Corrigé Devoir 3

Exercice 1 – Autour de Dedekind. Soient k un corps, K une extension de k (pas nécessairement de dimension finie) et $\sigma \in \operatorname{Gal}(K/k)$.

- a) On suppose que σ vérifie $\sigma(x) + \sigma^2(x) = x + \sigma^3(x)$ pour tout $x \in K$. Montrer que $\sigma^2 = id$.
- **b)** Montrer que l'équivalence des propriétés suivantes :
 - (i) σ est d'ordre fini dans le groupe Gal(K/k);
 - (ii) le k-endomorphisme σ de K admet un polynôme minimal non nul;
 - (iii) l'algèbre $k[\sigma]$ est de dimension finie.
- c) On suppose que les conditions de la question **b** sont vérifiées. Déterminer le polynôme minimal de σ .
- **d)** Montrer que les conditions de la question **b** sont vérifiées si $[K:k] < +\infty$. En déduire qu'un k-automorphisme de K ne peut être d'ordre infini que si $[K:k] = +\infty$.
- e) Reprendre la question a en utilisant les résultats des questions b et c.

Corrigé

- a) La relation $\sigma(x) + \sigma^2(x) = x + \sigma^3(x)$ pour tout $x \in K$ dit que la famille de k-endomorphismes $(\mathrm{id}_K, \sigma, \sigma^2, \sigma^3)$ est liée. Le lemme de Dedekind assure qu'il existe $i \neq j$ avec $i, j \in \{0, 1, 2, 3\}$ tel que $\sigma^i = \sigma^j$. On peut supposer que i < j. On a donc $\sigma^{j-i} = \mathrm{id}_K$ avec $j i \in \{1, 2, 3\}$. Si j i = 1 alors $\sigma = \mathrm{id}_K$ et donc $\sigma^2 = \mathrm{id}_K$. Si j i = 2, on a le résultat souhaité. Supposons que j i = 3 alors $\sigma^3 = \mathrm{id}_K$ et donc $\sigma(x) + \sigma^2(x) = 2x$ pour tout $x \in K$. On a une relation de dépendance linéaire entre $(\mathrm{id}_K, \sigma, \sigma^2)$ et donc, encore grâce au lemme de Dedekind, on a $\sigma = \mathrm{id}_K$ ou $\sigma^2 = \mathrm{id}_K$ ou $\sigma = \sigma^2$ ce qui donne $\sigma = \mathrm{id}_K$.
- b) $(i) \Rightarrow (ii)$. Notons n l'ordre de σ . Le polynôme X^n-1 est un polynôme annulateur de σ . Ainsi l'idéal annulateur de σ n'est pas réduit à 0 et σ admet donc un polynôme minimal qui est un diviseur de X^n-1 . $(ii) \Rightarrow (iii)$. On note I l'idéal annulateur de σ . Par définition le polynôme minimal π_{σ} de σ est le polynôme unitaire vérifiant $I = \langle \pi_{\sigma} \rangle$. et on a $k[\sigma] = k[X]/\pi_{\sigma}$ dont la dimension est le degré de π_{σ} . $(iii) \Rightarrow (i)$. Si l'idéal annulateur de σ est réduit à 0 alors $k[\sigma] = k[X]$ n'est pas de dimension finie. On en déduit qu'il existe un polynôme annulateur non nul pour σ . On obtient ainsi une relation de dépendance linéaire entre les puissances de σ . Le lemme de Dedekind assure qu'il existe $i \neq j$ (on suppose i < j) tel que $\sigma^i = \sigma^j$ et donc $\sigma^{j-i} = \mathrm{id}_K$. Ainsi σ est d'ordre fini.
- c) On note n l'ordre de σ . Le polynôme \mathbf{X}^n-1 est un polynôme annulateur de σ . Ainsi le polynôme minimal π_{σ} de σ est un diviseur de \mathbf{X}^n-1 . En particulier, il est de degré $d\leqslant n$. La relation $\pi_{\sigma}(\sigma)=0$ donne alors une relation de dépendance linéaire portant sur la famille $(\mathrm{id}_{\mathbf{K}},\sigma,\ldots,\sigma^d)$. Le lemme de Dedekind assure alors qu'il existe $i\neq j$ avec $i,j\in [\![0\,,d]\!]$ tel que $\sigma^i=\sigma^j$. En supposant i< j, on obtient $\sigma^{j-i}=\mathrm{id}_{\mathbf{K}}$ avec $j-i\in [\![1\,,d]\!]$. Ainsi, l'ordre n de σ est un diviseur de d et donc en particulier $n\leqslant d$. Finalement d=n. Comme $\pi_{\sigma}\mid \mathbf{X}^n-1$, la relation sur les degrés assure que $\pi_{\sigma}=\mathbf{X}^n-1$.
- d) Si $[K:k] < +\infty$ alors $\operatorname{End}_k(K)$ est de dimension finie et $k[\sigma] \subset \operatorname{End}_k(K)$ aussi. Le point (iii) est donc vérifié. La contraposée de cette affirmation donne le deuxième résultat.
- **e)** Le polynôme $X^3 X^2 X + 1 = (X^2 1)(X 1)$ est un polynôme annulateur (non nul) de σ . On est donc dans les conditions de la question **b**. Le polynôme minimal de σ est donc diviseur de $(X^2 1)(X 1)$ de la forme $X^n 1$ (d'après la question **c**). On en déduit que n = 1 ou n = 2.