Séminaire du CERMICS

Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions

Nils Berglund

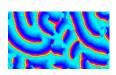
MAPMO. Université d'Orléans

École des Ponts ParisTech, 15 June 2016

with Christian Kuehn (TU Munich)

Plan

1. Motivation and main result



2. Regularity structures for dummies

3. Extension to FitzHugh-Nagumo

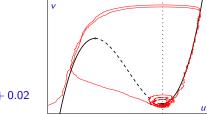
$$U = \stackrel{\uparrow}{} + \varphi \mathbf{1} + \left[a_1 \stackrel{\Psi}{\Psi} + a_2 \stackrel{\Psi}{\Psi} + a_3 \stackrel{\Psi}{\Psi} + a_4 \stackrel{\Psi}{\Psi} \right] + \dots$$

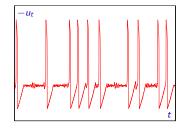
$$V = \stackrel{\uparrow}{\Psi} + \psi \mathbf{1} + \left[\hat{a}_1 \stackrel{\Psi}{\Psi} + \hat{a}_2 \stackrel{\Psi}{\Psi} + \hat{a}_3 \stackrel{\Psi}{\Psi} + \hat{a}_4 \stackrel{\Psi}{\Psi} \right] + \dots$$

1. FitzHugh-Nagumo SDE

$$\begin{aligned} \mathrm{d}u_t &= [u_t - u_t^3 + v_t] \, \mathrm{d}t + \sigma \, \mathrm{d}W_t \\ \mathrm{d}v_t &= \varepsilon [a - u_t - bv_t] \, \mathrm{d}t \end{aligned}$$

- $\triangleright u_t$: membrane potential of neuron
- $\triangleright v_t$: gating variable (proportion of open ion channels)





FitzHugh-Nagumo SPDE

$$\partial_t u = \Delta u + u - u^3 + v + \xi$$
$$\partial_t v = a_1 u + a_2 v$$

$$\triangleright u = u(t,x) \in \mathbb{R}, \ v = v(t,x) \in \mathbb{R} \ (\text{or } \mathbb{R}^n), \ (t,x) \in D = \mathbb{R}_+ \times \mathbb{T}^d, \ d = 2,3$$

$$\xi(t,x) \text{ Gaussian space-time white noise: } \mathbb{E}\big[\xi(t,x)\xi(s,y)\big] = \delta(t-s)\delta(x-y)$$

$$\xi \text{: distribution defined by } \langle \xi,\varphi \rangle = W_{\varphi} \sim \mathcal{N}(0,\|\varphi\|_{L^{2}}^{2}), \ \mathbb{E}[W_{\varphi}W_{\varphi'}] = \langle \varphi,\varphi' \rangle$$

(Link to simulation)

Main result

Mollified noise: $\xi^{\varepsilon} = \varrho_{\varepsilon} * \xi$ where $\varrho_{\varepsilon}(t,x) = \frac{1}{\varepsilon^{d+2}} \varrho(\frac{t}{\varepsilon^2},\frac{x}{\varepsilon})$ with ϱ compactly supported, integral 1

Theorem [NB & C. Kuehn, Elec J Probab 21 (18):1-48 (2016)]

There exists a choice of renormalisation constant $C(\varepsilon)$, $\lim_{\varepsilon\to 0} C(\varepsilon) = \infty$, such that

$$\partial_t u^{\varepsilon} = \Delta u^{\varepsilon} + [1 + C(\varepsilon)]u^{\varepsilon} - (u^{\varepsilon})^3 + v^{\varepsilon} + \xi^{\varepsilon}$$
$$\partial_t v^{\varepsilon} = a_1 u^{\varepsilon} + a_2 v^{\varepsilon}$$

admits a sequence of local solutions $(u^{\varepsilon}, v^{\varepsilon})$, converging in probability to a limit (u, v) as $\varepsilon \to 0$.

Main result

Mollified noise: $\xi^{\varepsilon} = \varrho_{\varepsilon} * \xi$ where $\varrho_{\varepsilon}(t,x) = \frac{1}{\varepsilon^{d+2}} \varrho(\frac{t}{\varepsilon^2},\frac{x}{\varepsilon})$ with ϱ compactly supported, integral 1

Theorem [NB & C. Kuehn, Elec J Probab 21 (18):1-48 (2016)]

There exists a choice of renormalisation constant $C(\varepsilon)$, $\lim_{\varepsilon\to 0} C(\varepsilon) = \infty$, such that

$$\begin{split} \partial_t u^\varepsilon &= \Delta u^\varepsilon + [1 + \textcolor{red}{C(\varepsilon)}] u^\varepsilon - (u^\varepsilon)^3 + v^\varepsilon + \xi^\varepsilon \\ \partial_t v^\varepsilon &= a_1 u^\varepsilon + a_2 v^\varepsilon \end{split}$$

admits a sequence of local solutions $(u^{\varepsilon}, v^{\varepsilon})$, converging in probability to a limit (u, v) as $\varepsilon \to 0$.

- ▶ Local solution means up to a random possible explosion time
- ▷ Initial conditions should be in appropriate Hölder spaces
- $ho \ C(\varepsilon)
 times \log(\varepsilon^{-1})$ for d=2 and $C(\varepsilon)
 times \varepsilon^{-1}$ for d=3
- \triangleright Similar results for more general cubic nonlinearity and $v \in \mathbb{R}^n$

$$\partial_t u = \Delta u + F(u) + \xi$$

$$u(0, x) = u_0(x)$$

$$\partial_t u = \Delta u + F(u) + \xi$$
$$u(0, x) = u_0(x)$$

Construction of mild solution via Duhamel formula:

$$\partial_t u = \Delta u + F(u) + \xi$$
$$u(0, x) = u_0(x)$$

Construction of mild solution via Duhamel formula:

Notation: $u = Gu_0 + G * f$

$$\partial_t u = \Delta u + F(u) + \xi$$
$$u(0, x) = u_0(x)$$

Construction of mild solution via Duhamel formula:

$$\partial_t u = \Delta u + f \quad \Rightarrow \quad u(t,x) = (e^{\Delta t} u_0)(x) + \int_0^t e^{\Delta(t-s)} f(s,\cdot)(x) \, \mathrm{d}s$$
Notation: $u = Cu_0 + C_0 + f$

Notation:
$$u = Gu_0 + G * f$$

$$\triangleright \partial_t u = \Delta u + \xi \implies u = Gu_0 + G * \xi$$
 (stochastic convolution)

$$\partial_t u = \Delta u + F(u) + \xi$$
$$u(0, x) = u_0(x)$$

Construction of mild solution via Duhamel formula:

Notation:
$$u = Gu_0 + G * f$$

$$ho \ \partial_t u = \Delta u + \xi \quad \Rightarrow \quad u = Gu_0 + G * \xi \quad ext{(stochastic convolution)}$$

Aim: use Banach's fixed-point theorem — but which function space?

Hölder spaces

Definition of \mathcal{C}^{α} for $f: I \to \mathbb{R}$, with $I \subset \mathbb{R}$ a compact interval:

$$\triangleright 0 < \alpha < 1$$
: $|f(x) - f(y)| \leqslant C|x - y|^{\alpha} \quad \forall x \neq y$

$$ho \ \alpha > 1$$
: $f \in \mathcal{C}^{\lfloor \alpha \rfloor}$ and $f' \in \mathcal{C}^{\alpha - 1}$

$$ho \ \alpha <$$
 0: f distribution, $|\langle f, \eta_x^\delta \rangle| \leqslant C \delta^{\alpha}$

where
$$\eta_x^\delta(y)=\frac{1}{\delta}\eta(\frac{x-y}{\delta})$$
 for all test functions $\eta\in\mathcal{C}^{-\lfloor\alpha\rfloor}$

Property:
$$f \in \mathcal{C}^{\alpha}$$
, $0 < \alpha < 1$ \Rightarrow $f' \in \mathcal{C}^{\alpha-1}$ where $\langle f', \eta \rangle = -\langle f, \eta' \rangle$

Remark:
$$f \in \mathcal{C}^{1+\alpha} \not\Rightarrow |f(x) - f(y)| \leqslant C|x - y|^{1+\alpha}$$
. See e.g $f(x) = x + |x|^{3/2}$

Hölder spaces

Definition of \mathcal{C}^{α} for $f: I \to \mathbb{R}$, with $I \subset \mathbb{R}$ a compact interval:

$$\triangleright 0 < \alpha < 1$$
: $|f(x) - f(y)| \leqslant C|x - y|^{\alpha} \quad \forall x \neq y$

$$ho \ \alpha > 1$$
: $f \in \mathcal{C}^{\lfloor \alpha \rfloor}$ and $f' \in \mathcal{C}^{\alpha - 1}$

$${\rm P} \ \alpha < {\rm 0:} \ f \ {\rm distribution,} \ |\langle f, \eta_{\rm x}^\delta \rangle| \leqslant C \delta^\alpha$$

where
$$\eta_x^\delta(y)=\frac{1}{\delta}\eta(\frac{x-y}{\delta})$$
 for all test functions $\eta\in\mathcal{C}^{-\lfloor\alpha\rfloor}$

Property:
$$f \in \mathcal{C}^{\alpha}$$
, $0 < \alpha < 1$ \Rightarrow $f' \in \mathcal{C}^{\alpha-1}$ where $\langle f', \eta \rangle = -\langle f, \eta' \rangle$

Remark:
$$f \in \mathcal{C}^{1+\alpha} \not\Rightarrow |f(x) - f(y)| \leqslant C|x - y|^{1+\alpha}$$
. See e.g $f(x) = x + |x|^{3/2}$

Case of the heat kernel:
$$(\partial_t - \Delta)u = f \implies u = G * f$$

Parabolic scaling
$$C_{\mathfrak{s}}^{\alpha}$$
: $|x-y| \longrightarrow |t-s|^{1/2} + \sum_{i=1}^{d} |x_i - y_i|$

$$\frac{1}{\delta} \eta(\frac{x-y}{\delta}) \longrightarrow \frac{1}{\delta^{d+2}} \eta(\frac{t-s}{\delta^2}, \frac{x-y}{\delta})$$

Schauder estimates and fixed-point equation

Schauder estimate

$$\alpha \notin \mathbb{Z}, \ f \in \mathcal{C}^{\alpha}_{\mathfrak{s}} \quad \Rightarrow \quad G * f \in \mathcal{C}^{\alpha+2}_{\mathfrak{s}}$$

Fact: in dimension d, space-time white noise $\xi \in \mathcal{C}^{\alpha}_{\mathfrak{s}}$ a.s. $\forall \alpha < -\frac{d+2}{2}$

Schauder estimates and fixed-point equation

Schauder estimate

$$\alpha \notin \mathbb{Z}, \ f \in \mathcal{C}^{\alpha}_{\mathfrak{s}} \quad \Rightarrow \quad G * f \in \mathcal{C}^{\alpha+2}_{\mathfrak{s}}$$

Fact: in dimension d, space-time white noise $\xi \in \mathcal{C}^{\alpha}_{\mathfrak{s}}$ a.s. $\forall \alpha < -\frac{d+2}{2}$

Fixed-point equation:
$$u = Gu_0 + G * [\xi + F(u)]$$

$$\triangleright d = 1: \ \xi \in \mathcal{C}_{\mathfrak{s}}^{-3/2^-} \Rightarrow G * \xi \in \mathcal{C}_{\mathfrak{s}}^{1/2^-} \Rightarrow F(u) \text{ defined}$$

$$\triangleright d = 3: \ \xi \in \mathcal{C}_{\mathfrak{s}}^{-5/2^{-}} \Rightarrow G * \xi \in \mathcal{C}_{\mathfrak{s}}^{-1/2^{-}} \Rightarrow F(u) \text{ not defined}$$

$$\, \triangleright \, d = 2 \colon \, \xi \in \mathcal{C}_{\mathfrak{s}}^{-2^-} \Rightarrow G \ast \xi \in \mathcal{C}_{\mathfrak{s}}^{0^-} \Rightarrow F(u) \text{ not defined}$$

Boundary case, can be treated with Besov spaces [Da Prato & Debussche 2003]

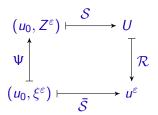
Why not use mollified noise? Limit $\varepsilon \to 0$ does not exist

Regularity structures

Basic idea of Martin Hairer [Inventiones Math. **198**, 269–504, 2014]: Lift mollified fixed-point equation

$$u = Gu_0 + G * [\xi^{\varepsilon} + F(u)]$$

to a larger space called a Regularity structure



- $\triangleright u^{\varepsilon} = \bar{\mathcal{S}}(u_0, \xi^{\varepsilon})$: classical solution of mollified equation
- $\lor U = S(u_0, Z^{\varepsilon})$: solution map in regularity structure

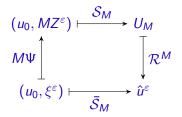
15 June 2016

Regularity structures

Basic idea of Martin Hairer [Inventiones Math. 198, 269–504, 2014]: Lift mollified fixed-point equation

$$u = Gu_0 + G * [\xi^{\varepsilon} + F(u)]$$

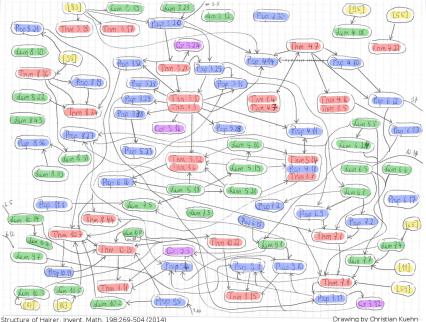
to a larger space called a Regularity structure



- $\triangleright u^{\varepsilon} = \bar{\mathcal{S}}(u_0, \xi^{\varepsilon})$: classical solution of mollified equation
- $\lor U = S(u_0, Z^{\varepsilon})$: solution map in regularity structure
- \triangleright S and \mathcal{R} are continuous (in suitable topology)
- \triangleright Renormalisation: modification of the lift Ψ

Atternative approaches for d=3: [Catellier & Chouk '13], [Kupiainen '15] Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs 15 June 2016 7/18

Regularity structures



Structure of Hairer, Invent. Math. 198:269-504 (2014)

15 June 2016

Basic idea: Generalised Taylor series

$$f: I \to \mathbb{R}, \ 0 < \alpha < 1$$

 $f \in \mathcal{C}^{2+\alpha} \quad \Leftrightarrow \quad f \in \mathcal{C}^2 \text{ and } f'' \in \mathcal{C}^{\alpha}$

Associate with f the triple (f, f', f'')

When does a triple (f_0, f_1, f_2) represent a function $f \in \mathcal{C}^{2+\alpha}$?

Basic idea: Generalised Taylor series

$$f: I \to \mathbb{R}, \ 0 < lpha < 1$$
 $f \in \mathcal{C}^{2+lpha} \quad \Leftrightarrow \quad f \in \mathcal{C}^2 \ ext{and} \ f'' \in \mathcal{C}^{lpha}$

Associate with f the triple (f, f', f'')

When does a triple (f_0, f_1, f_2) represent a function $f \in C^{2+\alpha}$?

When there is a constant C such that for all $x, y \in I$

$$|f_0(y) - f_0(x) - (y - x)f_1(x) - \frac{1}{2}(y - x)^2 f_2(x)| \leq C|x - y|^{2 + \alpha}$$

$$|f_1(y) - f_1(x) - (y - x)f_2(x)| \leq C|x - y|^{1 + \alpha}$$

$$|f_2(y) - f_2(x)| \leq C|x - y|^{\alpha}$$

Basic idea: Generalised Taylor series

$$f: I \to \mathbb{R}, \ 0 < \alpha < 1$$

 $f \in \mathcal{C}^{2+\alpha} \quad \Leftrightarrow \quad f \in \mathcal{C}^2 \text{ and } f'' \in \mathcal{C}^{\alpha}$

Associate with f the triple (f, f', f'')

When does a triple (f_0, f_1, f_2) represent a function $f \in C^{2+\alpha}$?

When there is a constant C such that for all $x, y \in I$

$$|f_0(y) - f_0(x) - (y - x)f_1(x) - \frac{1}{2}(y - x)^2 f_2(x)| \leq C|x - y|^{2+\alpha}$$

$$|f_1(y) - f_1(x) - (y - x)f_2(x)| \leq C|x - y|^{1+\alpha}$$

$$|f_2(y) - f_2(x)| \leq C|x - y|^{\alpha}$$

Notation: $f = f_0 \mathbf{1} + f_1 X + f_2 X^2$

Regularity structure: Generalised Taylor basis whose basis elements can also be singular distributions

Definition of a regularity structure

Definition [M. Hairer, Inventiones Math 2014]

A Regularity structure is a triple (A, T, \mathcal{G}) where

- 1. Index set: $A \subset \mathbb{R}$, bdd below, locally finite, $0 \in A$
- 2. Model space: $T=igoplus_{lpha\in A}T_lpha$, each T_lpha Banach space, $T_0=\operatorname{span}(\mathbf{1})\simeq \mathbb{R}$
- 3. Structure group: $\mathcal G$ group of linear maps $\Gamma: T \to T$ such that

$$\Gamma \tau - \tau \in \bigoplus_{\beta < \alpha} T_{\beta} \qquad \forall \tau \in T_{\alpha}$$

and $\Gamma \mathbf{1} = \mathbf{1} \ \forall \Gamma \in \mathcal{G}$.

Definition of a regularity structure

Definition [M. Hairer, Inventiones Math 2014]

A Regularity structure is a triple (A, T, \mathcal{G}) where

- 1. Index set: $A \subset \mathbb{R}$, bdd below, locally finite, $0 \in A$
- 2. Model space: $T=\bigoplus_{\alpha\in A}T_{\alpha}$, each T_{α} Banach space, $T_{0}=\operatorname{span}(\mathbf{1})\simeq\mathbb{R}$
- 3. Structure group: \mathcal{G} group of linear maps $\Gamma: T \to T$ such that

$$\Gamma\tau-\tau\in\bigoplus_{\beta<\alpha}T_{\beta}\qquad\forall\tau\in T_{\alpha}$$
 and $\Gamma\mathbf{1}=\mathbf{1}\ \forall\Gamma\in\mathcal{G}.$

Polynomial regularity structure on \mathbb{R} :

- $\triangleright A = \mathbb{N}_0$
- ho $T_k \simeq \mathbb{R}$, $T_k = \operatorname{span}(X^k)$
- $\vdash \Gamma_h(X^k) = (X h)^k \ \forall h \in \mathbb{R}$

Polynomial reg. structure on $\mathbb{R}^d\colon X^k=X_1^{k_1}\dots X_d^{k_d}\in \mathcal{T}_{|k|}$, $|k|=\sum_{i=1}^d k_i$

Regularity structure for $\partial_t u = \Delta u - u^3 + \xi$

New symbols: Ξ , representing ξ , Hölder exponent $|\Xi|_{\mathfrak{s}} = \alpha_0 = -\frac{d+2}{2} - \kappa$ $\mathcal{I}(\tau)$, representing G * f, Hölder exponent $|\mathcal{I}(\tau)|_{\mathfrak{s}} = |\tau|_{\mathfrak{s}} + 2$ $\tau\sigma$, Hölder exponent $|\tau\sigma|_{\mathfrak{s}} = |\tau|_{\mathfrak{s}} + |\sigma|_{\mathfrak{s}}$

Regularity structure for $\partial_t u = \Delta u - u^3 + \xi$

New symbols: Ξ , representing ξ , Hölder exponent $|\Xi|_{\mathfrak{s}}=\alpha_{0}=-\frac{d+2}{2}-\kappa$ $\mathcal{I}(\tau)$, representing G*f, Hölder exponent $|\mathcal{I}(\tau)|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+2$ $\tau\sigma$, Hölder exponent $|\tau\sigma|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+|\sigma|_{\mathfrak{s}}$

au	Symbol	$ au _{\mathfrak{s}}$	d=3	d=2
Ξ	Ξ	α_0	$-\frac{5}{2}-\kappa$	$-2-\kappa$
	<u> </u>	_		
$\mathcal{I}(\Xi)^3$		$3\alpha_0 + 6$	$-\frac{3}{2}-3\kappa$	$0-3\kappa$
$\mathcal{I}(\Xi)^2$	~	$2\alpha_0 + 4$	$-1-2\kappa$	$0-2\kappa$
$\mathcal{I}(\mathcal{I}(\Xi)^3)\mathcal{I}(\Xi)^2$	*	$5\alpha_0 + 12$	$-\frac{1}{2}-5\kappa$	$2-5\kappa$
$\mathcal{I}(\Xi)$	•	$\alpha_0 + 2$	$-\frac{1}{2}-\kappa$	$0-\kappa$
$\mathcal{I}(\mathcal{I}(\Xi)^3)\mathcal{I}(\Xi)$	Y .	$4\alpha_0 + 10$	$0-4\kappa$	$2-4\kappa$
$\mathcal{I}(\mathcal{I}(\Xi)^2)\mathcal{I}(\Xi)^2$	*	$4\alpha_0 + 10$	$0-4\kappa$	$2-4\kappa$
$\mathcal{I}(\Xi)^2 X_i$	$^{\mathbf{v}}X_{i}$	$2\alpha_0 + 5$	$0-2\kappa$	$1-2\kappa$
1	1	0	0	0
$\mathcal{I}(\mathcal{I}(\Xi)^3)$	•	$3\alpha_0 + 8$	$\frac{1}{2}-3\kappa$	$2-3\kappa$

Fixed-point equation for $\partial_t u = \Delta u - u^3 + \xi$

$$u = G * [\xi^{\varepsilon} - u^{3}] + Gu_{0}$$
 \Rightarrow $U = \mathcal{I}(\Xi - U^{3}) + \varphi \mathbf{1} + \dots$
 $U_{0} = 0$

$$U_1 = \mathbf{1} + \varphi \mathbf{1}$$

$$U_2 = \mathbf{1} + \varphi \mathbf{1} - \mathbf{1} - \mathbf{1} - 3\varphi \mathbf{1} + \dots$$

Fixed-point equation for $\partial_t u = \Delta u - u^3 + \xi$

$$u = G * [\xi^{\varepsilon} - u^{3}] + Gu_{0} \Rightarrow U = \mathcal{I}(\Xi - U^{3}) + \varphi \mathbf{1} + \dots$$

$$U_{0} = 0$$

$$U_{1} = \mathbf{1} + \varphi \mathbf{1}$$

$$U_{2} = \mathbf{1} + \varphi \mathbf{1} - \mathbf{1} + \varphi \mathbf{1} + \dots$$

To prove convergence, we need

- ▶ A model (Π, Γ) : $\forall z \in \mathbb{R}^{d+1}$, $\Pi_z \tau$ is distribution describing τ near z $\Gamma_{z\bar{z}} \in \mathcal{G}$ describes translations: $\Pi_{\bar{z}} = \Pi_z \Gamma_{z\bar{z}}$
- Spaces of modelled distributions

$$\mathcal{D}^{\gamma} = \left\{ f : \mathbb{R}^{d+1} o \bigoplus_{eta < \gamma} T_{eta} \colon \| f(z) - \Gamma_{z\overline{z}} f(\overline{z}) \|_{eta} \lesssim \| z - \overline{z} \|_{\mathfrak{s}}^{\gamma - eta} \right\}$$

equipped with a seminorm

▶ The Reconstruction theorem: provides a unique map $\mathcal{R}: \mathcal{D}^{\gamma} \to \mathcal{C}_{\mathfrak{s}}^{\alpha_*}$ $(\alpha_* = \inf A)$ s.t. $|\langle \mathcal{R}f - \Pi_z f(z), \eta_{\mathfrak{s},z}^{\delta} \rangle| \lesssim \delta^{\gamma}$ (constructed using wavelets)

Defined inductively by

$$(\Pi_{z}^{\varepsilon} \bar{\Xi})(\bar{z}) = \xi^{\varepsilon}(\bar{z})$$

$$(\Pi_{z}^{\varepsilon} X^{k})(\bar{z}) = (\bar{z} - z)^{k}$$

$$(\Pi_{z}^{\varepsilon} \tau \sigma)(\bar{z}) = (\Pi_{z}^{\varepsilon} \tau)(\bar{z})(\Pi_{z}^{\varepsilon} \sigma)(\bar{z})$$

Defined inductively by

$$(\Pi_{z}^{\varepsilon} \bar{z})(\bar{z}) = \xi^{\varepsilon}(\bar{z})$$

$$(\Pi_{z}^{\varepsilon} X^{k})(\bar{z}) = (\bar{z} - z)^{k}$$

$$(\Pi_{z}^{\varepsilon} \tau \sigma)(\bar{z}) = (\Pi_{z}^{\varepsilon} \tau)(\bar{z})(\Pi_{z}^{\varepsilon} \sigma)(\bar{z})$$

$$(\Pi_{z}^{\varepsilon} \mathcal{I}(\tau))(\bar{z}) = \int G(\bar{z} - z')(\Pi_{z}^{\varepsilon} \tau)(z') dz'$$

Defined inductively by

$$\begin{split} &(\Pi_z^\varepsilon \Xi)(\bar{z}) = \xi^\varepsilon(\bar{z}) \\ &(\Pi_z^\varepsilon X^k)(\bar{z}) = (\bar{z} - z)^k \\ &(\Pi_z^\varepsilon \tau \sigma)(\bar{z}) = (\Pi_z^\varepsilon \tau)(\bar{z})(\Pi_z^\varepsilon \sigma)(\bar{z}) \\ &(\Pi_z^\varepsilon \mathcal{I}(\tau))(\bar{z}) = \int G(\bar{z} - z')(\Pi_z^\varepsilon \tau)(z') \, \mathrm{d}z' - \mathrm{polynomial\ term} \end{split}$$

Defined inductively by

$$\begin{split} &(\Pi_z^\varepsilon \Xi)(\bar{z}) = \xi^\varepsilon(\bar{z}) \\ &(\Pi_z^\varepsilon X^k)(\bar{z}) = (\bar{z} - z)^k \\ &(\Pi_z^\varepsilon \tau \sigma)(\bar{z}) = (\Pi_z^\varepsilon \tau)(\bar{z})(\Pi_z^\varepsilon \sigma)(\bar{z}) \\ &(\Pi_z^\varepsilon \mathcal{I}(\tau))(\bar{z}) = \int G(\bar{z} - z')(\Pi_z^\varepsilon \tau)(z') \, \mathrm{d}z' - \mathrm{polynomial\ term} \end{split}$$

Then $\exists \mathcal{K}$ s.t. $\mathcal{RK}f = G * \mathcal{R}f$ and the following diagrams commute:

$$\begin{array}{cccc}
\mathcal{D}^{\gamma} & \xrightarrow{\mathcal{K}} & \mathcal{D}^{\gamma+2} & (u_0, Z^{\varepsilon}) & \xrightarrow{\mathcal{S}} & U \\
\mathbb{R} \downarrow & & & \mathbb{R} \downarrow & & & \mathbb{R} \downarrow \\
\mathcal{C}^{\alpha_*}_{\mathfrak{s}} & \xrightarrow{G_*} & \mathcal{C}^{\alpha_*+2}_{\mathfrak{s}} & (u_0, \xi^{\varepsilon}) & \xrightarrow{\overline{\mathcal{S}}} & u^{\varepsilon}
\end{array}$$

where $\alpha_* = \inf A$ and $\mathcal{K}f = \mathcal{I}f + \text{polynomial term} + \text{nonlocal term}$

Why do we need to renormalise?

Let $G_{\varepsilon} = G * \varrho_{\varepsilon}$ where ϱ_{ε} is the mollifier

$$(\Pi_{\overline{z}}^{\varepsilon})(z) = (G * \xi^{\varepsilon})(z) = (G_{\varepsilon} * \xi)(z) = \int G_{\varepsilon}(z - z_1)\xi(z_1) dz_1$$

belongs to first Wiener chaos, limit $\varepsilon \to 0$ well-defined

Why do we need to renormalise?

Let $G_{\varepsilon} = G * \varrho_{\varepsilon}$ where ϱ_{ε} is the mollifier

$$(\Pi_{\overline{z}}^{\varepsilon}^{\dagger})(z) = (G * \xi^{\varepsilon})(z) = (G_{\varepsilon} * \xi)(z) = \int G_{\varepsilon}(z - z_1)\xi(z_1) dz_1$$

belongs to first Wiener chaos, limit $\varepsilon \to 0$ well-defined

$$(\Pi_{\bar{z}}^{\varepsilon} \checkmark)(z) = (G * \xi^{\varepsilon})(z)^{2} = \iint G_{\varepsilon}(z - z_{1})G_{\varepsilon}(z - z_{2})\xi(z_{1})\xi(z_{2}) dz_{1} dz_{2}$$
 diverges as $\varepsilon \to 0$

Why do we need to renormalise?

Let $G_{\varepsilon} = G * \varrho_{\varepsilon}$ where ϱ_{ε} is the mollifier

$$(\Pi_{\bar{z}}^{\varepsilon})(z) = (G * \xi^{\varepsilon})(z) = (G_{\varepsilon} * \xi)(z) = \int G_{\varepsilon}(z - z_1)\xi(z_1) dz_1$$

belongs to first Wiener chaos, limit arepsilon o 0 well-defined

$$(\Pi_{\bar{z}}^{\varepsilon} \stackrel{\checkmark}{\checkmark})(z) = (G * \xi^{\varepsilon})(z)^{2} = \iint G_{\varepsilon}(z - z_{1})G_{\varepsilon}(z - z_{2})\xi(z_{1})\xi(z_{2}) dz_{1} dz_{2}$$
 diverges as $\varepsilon \to 0$

Wick product:
$$\xi(z_1) \diamond \xi(z_2) = \xi(z_1)\xi(z_2) - \delta(z_1 - z_2)$$

$$(\Pi_{\overline{z}}^{\varepsilon} \checkmark)(z) = \underbrace{\iint G_{\varepsilon}(z - z_1)G_{\varepsilon}(z - z_2)\xi(z_1) \diamond \xi(z_2) \, \mathrm{d}z_1 \, \mathrm{d}z_2}_{\text{in 2nd Wiener chaos, bdd}} + \underbrace{\int G_{\varepsilon}(z - z_1)^2 \, \mathrm{d}z_1}_{G_{\varepsilon}(z - z_1)^2 \, \mathrm{d}z_1}$$

Renormalised model: $(\widehat{\Pi}_{\overline{z}}^{\varepsilon})(z) = (\Pi_{\overline{z}}^{\varepsilon})(z) - C_1(\varepsilon)$

3. The case of the FitzHugh-Nagumo equations

Fixed-point equation

$$u(t,x) = G * [\xi^{\varepsilon} + u - u^{3} + v](t,x) + Gu_{0}(t,x)$$
$$v(t,x) = \int_{0}^{t} u(s,x) e^{(t-s)a_{2}} a_{1} ds + e^{ta_{2}} v_{0}$$

Lifted version

$$U = \mathcal{I}[\Xi + U - U^3 + V] + Gu_0$$
$$V = \mathcal{E}U + Qv_0$$

where \mathcal{E} is an integration map which is not regularising in space New symbols $\mathcal{E}(\mathcal{I}(\Xi)) = ^{\$}$, etc. . .

We expect U, and thus also V to be α -Hölder for $\alpha < -\frac{1}{2}$. Thus $\mathcal{I}(U-U^3+V)$ should be well-defined

The standard theory has to be extended, because ${\mathcal E}$ does not correspond to a smooth kernel

Details on implementing ${\mathcal E}$

Problems:

- ho Fixed-point eq. requires diagonal identity $|\tau|_{\mathfrak{s}}>0\Rightarrow (\Pi_{t,x} au)(t,x)=0$
- ightharpoonup Usual definition of $\mathcal K$ would contain Taylor series

$$\begin{split} \mathcal{J}(z)\tau &= \sum_{|k|_s < \alpha} \frac{X^k}{k!} \int D^k G(z-\bar{z}) (\Pi_z \tau) (\mathrm{d}\bar{z}) \\ \mathcal{N}f(z) &= \sum_{|k|_s < \gamma} \frac{X^k}{k!} \int D^k G(z-\bar{z}) (\mathcal{R}f - \Pi_z f(z)) (\mathrm{d}\bar{z}) \end{split}$$

Details on implementing ${\cal E}$

Problems:

- ▶ Fixed-point eq. requires diagonal identity $|\tau|_{\mathfrak{s}} > 0 \Rightarrow (\Pi_{t,x}\tau)(t,x) = 0$
- \triangleright Usual definition of K would contain Taylor series

$$\mathcal{J}(z) au = \sum_{|k|_{\mathfrak{s}} < lpha} rac{X^k}{k!} \int D^k G(z - \overline{z}) (\Pi_z au) (\mathrm{d}\overline{z})$$
 $\mathcal{N}f(z) = \sum_{|k|_{\mathfrak{s}} < \gamma} rac{X^k}{k!} \int D^k G(z - \overline{z}) (\mathcal{R}f - \Pi_z f(z)) (\mathrm{d}\overline{z})$

Solution:

- ightharpoonup Define $\Pi \mathcal{E} au$ only if $-2 < | au|_{\mathfrak{s}} < 0$ (otherwise $\mathcal{E} au = 0$) \Rightarrow $\mathcal{J}(z) au = 0$
- ▷ Define \mathcal{K} only for $f = \sum_{|\tau|_s < 0} c_\tau \tau + \sum_{|\tau|_s \ge 0} c_\tau (t, x) \tau =: f_- + f_+$ ⇒ can take $\mathcal{R}f = \prod_{t,x} f(t,x)$ and thus $\mathcal{N}f = 0$ for these f
- ▶ Time-convolution with Q lifted to

$$(\mathcal{K}^Q f)(t,x) = \sum_{| au|_s < 0} c_ au \mathcal{E} au + \sum_{| au|_s \geqslant 0} \int Q(t-s) c_ au(s,x) \, \mathrm{d} s \; au =: (\mathcal{E} f_+ + \mathcal{Q} f_+)(t,x)$$

15/18

Fixed-point equation

Consider $\partial_t u = \Delta_u + F(u, v) + \xi$ with F a polynomial of degree 3 If (U, V) satisfies fixed-point equation

$$U = \mathcal{I}[\Xi + F(U, V)] + Gu_0 + \text{polynomial term}$$

 $V = \mathcal{E}U_- + \mathcal{Q}U_+ + Qv_0$

then $(\mathcal{R}U, \mathcal{R}V)$ is solution, provided $\mathcal{R}F(U, V) = F(\mathcal{R}U, \mathcal{R}V)$

Fixed-point equation

Consider $\partial_t u = \Delta_u + F(u, v) + \xi$ with F a polynomial of degree 3 If (U, V) satisfies fixed-point equation

$$U = \mathcal{I}[\Xi + F(U, V)] + Gu_0 + \text{polynomial term}$$

 $V = \mathcal{E}U_- + \mathcal{Q}U_+ + Qv_0$

then $(\mathcal{R}U, \mathcal{R}V)$ is solution, provided $\mathcal{R}F(U, V) = F(\mathcal{R}U, \mathcal{R}V)$ Fixed point is of the form

$$U = \uparrow + \varphi \mathbf{1} + \left[a_1 \stackrel{\mathbf{V}}{\mathbf{V}} + a_2 \stackrel{\mathbf{V}}{\mathbf{V}} + a_3 \stackrel{\mathbf{V}}{\mathbf{V}} + a_4 \stackrel{\mathbf{V}}{\mathbf{V}} \right] + \left[b_1 \stackrel{\mathbf{V}}{\mathbf{V}} + b_2 \stackrel{\mathbf{V}}{\mathbf{V}} + b_3 \stackrel{\mathbf{V}}{\mathbf{V}} \right] + \dots$$

$$V = \stackrel{\mathbf{V}}{\mathbf{V}} + \psi \mathbf{1} + \left[\hat{a}_1 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{a}_2 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{a}_3 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{a}_4 \stackrel{\mathbf{V}}{\mathbf{V}} \right] + \left[\hat{b}_1 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{b}_2 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{b}_3 \stackrel{\mathbf{V}}{\mathbf{V}} \right] + \dots$$

Fixed-point equation

Consider $\partial_t u = \Delta_u + F(u, v) + \xi$ with F a polynomial of degree 3 If (U, V) satisfies fixed-point equation

$$U = \mathcal{I}[\Xi + F(U, V)] + Gu_0 + \text{polynomial term}$$

 $V = \mathcal{E}U_- + \mathcal{Q}U_+ + \mathcal{Q}v_0$

then $(\mathcal{R}U, \mathcal{R}V)$ is solution, provided $\mathcal{R}F(U, V) = F(\mathcal{R}U, \mathcal{R}V)$ Fixed point is of the form

$$U = \uparrow + \varphi \mathbf{1} + \left[a_1 \stackrel{\mathbf{V}}{\mathbf{V}} + a_2 \stackrel{\mathbf{V}}{\mathbf{V}} + a_3 \stackrel{\mathbf{V}}{\mathbf{V}} + a_4 \stackrel{\mathbf{V}}{\mathbf{V}} \right] + \left[b_1 \stackrel{\mathbf{V}}{\mathbf{V}} + b_2 \stackrel{\mathbf{V}}{\mathbf{V}} + b_3 \stackrel{\mathbf{V}}{\mathbf{V}} \right] + \dots$$

$$V = \dot{\uparrow} + \psi \mathbf{1} + \left[\hat{a}_1 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{a}_2 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{a}_3 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{a}_4 \stackrel{\mathbf{V}}{\mathbf{V}} \right] + \left[\hat{b}_1 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{b}_2 \stackrel{\mathbf{V}}{\mathbf{V}} + \hat{b}_3 \stackrel{\mathbf{V}}{\mathbf{V}} \right] + \dots$$

- riangleright Prove existence of fixed point in (modification of) \mathcal{D}^{γ} with $\gamma=1+ar{\kappa}$
- ightharpoonup Extend from small interval [0, T] up to first exit from large ball
- ▷ Deal with renormalisation procedure

Renormalisation

▶ Renormalisation group: group of linear maps $M: T \to T$ Associated model: Π_z^M s.t. $\Pi^M \tau = \Pi M \tau$ where $\Pi_z = \Pi \Gamma_{f_z}$ Allen–Cahn eq.: $M = e^{-C_1 L_1 - C_2 L_2}$ with $L_1: \checkmark \to \mathbf{1}$, $L_2: \checkmark \to \mathbf{1}$ FHN eq.: the same group suffices because Q is smoothing

Renormalisation

- Renormalisation group: group of linear maps $M: T \to T$ Associated model: Π_z^M s.t. $\Pi^M \tau = \Pi M \tau$ where $\Pi_z = \Pi \Gamma_{f_z}$ Allen–Cahn eq.: $M = e^{-C_1 L_1 - C_2 L_2}$ with $L_1: V \to I$, $L_2: V \to I$
 - FHN eq.: the same group suffices because Q is smoothing
- - Then $(\widehat{\Pi}_z^{(\varepsilon)}, \widehat{\Gamma}_z^{(\varepsilon)})$ converges to limiting model, with explicit L^p bounds

Renormalisation

- ▶ Renormalisation group: group of linear maps $M: T \to T$ Associated model: Π_z^M s.t. $\Pi^M \tau = \Pi M \tau$ where $\Pi_z = \Pi \Gamma_{f_z}$ Allen–Cahn eq.: $M = \mathrm{e}^{-C_1 L_1 - C_2 L_2}$ with $L_1: \checkmark \to \mathbf{1}$, $L_2: \checkmark \to \mathbf{1}$ FHN eq.: the same group suffices because Q is smoothing
- ▶ Look for r.v. $\widehat{\Pi}_z \tau$ s.t. if $\widehat{\Pi}_z^{(\varepsilon)} = (\Pi_z^{(\varepsilon)})^{M_\varepsilon}$ then $\exists \kappa, \theta > 0$ s.t. $\mathbb{E} \big| \langle \widehat{\Pi}_z \tau, \eta_z^{\lambda} \rangle \big|^2 \lesssim \lambda^{2|\tau|_s + \kappa} \qquad \mathbb{E} \big| \langle \widehat{\Pi}_z \tau \widehat{\Pi}_z^{(\varepsilon)} \tau, \eta_z^{\lambda} \rangle \big|^2 \lesssim \varepsilon^{2\theta} \lambda^{2|\tau|_s + \kappa}$
 - Then $(\widehat{\Pi}_z^{(\varepsilon)}, \widehat{\Gamma}_z^{(\varepsilon)})$ converges to limiting model, with explicit L^p bounds
- Renormalised equations have nonlinearity \widehat{F} s.t. $\widehat{F}(MU, MV) = MF(U, V) + \text{terms of H\"older exponent } > 0$

FHN eq. with cubic nonlinearity
$$F = \alpha_1 u + \alpha_2 v + \beta_1 u^2 + \beta_2 uv + \beta_3 v^2 + \gamma_1 u^3 + \gamma_2 u^2 v + \gamma_3 uv^2 + \gamma_4 v^3$$

$$\widehat{F}(u,v) = F(u,v) - c_0(\varepsilon) - c_1(\varepsilon)u - c_2(\varepsilon)v$$
with the $c_0(\varepsilon)$ depending an $C_0(\varepsilon)$ resulted either

with the $c_i(\varepsilon)$ depending on C_1 , C_2 , provided either d=2 or $\gamma_2=0$

Concluding remarks

- ▶ Models with $\partial_t u$ of order $u^4 + v^4$ and $\partial_t v$ of order $u^2 + v$ should be renormalisable

 Current approach does not work when singular part (t, x)-dependent
- ▶ Global existence: recent progress by J.-C. Mourrat and H. Weber on 2D and 3D Allen–Cahn
- More quantitative results?

References

- ▶ M. Hairer, *A theory of regularity structures*, Inv. Math. **198**, 269–504 (2014)
- ▶ M. Hairer, *Introduction to Regularity Structures*, lecture notes (2013)
- ▶ A. Chandra, H. Weber, Stochastic PDEs, regularity structures, and interacting particle systems, preprint arXiv/1508.03616
- ► N. B., C. Kuehn, Regularity structures and renormalisation of FitzHugh– Nagumo SPDEs in three space dimensions, Elec J Prob 21 (18):1-48 (2016)
- ▶ N. B., G. Di Gesù, H. Weber, An Eyring–Kramers law for the stochastic Allen–Cahn equation in dimension two, preprint arXiv/1604.05742
- ▶ N.B., Mayonnaise et élections américaines, Dossier Pour la Science (2016)