Partiel : Algèbre Approfondie.

Exercice 1 – Quotient. Soit E un espace vectoriel de dimension finie, F et G deux sous-espaces vectoriels de E. On note $\pi: E \to E/F$ et $p: E \to E/F \cap G$ les surjections canoniques. Pour simplifier les notations, on notera $\pi(x) = \overline{x}$ et $p(x) = \widetilde{x}$.

- a) Déterminer la dimension de E/F en fonction de celles de E et F.
- **b)** Montrer que l'application

$$\Delta \colon \left\{ \begin{aligned} \mathbf{F}/\mathbf{F} \cap \mathbf{G} &\longrightarrow (\mathbf{F} + \mathbf{G})/\mathbf{G} \\ \widetilde{x} &\longmapsto \overline{x} \end{aligned} \right.$$

est bien définie et est un isomorphisme.

c) En déduire que $\dim(F+G) + \dim(F\cap G) = \dim(F) + \dim(G)$.

Exercice 2 – Arithmétique. Soit $\mathbb{D} = \{p/10^n, p \in \mathbb{Z}, n \in \mathbb{N}\}.$

- a) Montrer que \mathbb{D} est un sous-anneau de \mathbb{Q} .
- **b)** Montrer que $7/25 \in \mathbb{D}$.
- c) Soit $x = p/q \in \mathbb{Q}$ avec $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ et $\operatorname{pgcd}(p,q) = 1$. Donner une condition nécessaire et suffisante portant sur la décomposition en nombres premiers de q pour que $x \in \mathbb{D}$.
- **d)** Déterminer les éléments inversibles de \mathbb{D} .
- e) Déterminer quels nombres premiers $p \in \mathbb{N}$ sont des éléments irréductibles de \mathbb{D} .
- f) En déduire que \mathbb{D} est factoriel.

Exercice 3 – Extension algébrique. Soit $K = \mathbb{Q}(\sqrt[3]{2}, j)$ la sous-extension de \mathbb{C} engendrée par $j = \exp(2i\pi/3)$ et $\sqrt[3]{2}$.

- **1)** Déterminer $[\mathbb{Q}(j) : \mathbb{Q}]$ et $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}]$.
- **2)** Déterminer $[K:\mathbb{Q}]$ et montrer que $(1,\sqrt[3]{2},\sqrt[3]{4},j,j\sqrt[3]{2},j\sqrt[3]{4})$ est une \mathbb{Q} -base de K. Déterminer une $\mathbb{Q}(\sqrt[3]{2})$ -base de K
- 3) En déduire l'ensemble des éléments de K vérifiant $x^2 \in \mathbb{Q}$.
- 4) Déterminer trois sous-extensions de degré 3 de K.
- 5) En utilisant la question 3, déterminer toutes les sous-extensions de degré 2 de K.
- 6) Soit L une sous-extension de degré 3 de K, on veut montrer qu'elle est égale à l'une des trois sous-extensions de la question 4. On raisonne par l'absurde, on suppose que L n'est pas l'une des trois sous-extensions de la question 4.
 - a) Montrer que L ne contient aucune des racines complexes de $X^3 2$.
 - **b)** En déduire que $[K : \mathbb{Q}] \geqslant 9$ et conclure.