Module sur un anneau principal

Exercice 1 — Bicommutant. Soit A un anneau principal. On note \mathscr{P} un système de représentant de l'ensemble des nombres premiers de A.

- a) Soient $a, b \in A$. À quels conditions le quotient aA/bA a-t-il un sens? Déterminer a' tel que aA/bA = A/a'A.
- **b)** Soient $a, b \in A$. Montrer que l'ensemble $I_{a,b} = \{c \in A, b \mid ac\}$ est un idéal de A qui contient $\langle b \rangle$. En déterminer un générateur en fonction des décompositions de a et b en nombres premiers.
- c) Déterminer les facteurs invariants de $I_{a,b}$ et de $I_{a,b}/\langle b \rangle$. Cas particulier : $a=0,\ b=0,\ a\mid b,\ b\mid a,\ a$ et b premier entre eux.
- **d)** Soit $a, b \in A$. Déterminer $\operatorname{Hom}_{A}(A/\langle a \rangle, A/\langle b \rangle)$. Cas particulier : $a = 0, b = 0, a \mid b, b \mid a, a$ et b premier entre eux.
- e) Soit M un A-module de type fini. Déterminer End_A(M).
- **f)** Déterminer le centre de $\operatorname{End}_A(M)$. En déduire l'ensemble des endomorphismes de groupe de M qui commutent avec tous les éléments de $\operatorname{End}_A(M)$.
- **g)** Application. Soit E un k-espace vectoriel de dimension finie et u un endomorphisme de E. Déterminer la dimension du commutant de u puis l'ensemble des endomorphismes de E qui commutent avec tous les éléments qui commutent avec u.

Exercice 2 – Endomorphisme cyclique. Soit E un k-espace vectoriel de dimension finie n et u un endomorphisme de E. On note k[u] l'algèbre des polynômes en u et C_u le commutant de u; π_u le polynôme minimal de u et χ_u le polynôme caractéristique (qu'on suppose unitaire).

- **a)** Montrer que $k[u] = k[X]/\pi_u$.
- **b)** Déterminer dim C_u en fonction des degrés des invariants de similitude de u (utiliser l'exercice précédent).
- c) Montrer que $\dim k[u] \leq n \leq \dim C_u$.
- d) Montrer que les propositions suivantes sont équivalentes

```
(i) \dim k[u] = n;
```

```
(ii) \deg \pi_u = n;
```

- (iii) $\pi_u = \chi_u$;
- (iv) Il existe une base de E dans laquelle la matrice de u est une matrice compagnon;
- (v) Il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ soit libre;
- (vi) Il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ soit une base;
- (vii) Le k[X]-module (E, u) est monogène;
- (viii) u n'admet qu'un seul invariant de similitude;
- $(ix) C_u = k[u];$
- $(x) \dim C_u = n;$
- (xi) C_u est de dimension minimal;
- (xii) C_u est commutatif;
- (xiii) k[u] est un élément maximal dans l'ensemble des sous-algèbre commutative de $\operatorname{End}_k(\mathbf{E})$;
- (xiv) L'application $P \mapsto \operatorname{Ker} P(u)$ est une bijection entre l'ensemble des diviseurs unitaire de π_u et l'ensemble des sous-espaces stables par u;
- (xv) L'application $P \mapsto \operatorname{Im} P(u)$ est une bijection entre l'ensemble des diviseurs unitaire de π_u et l'ensemble des sous-espaces stables par u;

Si k est infini, les propositions précédentes sont équivalentes à

(xvi) l'ensemble des sous-espaces stables par u est fini;

Si χ_u est scindé, les propositions précédentes sont équivalentes à chacune des deux suivantes

(xvii) les sous-espaces propres de u sont tous de dimension 1;

```
(xviii) rg (u - \lambda id) \ge n - 1 pour tout \lambda \in k.
```

Un endomorphisme vérifiant ces propriétés est dit cyclique.

Exercice 3 – Équation à coefficients dans un anneau principal. Soient A un anneau principal et $a_1, a_2, a_3 \in A \setminus \{0\}$. Le but de l'exercice est de déterminer l'ensemble H des solutions de l'équation $a_1x_1 + a_2x_2 + a_3x_3 = 0$ d'inconnues (x_1, x_2, x_3) .

a) Montrer qu'on peut supposer que a_1, a_2, a_3 sont premiers entre eux dans leur ensemble (ce qu'on fait).

Nature de l'ensemble des solutions.

b) Montrer que H est un sous-module libre de rang 2 de A³.

On se ramène au cas où les a_i sont premiers entre eux deux à deux.

- c) On définit $d_i = \operatorname{pgcd}(a_j, a_k)$ pour $i, j, k \in \{1, 2, 3\}$ distincts. Montrer que $d_i d_j \mid a_k$ pour $i, j, k \in \{1, 2, 3\}$ distincts. On note a'_k le quotient de a_k par $d_i d_j$.
- **d)** Montrer que si $(x_1, x_2, x_3) \in H$ alors $d_i \mid x_i$.
- e) Montrer que l'application

$$\begin{cases} \mathbf{H} & \longrightarrow \mathbf{H}' \\ (x_1, x_2, x_3) & \longmapsto (x_1/d_1, x_2/d_2, x_3/d_3) \end{cases}$$

réalise une bijection de H sur l'ensemble H' des solutions de l'équation $a'_1x_1 + a'_2x_2 + a'_3x_3 = 0$ d'inconnues (x_1, x_2, x_3) .

f) Montrer que les a_i' sont premiers entre deux à deux.

Détermination de l'ensemble des solutions.

- g) En déduire une base de H'.
- **h)** Montrer que $h'_1 = (0, a'_3, -a'_2), h'_2 = (-a'_3, 0, a'_1)$ et $h'_3 = (a'_2, -a'_1, 0)$ est un système générateur de H'. À quelles conditions sur (m_1, m_2, m_3) et (n_1, n_2, n_3) , a-t-on $m_1h'_1 + m_2h'_2 + m_3h'_3 = n_1h'_1 + n_2h'_2 + n_3h'_3$? Exemple.
- i) Déterminer l'ensemble des solutions de l'équation 5x + 7y + 35z = 0.