Singular SPDEs and Related Topics Hausdorff Center, Bonn

BPHZ renormalisation and vanishing subcriticality limit of the fractional Φ_{d}^{3} model

Nils Berglund
Institut Denis Poisson, Université d'Orléans, France

October 24, 2019
joint works with Christian Kuehn (TU Munich) and Yvain Bruned (Edinburgh)

The fractional Φ_{d}^{3} model

$$
\partial_{t} u-\Delta^{\rho / 2} u=u^{2}+\xi
$$

$\triangleright u=u(t, x), t \geqslant 0, x \in \mathbb{T}^{d}$
$\triangleright \Delta^{\rho / 2}:=-(-\Delta)^{\rho / 2}$ fractional Laplacian, $\rho \in(0,2]$
$\triangleright \xi$ space-time white noise
III-posed in general, need to consider renormalised equation

$$
\partial_{t} u-\Delta^{\rho / 2} u=u^{2}+C(\varepsilon, \rho, u)+\xi^{\varepsilon}
$$

where $\xi^{\varepsilon}=\varrho^{\varepsilon} * \xi$ mollified noise
Motivations:

- simple yet interesting application of general theory of BPHZ renormalisation
\triangleright limit of vanishing local subcriticality as $\rho \searrow \rho_{\mathrm{c}}(d)$
\triangleright coupled SPDE-ODE systems, simplification of Fisher-KPP equation

Some recent progress on singular SPDEs

\triangleright Martin Hairer, A theory of regularity structures, Invent. Math. 198:269-504, 2014.
\diamond General theory of function spaces allowing to solve (subcritical) singular SPDEs
\diamond Ad hoc renormalisation of some particular SPDEs (PAM, Φ_{3}^{4})

- Yvain Bruned, Martin Hairer, and Lorenzo Zambotti, Algebraic renormalisation of regularity structures, Invent. Math., 215:1039-1156, 2019.
\triangleright Ajay Chandra and Martin Hairer, An analytic BPHZ theorem for regularity structures, arXiv:1612.08138, 113 pages, 2016.
- Yvain Bruned, Ajay Chandra, Ilya Chevyrev, and Martin Hairer, Renormalising SPDEs in regularity structures, arXiv:1711.10239, 85 pages, 2017. To appear in J. Eur. Math. Soc.
\diamond Systematic way of renormalising subcritical singular SPDEs

Local subcriticality

$$
\partial_{t} u-\Delta^{\rho / 2} u=u^{2}+\xi \quad \Rightarrow \quad u=K_{\rho} *\left[u^{2}+\xi\right]
$$

Definition 1: The equation is locally subcritical iff the nonlinear term u^{2} disappears when zooming in on small scales
$\mathcal{C}_{\mathfrak{s}}^{\alpha}\left(\mathbb{T}^{d}\right)$ Besov-Hölder space for scaling $\mathfrak{s}=(\rho, 1, \ldots, 1)$
$\triangleright \xi \in \mathcal{C}_{\mathfrak{s}}^{\alpha}\left(\mathbb{T}^{d}\right)$ for all $\alpha<-\frac{\rho+d}{2}$
\triangleright Schauder estimate: $f \in \mathcal{C}_{\mathfrak{s}}^{\alpha}\left(\mathbb{T}^{d}\right), \alpha+\rho \notin \mathbb{N} \Rightarrow K_{\rho} * f \in \mathcal{C}_{\mathfrak{s}}^{\alpha+\rho}\left(\mathbb{T}^{d}\right)$
Definition 2: The equation is locally subcritical iff when iterating the fixed-point equation, "Hölder regularity stays bounded below"

Proposition: [B \& Kuehn, J Stat Phys 168 (2017)]
The equation is locally subcritical iff $\rho>\rho_{\mathrm{C}}=\frac{d}{3}$

$$
\begin{aligned}
& \xi \in \mathcal{C}_{\mathfrak{s}}^{-\frac{\rho+d}{2}-} \Rightarrow K_{\rho} * \xi \in \mathcal{C}_{\mathfrak{s}}^{\frac{\rho-d}{2}-} \Rightarrow "\left(K_{\rho} * \xi\right)^{2} \text { has regularity } \rho-d-" \\
& \rho-d>-\frac{\rho+d}{2} \Leftrightarrow \rho>\frac{d}{3}
\end{aligned}
$$

Main result

Theorem: [B \& Bruned, '19] If $\xi^{\varepsilon}=\varrho^{\varepsilon} * \xi, \varrho^{\varepsilon}(t, x)=\frac{1}{\varepsilon^{\rho+d}} \varrho\left(\frac{t}{\varepsilon^{\rho}}, \frac{x}{\varepsilon}\right)$,

$$
\partial_{t} u-\Delta^{\rho / 2} u=u^{2}+C_{0}(\varepsilon, \rho)+C_{1}(\varepsilon, \rho) u+\xi^{\varepsilon}
$$

has local solutions admitting limit as $\varepsilon \searrow 0$ for C_{0}, C_{1} s.t.

$$
C_{0}(\varepsilon, \rho) \simeq\left\{\begin{array} { l l }
{ \frac { \operatorname { l o g } (\varepsilon ^ { - 1 }) } { \varepsilon _ { \mathrm { C } } ^ { d - \rho } } } & { \varepsilon \geqslant \varepsilon _ { \mathrm { c } } } \\
{ \frac { A _ { 0 } } { \varepsilon ^ { d - \rho } } } & { \varepsilon < \varepsilon _ { \mathrm { c } } }
\end{array} \quad C _ { 1 } (\varepsilon , \rho) \simeq \left\{\begin{array}{ll}
\frac{\log \left(\varepsilon^{-1}\right)}{\overline{\bar{c}}_{\mathrm{C}}^{d-2 \rho}} & \varepsilon \geqslant \bar{\varepsilon}_{\mathrm{c}} \\
\frac{\bar{A}_{0}}{\varepsilon^{d-2 \rho}} & \varepsilon<\bar{\varepsilon}_{\mathrm{c}}
\end{array}\right.\right.
$$

where $\bar{\varepsilon}_{\mathrm{c}}(\rho)<\varepsilon_{\mathrm{c}}(\rho)$ both of order

$$
\exp \left\{-\frac{1}{\rho-\rho_{\mathrm{c}}}\left[\log \left(\frac{\text { const }}{\rho-\rho_{\mathrm{c}}}\right)+\mathcal{O}(1)\right]\right\}
$$

and A_{0}, \bar{A}_{0} explicit constants

Model space

T_{0} set of symbols containing
$\triangleright \mathbf{X}^{k}=X_{0}^{k_{0}} \ldots X_{d}^{k_{d}}$, degree $\left|\mathbf{X}^{k}\right|_{\mathfrak{s}}=|k|_{\mathfrak{s}}=\rho k_{0}+k_{1}+\cdots+k_{d}$
\triangleright 三 representing ξ, degree $|\equiv|_{\mathfrak{s}}=-\frac{\rho+d}{2}-\kappa$
$\triangleright \tau_{1}, \tau_{2} \in T_{0} \Rightarrow \tau_{1} \tau_{2} \in T_{0}$, degree $\left|\tau_{1} \tau_{2}\right|_{\mathfrak{s}}=\left|\tau_{1}\right|_{\mathfrak{s}}+\left|\tau_{2}\right|_{\mathfrak{s}}$
$\triangleright \tau \in T_{0}, \tau \neq \mathbf{X}^{k} \Rightarrow \mathcal{I}_{\rho}(\tau) \in T_{0}$ repres. $K_{\rho} * u,\left|\mathcal{I}_{\rho}(\tau)\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+\rho$
\triangleright In some cases, need symbols $\partial^{\ell} \mathcal{I}_{\rho}(\tau),\left|\partial^{\ell} \mathcal{I}_{\rho}(\tau)\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+\rho-|\ell|_{\mathfrak{s}}$
Convenient graphical notation:

$$
\begin{aligned}
& \boldsymbol{V}=\mathcal{I}_{\rho}\left(\overline{)^{2}} \quad \bigvee \mathfrak{Y}=\left[\mathcal{I}_{\rho}\left(\mathcal{I}_{\rho}\left(\mathcal{I}_{\rho}(\equiv)^{2}\right) \mathcal{I}_{\rho}(\overline{\text { (}})\right)\right]^{2}\right. \\
& { }^{k}{ }^{\ell} \mathcal{L}=\mathcal{I}_{\rho}\left(\mathbf{X}^{k} \partial^{\ell} \mathcal{I}_{\rho}(\equiv)\right)
\end{aligned}
$$

Model space: graded vector space \mathcal{T} spanned by minimal $T \subset T_{0}$ allowing to represent $U=\mathcal{I}_{\rho}\left(\equiv+U^{2}\right)+P$ where $P=\sum_{k} c_{k} \mathbf{X}^{k}$ polynomial
Remark: $\rho>\rho_{\mathrm{c}} \Rightarrow$ degrees of $\tau \in T$ bdd below

Model space

Proposition: [B \& Kuehn '17]
Symbols $\tau \in T$ of negative degree are
\triangleright either complete binary trees, e.g. $\tau=V, \mho_{Q}$,认,

$$
|\tau|_{\mathfrak{s}}=-\frac{2}{3} d+\frac{3 m-1}{2}\left(\rho-\rho_{c}\right)-\text { if } \tau \text { has } 2 m \text { edges }
$$

\triangleright or incomplete binary trees, e.g. $\tau=\uparrow,\langle, \bar{\zeta}$,

$$
|\tau|_{\mathfrak{s}}=-\frac{1}{3} d+\frac{3 \bar{m}+1}{2}\left(\rho-\rho_{c}\right)-\text { if } \tau \text { has } 2 \bar{m}+1 \text { edges }
$$

- or incomplete trees with one node decoration $X_{i}, 1 \leqslant i \leqslant d$ (complete trees with decorations don't matter for symmetry reasons)

Proposition: [B \& Kuehn '17]

Number of symbols of negative degree is of order $\left(\rho-\rho_{c}\right)^{3 / 2} \mathrm{e}^{\beta d /\left(\rho-\rho_{c}\right)}$
Proof uses Wedderburn-Etherington numbers (rather than Catalan nbrs)

General formula for the counterterms

Theorem: [Bruned, Hairer, Zambotti; Bruned, Chandra, Chevyrev, Hairer '19]
Counterterms given by

$$
C(\varepsilon, \rho, u)=\sum_{\tau \in T:|\tau| \mathfrak{s}<0} c_{\varepsilon}(\tau) \frac{\Upsilon^{F}(\tau)(u)}{S(\tau)}
$$

$\triangleright \Upsilon^{F}(\tau)(u)$ given by inductive relation with $\Upsilon^{F}(\equiv)(u)=1$; here

$$
\Upsilon^{F}(\tau)(u)= \begin{cases}2^{n_{\text {inner }}(\tau)} & \text { if } \tau \text { complete } \\ 2^{n_{\text {inner }}(\tau)} u & \text { if } \tau \text { incomplete without } X_{i} \\ 2^{n_{\mathrm{inner}}(\tau)} \partial_{x_{i}} u & \text { if } \tau \text { incomplete with } X_{i}\end{cases}
$$

where $n_{\text {inner }}(\tau)$ number of nodes of τ that are not leaves
$\triangleright S(\tau)$ symmetry factor; here $S(\tau)=2^{n_{\text {sym }}(\tau)}$ where $n_{\text {sym }}(\tau)$ nb of inner nodes with 2 identical lines of offspring, e.g.

$$
S(\mathscr{V})=S\left(\mathscr{Y}_{)=2} \quad S\left(\mathscr{Y}^{\prime}\right)=2^{3} \quad S\left(\mathscr{Y}^{\prime}\right.\right.
$$

Model expectations

$\triangleright c_{\varepsilon}(\tau)=\mathbb{E}\left[\left(\Pi^{\varepsilon} \tilde{\mathcal{A}}_{-} \tau\right)(0)\right]=: E\left(\tilde{\mathcal{A}}_{-} \tau\right) \quad$ where $\tilde{\mathcal{A}}_{-}$described below and $\boldsymbol{\Pi}^{\varepsilon}$ canonical model defined by (writing $z=(t, x)$)

$$
\begin{aligned}
\left(\boldsymbol{\Pi}^{\varepsilon} \mathbf{1}\right)(z) & =1 \quad\left(\boldsymbol{\Pi}^{\varepsilon} X_{i}\right)(z)=z_{i} \quad\left(\boldsymbol{\Pi}^{\varepsilon} \equiv\right)(z)=\xi^{\varepsilon}(z) \\
\left(\boldsymbol{\Pi}^{\varepsilon} \tau \bar{\tau}\right)(z) & =\left(\boldsymbol{\Pi}^{\varepsilon} \tau\right)(z)\left(\boldsymbol{\Pi}^{\varepsilon} \bar{\tau}\right)(z) \\
\left(\boldsymbol{\Pi}^{\varepsilon} \partial^{k} \mathcal{I}_{\rho} \tau\right)(z) & =\int \partial^{k} K_{\rho}(z-\bar{z})\left(\boldsymbol{\Pi}^{\varepsilon} \tau\right)(\bar{z}) \mathrm{d} \bar{z}
\end{aligned}
$$

Remark: $E(\tau)=0$ for trees with odd \# of leaves, for planted trees $\mathcal{I}_{\rho}(\tau)$, and for trees with one X_{i} decoration (and no edge decoration)

$$
\begin{aligned}
E(\bullet) & =\mathbb{E} \int K_{\rho}(-z) \xi^{\varepsilon}(z) \mathrm{d} z=\int K_{\rho}^{\varepsilon}(-z) \mathbb{E}[\xi(\mathrm{d} z)]=0 \quad K_{\rho}^{\varepsilon}=K_{\rho} * \varrho^{\varepsilon} \\
E(\mathscr{V}) & =\int K_{\rho}^{\varepsilon}\left(-z_{1}\right) K_{\rho}^{\varepsilon}\left(-z_{2}\right) \mathbb{E}\left[\xi\left(\mathrm{d} z_{1}\right) \xi\left(\mathrm{d} z_{2}\right)\right]=\int K_{\rho}^{\varepsilon}\left(-z_{1}\right)^{2} \mathrm{~d} z_{1} \\
E(\bigvee) & =\mathbb{E}\left[\left(\int K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) \xi\left(\mathrm{d} z_{1}\right) \xi\left(\mathrm{d} z_{2}\right) \mathrm{d} z\right)^{2}\right]
\end{aligned}
$$

Feynman diagrams

Isserlis-Wick thm: $X \sim \mathcal{N}(0, \Sigma) \Rightarrow \mathbb{E}\left[X_{1} \ldots X_{2 m}\right]=\sum_{\text {pairings }} \Pi \mathbb{E}\left[X_{i} X_{j}\right]$

$$
E(\bigcup)=\mathbb{E}\left[\left(\int K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) \xi\left(\mathrm{d} z_{1}\right) \xi\left(\mathrm{d} z_{2}\right) \mathrm{d} z\right)^{2}\right]
$$

$$
=0+2 \int K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(\bar{z}-z_{1}\right) K_{\rho}(-\bar{z}) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) K_{\rho}^{\varepsilon}\left(\bar{z}-z_{2}\right) \mathrm{d} z \mathrm{~d} \bar{z} \mathrm{~d} z_{1} \mathrm{~d} z_{2}
$$

Definition: Feynman (vacuum) diagram
Given by $\Gamma=\left(\mathscr{V}, \mathscr{E}, v^{*}\right)$ directed (multi)graph, v^{*} distinguished node, \mathfrak{L} finite set of types, a map $\mathfrak{t}: \mathscr{E} \rightarrow \mathfrak{L}, e \mapsto \mathfrak{t}(e)$, kernels $K_{\mathrm{t}}:\left(\mathbb{R}^{d+1}\right)^{*} \rightarrow \mathbb{R}$

$$
E(\Gamma)=\int_{\left(\mathbb{R}^{d+1}\right)^{\Downarrow / \nu^{\star}}} \prod_{e \in \mathscr{E}} K_{\mathfrak{t}(e)}\left(z_{e_{+}}-z_{e_{-}}\right) \mathrm{d} z \quad e=\left(e_{-}, e_{+}\right), z_{\nu^{*}}=0
$$

Simplification of Feynman diagrams

v^{*} can be moved, and vertices of degree 2 can be integrated out:

$$
E(\mathscr{Y})=2 \cdots=-\frac{1}{4}
$$

$$
E\left(Y_{0}\right)=2
$$

Degree of Feynman diagrams

Define
where

$$
\operatorname{deg}(\Gamma)=(\rho+d)(|\mathscr{V}|-1)+\sum_{e \in \mathscr{E}} \operatorname{deg}(\mathfrak{t}(e))
$$

$$
\begin{aligned}
& \operatorname{deg}(\longrightarrow)=\operatorname{deg}(-\cdots)=-d \\
& \operatorname{deg}(\cdots \sim M)=\operatorname{deg}(\ldots \sim M)=\rho-d \quad \operatorname{deg}(-m \rightarrow)=2 \rho-d
\end{aligned}
$$

Then for any pairing P, one has $\operatorname{deg}(\Gamma(\tau, P))=\left.|\tau|_{\mathfrak{s}}\right|_{\kappa=0}$
Simple examples suggest that $|E(\Gamma)| \asymp \begin{cases}\varepsilon^{\operatorname{deg} \Gamma} & \text { if } \operatorname{deg} \Gamma<0 \\ \log \left(\varepsilon^{-1}\right) & \text { if } \operatorname{deg} \Gamma=0 \\ 1 & \text { if } \operatorname{deg} \Gamma>0\end{cases}$
This is however not the case in general, because of subdivergences: there can be subgraphs $\gamma \subset \Gamma$ with $\operatorname{deg} \gamma<\operatorname{deg} \Gamma \leqslant 0$

Hepp sectors

$\mathbf{T}=(T, \mathbf{n}): T$ binary tree with $|\mathscr{V}|$ leaves, \mathbf{n} increasing node decoration Hepp sector: $D_{\mathbf{T}}=\left\{z \in \Lambda^{|\mathscr{V}|}: C^{-1} 2^{-\mathbf{n}_{i \wedge j}} \leqslant\left\|x_{i}-x_{j}\right\|_{\mathfrak{s}} \leqslant C 2^{-\mathbf{n}_{i \wedge j}}\right\}$ where $i \wedge j$ last common ancestor in $T \quad \Rightarrow \quad \Lambda^{|\mathscr{V}|} \subset \bigcup_{T} D_{T}$

Theorem [Weinberg '66, Hairer '18]
Assume $\left|K_{\mathfrak{t}}(z)\right| \lesssim\|z\|_{\mathfrak{s}}^{\text {deg } t}$. If $\operatorname{deg} \gamma>0$ for all $\gamma \subset \Gamma$ then $|E(\Gamma)|<\infty$
Proof idea: $z \in D_{\mathrm{T}} \Rightarrow \prod_{e \in \mathscr{E}}\left|K\left(z_{e_{+}}-z_{e_{-}}\right)\right| \lesssim \prod_{e \in \mathscr{E}} 2^{-\mathbf{n}^{\uparrow} \uparrow} \operatorname{deg}(e), e^{\uparrow}=e_{+} \wedge e_{-}$ $\operatorname{Vol}\left(D_{\mathrm{T}}\right) \lesssim \prod_{v \in T} 2^{-(\rho+d) n_{v}}$
Thus $|E(\Gamma)| \lesssim \sum_{T, \mathbf{n}} \Pi_{v \in T} 2^{-\eta_{v} \mathbf{n}_{v}}$ where $\eta_{v}=\rho+d+\sum_{e \in \mathscr{E}} \operatorname{deg}(e) 1_{e^{\uparrow}}(v)$ $\forall v, \sum_{w \geqslant v} \eta_{w}=\operatorname{deg} \gamma(v)>0$; use induction starting from leaves

Subdivergences

Example:

$$
\Gamma=\underbrace{40}_{5}
$$

$T=$

$\operatorname{deg} \Gamma=10 \rho-4 d, \operatorname{deg} \gamma=2 \rho-d \quad \Rightarrow \quad \operatorname{deg} \gamma<\operatorname{deg} \Gamma<0$ if $\frac{3}{8} d<\rho<\frac{2}{5} d$ γ is called unsafe if $\mathbf{n}_{d}>\mathbf{n}_{c}$ (it is small and far from its parents)
Define

Then $E(\Gamma)-E\left(\hat{\mathscr{C}}_{\gamma} \Gamma\right)$ contains a factor

$$
\left|K_{\rho}\left(z_{6}-z_{5}\right)-K_{\rho}\left(z_{6}-z_{4}\right)\right| \lesssim\left|\left(z_{5}-z_{4}\right) \cdot \nabla K_{\rho}\left(z_{6}-z_{4}\right)\right| \lesssim \frac{\left\|z_{5}-z_{4}\right\|_{\mathfrak{s}}}{\left\|z_{6}-z_{4}\right\|_{\mathfrak{s}}^{d+1}}
$$

This is smaller than $\left|K_{\rho}\left(z_{6}-z_{5}\right)\right|$ by a factor $2^{-\left(\mathbf{n}_{d}-\mathbf{n}_{b}\right)}$
\Rightarrow if $\operatorname{deg} \gamma>-1$, setting $\tilde{\mathcal{A}}_{-} \Gamma=-\Gamma+\hat{\mathscr{C}}_{\gamma} \Gamma$ one has $\left|E\left(\tilde{\mathcal{A}}_{-} \Gamma\right)\right| \lesssim \varepsilon^{\operatorname{deg}} \Gamma$ If $\operatorname{deg} \gamma \leqslant-1$, has to push further the Taylor expansion $\left(\hat{\mathscr{C}}_{\gamma} \Gamma=\sum_{k} \ldots\right)$

Zimmermann's forest formula

Definition:

A forest is a collection \mathscr{F} of $\gamma \subset \Gamma, \operatorname{deg} \gamma \leqslant 0$, which are pairwise either vertex disjoint, or included one in the other. If $\varrho(\mathscr{F})$ set of roots of \mathscr{F}, let $\mathscr{C}_{\varnothing} \Gamma=\Gamma$ and inductively define $\mathscr{C}_{\mathscr{F}} \Gamma=\mathscr{C}_{\mathscr{F} \backslash \varrho(\mathscr{F})} \prod_{\gamma \in \varrho(\mathscr{F})} \mathscr{C}_{\gamma} \Gamma$

Theorem: Zimmermann's forest formula [Zimmermann '66, Hairer '18]

$$
\tilde{\mathcal{A}}_{-} \Gamma=-\sum_{\text {forests } \mathscr{F}}(-1)^{|\mathscr{F}|} \mathscr{C}_{\mathscr{F}} \Gamma
$$

\triangleright Given a Hepp sector $\mathbf{T}=(T, \mathbf{n})$, a forest is safe if all its γ are safe
\triangleright Any forest $\mathscr{F}=\mathscr{F}_{\mathrm{s}} \sqcup \mathscr{F}_{\mathrm{u}}$ with \mathscr{F}_{s} safe, and all $\gamma \in \mathscr{F}_{\mathrm{u}}$ unsafe for \mathscr{F}_{s}
\triangleright Then $\tilde{\mathcal{A}}_{-} \Gamma=\sum_{\mathscr{F}_{\mathrm{s}} \text { safe }} \prod_{\gamma \in \mathscr{F}_{\mathrm{s}}}\left(-\mathscr{C}_{\gamma}\right) \prod_{\bar{\gamma} \text { unsafe for } \mathscr{F}_{\mathrm{s}}}\left(\right.$ id $\left.-\mathscr{C}_{\bar{\gamma}}\right) \Gamma$

Main estimate

$$
\left|c_{\varepsilon}(\tau)\right| \leqslant \sum_{P} \sum_{T} \sum_{\mathscr{F}_{\mathbf{s}}} \sum_{\mathbf{n}} \int_{D_{T, \mathbf{n}}} \prod_{e \in \mathscr{E}\left(\tilde{\mathcal{A}}_{-} \Gamma(\tau, P)\right)}\left|K_{\mathrm{t}(e)}\left(z_{e_{+}}-z_{e_{-}}\right)\right| \mathrm{d} z
$$

Proposition: [B \& Bruned '19]

$$
\sum_{\mathbf{n}} \sup _{z \in D_{\mathrm{T}}} \prod_{e}\left|K_{\mathrm{t}(e)}(\ldots)\right| \operatorname{Vol}\left(D_{\mathbf{T}}\right) \leqslant \begin{cases}K_{1}^{|\mathscr{E}|} \mid \operatorname{deg} \Gamma \log \left(\varepsilon^{-1}\right)^{\zeta} & \text { if } \operatorname{deg} \Gamma<0 \\ K_{1}^{|\mathscr{E}|} \log \left(\varepsilon^{-1}\right)^{1+\zeta} & \text { if } \operatorname{deg} \Gamma=0\end{cases}
$$

where K_{1} depends only on K_{t} and $\zeta \in\{0,1\} \#$ of $\gamma \subset \Gamma$ with $\operatorname{deg} \gamma=0$
Proof uses lower bound on $\sum_{w \geqslant v} \eta_{w}$ in terms of $\operatorname{deg}(\gamma(v))$ as in Weinberg's thm For τ complete with $2 k+2$ leaves, $k \leqslant k_{\max }=\frac{d-\rho}{3\left(\rho-\rho_{c}\right)}$:
\triangleright \# of pairings $P=(2 k+1)!!=\prod_{i=1}^{k}(2 i+1)$
\triangleright \# of Hepp trees $T \leqslant(2 k-1)$!
\triangleright \# of safe forests $\mathscr{F}_{s} \leqslant 2^{k}$
$\triangleright \%$ of pairings yielding $\zeta=1$ bdd by $\frac{k_{\max }!!\left(2 k-k_{\max }\right)!!}{(2 k+1)!!} 1_{k_{\max } \text { odd } \leqslant 2 k+1}$

Main result (precise version)

Theorem: [B \& Bruned, arXiv/1907.13028]
$\exists M>0$ s.t. counterterm $C_{0}(\varepsilon, \rho)+C_{1}(\varepsilon, \rho) u$ satisfies

$$
\begin{array}{rlrl}
\left|C_{0}(\varepsilon, \rho)\right| & \leqslant M \varepsilon_{\mathrm{c}}^{-(d-\rho)}\left[\log \left(\varepsilon^{-1}\right)+\frac{1}{\rho-\rho_{\mathrm{c}}}\left(\frac{\varepsilon_{\mathrm{c}}}{\varepsilon}\right)^{3\left(\rho-\rho_{\mathrm{c}}\right)}\right] & & \varepsilon \geqslant \varepsilon_{\mathrm{c}} \\
\left|\frac{C_{0}(\varepsilon, \rho)}{A_{0} \varepsilon^{-(d-\rho)}}-1\right| \leqslant \frac{M}{\rho-\rho_{\mathrm{c}}}\left(\frac{\varepsilon}{\varepsilon_{\mathrm{c}}}\right)^{3\left(\rho-\rho_{\mathrm{c}}\right)} & & \varepsilon<\varepsilon_{\mathrm{c}} \\
\left|C_{1}(\varepsilon, \rho)\right| \leqslant M \bar{\varepsilon}_{\mathrm{c}}-(d-2 \rho)\left[\log \left(\varepsilon^{-1}\right)+\frac{1}{\rho-\rho_{\mathrm{c}}}\left(\frac{\bar{\varepsilon}_{\mathrm{c}}}{\varepsilon}\right)^{3\left(\rho-\rho_{\mathrm{c}}\right)}\right] & & \varepsilon \geqslant \bar{\varepsilon}_{\mathrm{c}} \\
\left|\frac{C_{0}(\varepsilon, \rho)}{\bar{A}_{0} \varepsilon^{-(d-2 \rho)}}-1\right| \leqslant \frac{M}{\rho-\rho_{\mathrm{c}}}\left(\frac{\varepsilon}{\bar{\varepsilon}_{\mathrm{c}}}\right)^{3\left(\rho-\rho_{\mathrm{c}}\right)} & & \varepsilon<\bar{\varepsilon}_{\mathrm{c}}
\end{array}
$$

where $\varepsilon_{\mathrm{c}}=f\left(k_{\max }\right), \bar{\varepsilon}_{\mathrm{c}}=f\left(\bar{k}_{\max }\right)$,

$$
\begin{gathered}
f(k)=\exp \left\{-\frac{\left.\log k+a-\frac{\log k}{2 k}\right)}{\rho-\rho_{c}}\right\} \\
k_{\max }=\frac{d-\rho}{3\left(\rho-\rho_{c}\right)} \quad \bar{k}_{\max }=\frac{d-2 \rho}{3\left(\rho-\rho_{c}\right)} \\
A_{0}=-\lim _{\varepsilon \rightarrow 0} \varepsilon^{d-\rho} E(\mathscr{V}) \\
\bar{A}_{0}=-4 \lim _{\varepsilon \rightarrow 0} \varepsilon^{d-2 \rho} E(\zeta)
\end{gathered}
$$

Thanks for your attention

$$
\text { arXiv/1907. } 13028
$$

www.idpoisson.fr/berglund/Bonn19_handout.pdf

