_j.$$

Preuve. L'hypothèse assure que E $\stackrel{k[X]-mod.}{\simeq} k[X]/P_1 \oplus \cdots \oplus k[X]/P_s$. Ainsi

$$\mathbf{C}(f) = \mathrm{End}_{k[\mathbf{X}]}(\mathbf{E}) = \bigoplus_{i,j} \mathrm{Hom}_{k[\mathbf{X}]}(k[\mathbf{X}]/\mathbf{P}_i, k[\mathbf{X}]/\mathbf{P}_j) \,.$$

Ainsi

$$\dim \mathcal{C}(f) = \textstyle\sum_{i \ j} \dim \operatorname{Hom}_{k[\mathcal{X}]}(k[\mathcal{X}]/\mathcal{P}_i, k[\mathcal{X}]/\mathcal{P}_j) \,.$$

Or, on a $P_i \mid P_j$ ou $P_j \mid P_i$. Si $P_i \mid P_j$ le corollaire 5 donne $\operatorname{Hom}_{k[X]}(k[X]/P_i, k[X]/P_j) \overset{^{k[X]-\operatorname{mod}}}{\simeq} k[X]/P_i$ et donc

$$\dim \operatorname{Hom}_{k[\mathbf{X}]}(k[\mathbf{X}]/\mathbf{P}_i, k[\mathbf{X}]/\mathbf{P}_j) = \dim k[\mathbf{X}]/\mathbf{P}_i = \deg \mathbf{P}_i = \min(\deg \mathbf{P}_i, \deg \mathbf{P}_j) \,.$$

Si $P_j \mid P_i$, le corollaire 5 donne $\operatorname{Hom}_{k[X]}(k[X]/P_i, k[X]/P_j) \stackrel{^{k[X]-\operatorname{mod}}}{\simeq} k[X]/P_j$ et donc

$$\dim \operatorname{Hom}_{k[\mathbf{X}]}(k[\mathbf{X}]/\mathbf{P}_i, k[\mathbf{X}]/\mathbf{P}_j) = \dim k[\mathbf{X}]/\mathbf{P}_j = \deg \mathbf{P}_j = \min(\deg \mathbf{P}_i, \deg \mathbf{P}_j)\,.$$

On obtient ainsi la formule souhaitée :

$$\dim(\mathcal{C}(f)) = \sum_{i,j} \min(\deg \mathcal{P}_i, \deg \mathcal{P}_j).$$

Pour simplifier les notations, on pose $p_i = \deg P_i$. Par hypothèse, on a $p_i \leqslant p_j$ si $i \leqslant j$. En additionnant tous les éléments de la matrice

$$\begin{bmatrix} \min(p_1, p_1) & \min(p_1, p_2) & \cdots & \min(p_1, p_s) \\ \min(p_2, p_1) & \min(p_2, p_2) & \cdots & \min(p_2, p_s) \\ \vdots & & \ddots & \vdots \\ \min(p_s, p_1) & \min(p_s, p_2) & \cdots & \min(p_s, p_s) \end{bmatrix} = \begin{bmatrix} p_1 & p_1 & \cdots & p_1 \\ p_1 & p_2 & \cdots & p_2 \\ \vdots & & \ddots & \vdots \\ p_1 & p_2 & \cdots & p_s \end{bmatrix}$$

on obtient la deuxième égalité La première égalité est donné dans le livre de Mneimné (Éléments de Géométrie : actions de groupes chez Cassini).