Devoir 4

Exercice 1 - Élément primitif.

- a) On suppose que $[K:k] \le n$. Pour $x \in K$, on a $[k(x):k] \le [K:k(x)][k(x):k] \le n$ et donc $[k(x):k] \le n$. Réciproquement, K est un extension finie de k qui est de caractéristique nulle. C'est donc une extension séparable et par conséquence monogène. Ainsi il existe $x \in K$ tel que k(x) = K. Ainsi $[K:k] = [k(x):k] \le n$.
- b) L'hypothèse utilisée dans la question a est la séparabilité pour obtenir le fait que l'extension est monogène.
- c) Soit $x \in K$ tel que [k(x):k] soit maximal. Par hypothèse, un tel x existe et vérifie $[k(x):k] \le n$. Soit $y \in K$, on considère alors $k(x,y) \subset K$. Comme l'extension $k \to K$ est séparable, l'extension $k \to k(x,y)$ l'est aussi. Le théorème de l'élément primitif assure alors qu'il existe $z \in k(x,y)$ tel que k(z) = k(x,y). En particulier, on a $[k(z):k] = [k(x,y):k(x)][k(x):k] \ge [k(x):k]$. Par maximalité, on en déduit que [k(x):k] = [k(z):k]. L'inclusion $k(x) \subset k(z)$ assure alors que k(x) = k(z) et donc $y \in k(x)$. Finalement K = k(x) et donc $[K:k] \le n$.
- d) L'équivalence est évidemment fausse. En effet, l'hypothèse $[k[x]:k]<+\infty$ pour tout $x\in K$ est exactement synonyme du fait que K est une extension algébrique de k. Or il existe des extensions algébriques de degré infinie. Par exemple l'extension

$$\overline{\mathbb{Q}} = \{x \in \mathbb{Q}, \quad x \text{ algébrique sur } \mathbb{Q}\} \subsetneq \mathbb{C}$$

est une extension algébrique de \mathbb{Q} (puisque formées d'éléments algébrique) de degré infini. Le degré de cette extension est infini puisque par exemple $\sqrt[n]{2} \subset \overline{\mathbb{Q}}$ est de degré n (puisque X^n-2 est un polynôme irréductible sur \mathbb{Q} d'après le critère d'Eisenstein).

e) Montrons que $[K:L] = p^2$. Le polynôme $P(T) = T^p - X^p \in L[T]$ est irréductible sur L. En effet, dans K[T], on a, grâce au morphisme de Frobenius $P(T) = (T - X)^p$. Ainsi si P(T) était réductible sur L, on aurait P = QR avec $Q, R \in L[T]$ et $\deg Q \geqslant 1$ et $\deg R \geqslant 1$. On aurait donc $Q = (T - X)^q$ et $R = (T - X)^r$ avec $q, r \geqslant 1$ et q + r = p. La formule du binôme montre alors que le coefficient qX de T^{q-1} de Q est dans L. Comme $1 \leqslant q < p$ est inversible dans L, on en déduit que $X \in L$. Montrons que ceci est absurde. On aurait alors

$$X = P(X^p, Y^p)/Q(X^p, Y^p)$$
 avec $P, Q \in k[T_1, T_2]$ et $Q(X^p, Y^p) \neq 0$.

En réduisant au même dénominateur, on obtient $XQ(X^p, Y^p) = P(X^p, Y^p)$. En comparant les puissances de X qui interviennent, on obtient une contradiction. Ainsi P est irréductible et X est de degré p sur L. De même, Y est de degré p sur L.

En fait, pour montrer que $[L:K]=p^2$, il faut montrer que Y est de degré p sur $L(X)=k(X,Y^p)$ ce qui s'obtient presque de la même façon. Détaillons l'adaptation. Le polynôme $P(T)=T^p-Y^p\in L(X)[T]$ est irréductible sur L(X). En effet, dans K[T], on a, grâce au morphisme de Frobenius $P(T)=(T-Y)^p$. Ainsi si P(T) était réductible sur L(X), on aurait P=QR avec $Q,R\in L(X)[T]$ et deg $Q\geqslant 1$ et deg $R\geqslant 1$. On aurait donc $Q=(T-Y)^q$ et $R=(T-Y)^r$ avec $q,r\geqslant 1$ et q+r=p. La formule du binôme montre alors que le coefficient qY de T^{q-1} de Q est dans L. Comme $1\leqslant q< p$ est inversible dans L(X), on en déduit que $Y\in L(X)$. Montrons que ceci est absurde. On aurait alors

$$Y = P(X, Y^p)/Q(X, Y^p)$$
 avec $P, Q \in k[T_1, T_2]$ et $Q(X^p, Y^p) \neq 0$.

En réduisant au même dénominateur, on obtient $YQ(X, Y^p) = P(X, Y^p)$. En comparant les puissances de Y qui interviennent, on obtient une contradiction. Ainsi P est irréductible et Y est de degré p sur L(X). Finalement $[K : L] = p^2$.

Soit
$$x \in K \setminus L$$
, on a $[L(x) : L] \mid [K : L] = p^2$ et $[L(x) : L] \neq 1$. Ainsi $[L(x) : L] \in \{p, p^2\}$. On a $x = P(X, Y)/Q(X, Y) \in k(X, Y)$ avec $P, Q \in k[T_1, T_2]$ et $Q \neq 0$

On a alors, grâce au morphisme de Frobenius, $x^p \in L$. En effet, si

$$P = \sum_{(i,j)\in\mathbb{N}^2} a_{ij} X^i Y^j \quad \text{et} \quad Q = \sum_{(i,j)\in\mathbb{N}^2} b_{ij} X^i Y^j$$
$$x^p = \frac{\sum_{(i,j)\in\mathbb{N}^2} a_{ij}^p (X^p)^i (Y^p)^j}{\sum_{(i,j)\in\mathbb{N}^2} b_{ij}^p (X^p)^i (Y^p)^j} \in L$$

Ainsi x est racine du polynôme $T^p - x^p \in L(x)$ et donc $[L(x) : L] \leq p$. Finalement [L(x) : L] = p. L'extension $L \subset K$ n'est donc pas monogène sinon il existerait $x \in K$ tel que L(x) = K et donc [L(x) : L] = p.

Si l'extension $L \subset K$ était séparable, elle serait monogène ce qui n'est pas le cas. Pour montrer que l'extension $L \subset K$ n'est pas séparable, on peut aussi trouver un élément non séparable de K. Par exemple, X n'est pas séparable puisque son polynôme minimal est $T^p - X^p$ (on a vu que $P = T^p - X^p$ est irréductible sur L et annule X) dont la dérivée est nulle ou dont X est l'unique racine (puisque $P = (T - X)^p$).

f) L'extension $L \subset K$ vérifie $[L(x) : L] \leq p$ pour tout $x \in K$ mais $[K : L] = p^2 > p$.

Exercice 2 - Un exemple d'extension non monogène.

- a) Voir la question e de l'exercice ??
- **b)** Voir la question **e** de l'exercice ??
- c) Soit $x \in K \setminus L$. On a vu que $T^p x^p$ est un polynôme à coefficients dans L qui annule x. Il est donc divisible par le polynôme minimal de x. Or [L(x):L] = p d'après la question précédente donc le polynôme minimal de x sur L est de degré p. Ainsi le polynôme minimal de x sur L est $T^p x^p$ qui n'est pas séparable puisque sa dérivée est nulle ou alors que $T^p x^p = (T x)^p$ n'est pas à racine simple. Ainsi les seuls éléments de K qui sont séparable sur L sont les éléments de L.
- **d)** Montrons que K est le corps de décomposition sur L de $P = (T^p X^p)(T^p Y^p) \in L[T]$. Dans K[T], on a $P = (T X)^p(T Y)^p$ est scindé et K = L(X, Y) est engendré par les racines de P. Ainsi $L \subset K$ est une extension normale.

Soient $\sigma \in \operatorname{Aut}_L(K)$ et $x \in K \setminus L$. L'élément $\sigma(x)$ est donc une racine dans K du polynôme minimal de x sur L. Or d'après la question \mathbf{c} , le polynôme minimal de x sur L est $T^p - x^p$ qui se factorise dans K[T] en $(T-x)^p$. Ainsi x est l'unique racine dans K (et même dans toute extension) du polynôme minimal de x sur L. Ainsi $\sigma(x) = x$ et donc $\sigma = \operatorname{id}_K$.