## Pathwise Stochastic Analysis and Applications CIRM, Marseille (Virtual conference) <br> Renormalisation when approaching the subcriticality threshold: A simple example

Nils Berglund<br>Institut Denis Poisson, Université d'Orléans, France

March 8, 2021
joint works with Christian Kuehn (TU Munich) and Yvain Bruned (Edinburgh)


## The fractional $\Phi_{d}^{3}$ model

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+\xi
$$

$\triangleright u=u(t, x), t \geqslant 0, x \in \mathbb{T}^{d}$
$\triangleright-(-\Delta)^{\rho / 2}$ fractional Laplacian, $\rho \in(0,2]$
$\triangleright \xi$ space-time white noise

## The fractional $\Phi_{d}^{3}$ model

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+\xi
$$

$\triangleright u=u(t, x), t \geqslant 0, x \in \mathbb{T}^{d}$
$\triangleright-(-\Delta)^{\rho / 2}$ fractional Laplacian, $\rho \in(0,2]$
$\triangleright \xi$ space-time white noise
III-posed in general, need to consider renormalised equation

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+C(\varepsilon, \rho, u)+\xi^{\varepsilon}
$$

where $\xi^{\varepsilon}=\varrho^{\varepsilon} * \xi$ mollified noise

## The fractional $\Phi_{d}^{3}$ model

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+\xi
$$

$\triangleright u=u(t, x), t \geqslant 0, x \in \mathbb{T}^{d}$
$\triangleright-(-\Delta)^{\rho / 2}$ fractional Laplacian, $\rho \in(0,2]$
$\triangleright \xi$ space-time white noise
III-posed in general, need to consider renormalised equation

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+C(\varepsilon, \rho, u)+\xi^{\varepsilon}
$$

where $\xi^{\varepsilon}=\varrho^{\varepsilon} * \xi$ mollified noise
Motivations:

- simple yet interesting application of general theory of BPHZ renormalisation (after Bogoliubow, Parasiuk, Hepp \& Zimmermann)
$\triangleright$ asymptotics of vanishing local subcriticality as $\rho \searrow \rho_{\mathrm{c}}(d)$
$\triangleright$ coupled SPDE-ODE systems, simplification of Fisher-KPP equation


## Some recent progress on singular SPDEs

- Martin Hairer, A theory of regularity structures, Invent. Math. 198:269-504, 2014.
$\diamond$ General theory of function spaces allowing to solve (subcritical) singular SPDEs
$\diamond$ Ad hoc renormalisation of some particular SPDEs (PAM, $\Phi_{3}^{4}$ )


## Some recent progress on singular SPDEs

$\triangleright$ Martin Hairer, A theory of regularity structures, Invent. Math. 198:269-504, 2014.
$\diamond$ General theory of function spaces allowing to solve (subcritical) singular SPDEs
$\diamond$ Ad hoc renormalisation of some particular SPDEs (PAM, $\Phi_{3}^{4}$ )

- Yvain Bruned, Martin Hairer, and Lorenzo Zambotti, Algebraic renormalisation of regularity structures, Invent. Math., 215:1039-1156, 2019.
$\triangleright$ Ajay Chandra and Martin Hairer, An analytic BPHZ theorem for regularity structures, arXiv:1612.08138, 113 pages, 2016.
- Yvain Bruned, Ajay Chandra, Ilya Chevyrev, and Martin Hairer, Renormalising SPDEs in regularity structures, J. European Mathematical Society, 23:869-947, 2019.
$\diamond$ Systematic way of renormalising subcritical singular SPDEs


## Solving (non-singular) SPDEs

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+\xi
$$

Duhamel formula: $u=P_{\rho} u_{0}+P_{\rho} *\left[u^{2}+\xi\right], \quad P_{\rho}=\left[\partial_{t}+(-\Delta)^{\rho / 2}\right]^{-1}$

## Solving (non-singular) SPDEs

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+\xi
$$

Duhamel formula: $u=P_{\rho} u_{0}+P_{\rho} *\left[u^{2}+\xi\right], \quad P_{\rho}=\left[\partial_{t}+(-\Delta)^{\rho / 2}\right]^{-1}$
Scaled Hölder-Besov spaces $\mathcal{C}_{\mathfrak{s}}^{\alpha}$ :

$$
\begin{aligned}
& \triangleright 0<\alpha<1: u \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \Longleftrightarrow|u(\bar{z})-u(z)| \lesssim|\bar{z}-z|_{\mathfrak{s}}^{\alpha}, \\
& \text { where }|z|_{\mathfrak{s}}:=\left|z_{0}\right|^{1 / \rho}+\sum_{i}\left|z_{i}\right| \\
& \triangleright \alpha>1: u \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \Longleftrightarrow D^{k} u \in \mathcal{C}_{\mathfrak{s}}^{\alpha-|k|_{\mathfrak{s}}} \text { for } 0<\left|k_{\mathfrak{s}}:=\rho k_{0}+\sum_{i}\right| k_{i} \mid<\alpha \\
& \triangleright \alpha<0: u \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \Longleftrightarrow\left|\left\langle u, \mathscr{S}_{z}^{\lambda} \varphi\right\rangle\right| \lesssim \lambda^{\alpha} \\
& \text { where }\left(\mathscr{S}_{z}^{\lambda} \varphi\right)(\bar{z})=\frac{1}{\lambda^{\rho+d}} \varphi\left(\frac{\bar{z}_{0}-z_{0}}{\lambda \rho}, \frac{\bar{z}_{i}-z_{i}}{\lambda}\right)
\end{aligned}
$$

## Solving (non-singular) SPDEs

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+\xi
$$

Duhamel formula: $u=P_{\rho} u_{0}+P_{\rho} *\left[u^{2}+\xi\right], \quad P_{\rho}=\left[\partial_{t}+(-\Delta)^{\rho / 2}\right]^{-1}$
Scaled Hölder-Besov spaces $\mathcal{C}_{\mathfrak{s}}^{\alpha}$ :

$$
\begin{aligned}
& \triangleright 0<\alpha<1: u \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \Longleftrightarrow \Longleftrightarrow \quad \begin{array}{l}
|u(\bar{z})-u(z)| \lesssim|\bar{z}-z|_{\mathfrak{s}}^{\alpha}, \\
\\
\text { where }|z|_{\mathfrak{s}}:=\left|z_{0}\right|^{1 / \rho}+\sum_{i}\left|z_{i}\right|
\end{array} \\
& \triangleright \alpha>1: u \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \Longleftrightarrow
\end{aligned} \begin{aligned}
& D^{k} u \in \mathcal{C}_{\mathfrak{s}}^{\alpha-|k|_{\mathfrak{s}}} \text { for } 0<|k|_{\mathfrak{s}}:=\rho k_{0}+\sum_{i}\left|k_{i}\right|<\alpha \\
& \triangleright \alpha<0: u \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \Longleftrightarrow
\end{aligned} \begin{aligned}
& \left|\left\langle u, \mathscr{S}_{z}^{\lambda} \varphi\right\rangle\right| \lesssim \lambda^{\alpha} \\
& \\
& \text { where }\left(\mathscr{S}_{z}^{\lambda} \varphi\right)(\bar{z})=\frac{1}{\lambda^{\rho+d}} \varphi\left(\frac{\bar{z}_{0}-z_{0}}{\lambda^{\rho}}, \frac{\bar{z}_{i}-z_{i}}{\lambda}\right)
\end{aligned}
$$

Space-time white noise: $\xi \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \quad \forall \alpha<-\frac{\rho+d}{2}$
Schauder estimate: $u \in \mathcal{C}_{\mathfrak{s}}^{\alpha}, \alpha+\rho \notin \mathbb{Z} \quad \Longrightarrow \quad P_{\rho} * u \in \mathcal{C}_{\mathfrak{s}}^{\alpha+\rho}$
Consequence: $P_{\rho} * \xi \in \mathcal{C}_{\mathfrak{s}}^{\alpha} \quad \forall \alpha<\frac{\rho-d}{2}$
Local solutions in the "classical sense" exist iff $\rho>d$

## Local subcriticality

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+\xi
$$

Scaling: $\bar{u}(t, x)=\lambda^{\alpha} u\left(\lambda^{\beta} t, \lambda x\right)$

$$
\Longrightarrow \quad \partial_{t} \bar{u}+\lambda^{\beta-\rho}(-\Delta)^{\rho / 2} \bar{u}=\lambda^{\beta-\alpha} \bar{u}^{2}+\lambda^{\alpha+\frac{\beta}{2}-\frac{d}{2}} \xi
$$

$$
\beta=\rho, \alpha=\frac{d-\rho}{2} \quad \Longrightarrow \quad \partial_{t} \bar{u}+(-\Delta)^{\rho / 2} \bar{u}=\lambda^{\frac{3}{2}\left(\rho-\frac{d}{3}\right)} \bar{u}^{2}+\xi
$$

## Local subcriticality

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+\xi
$$

Scaling: $\bar{u}(t, x)=\lambda^{\alpha} u\left(\lambda^{\beta} t, \lambda x\right)$

$$
\Longrightarrow \quad \partial_{t} \bar{u}+\lambda^{\beta-\rho}(-\Delta)^{\rho / 2} \bar{u}=\lambda^{\beta-\alpha} \bar{u}^{2}+\lambda^{\alpha+\frac{\beta}{2}-\frac{d}{2}} \xi
$$

$\beta=\rho, \alpha=\frac{d-\rho}{2} \quad \Longrightarrow \quad \partial_{t} \bar{u}+(-\Delta)^{\rho / 2} \bar{u}=\lambda^{\frac{3}{2}\left(\rho-\frac{d}{3}\right)} \bar{u}^{2}+\xi$
Definition: The equation is locally subcritical iff $\rho>\rho_{\mathrm{c}}=\frac{d}{3}$


## Main result

Theorem: [B \& Bruned, '19] If $\xi^{\varepsilon}=\varrho^{\varepsilon} * \xi, \varrho^{\varepsilon}(t, x)=\frac{1}{\varepsilon^{\rho+d}} \varrho\left(\frac{t}{\varepsilon^{\rho}}, \frac{x}{\varepsilon}\right)$,

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+C_{0}(\varepsilon, \rho)+C_{1}(\varepsilon, \rho) u+\xi^{\varepsilon}
$$

has for $\rho>\rho_{\mathrm{c}}$ local solutions admitting limit as $\varepsilon \searrow 0$

## Main result

Theorem: [B \& Bruned, '19] If $\xi^{\varepsilon}=\varrho^{\varepsilon} * \xi, \varrho^{\varepsilon}(t, x)=\frac{1}{\varepsilon^{\rho+d}} \varrho\left(\frac{t}{\varepsilon^{\rho}}, \frac{x}{\varepsilon}\right)$,

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+C_{0}(\varepsilon, \rho)+C_{1}(\varepsilon, \rho) u+\xi^{\varepsilon}
$$

has for $\rho>\rho_{\mathrm{c}}$ local solutions admitting limit as $\varepsilon \searrow 0$ for $C_{0}, C_{1}$ s.t.

$$
C_{0}(\varepsilon, \rho) \simeq\left\{\begin{array} { l l } 
{ \frac { \operatorname { l o g } ( \varepsilon ^ { - 1 } ) } { \varepsilon _ { \mathrm { C } } ^ { d - \rho } } } & { \varepsilon \geqslant \varepsilon _ { \mathrm { C } } } \\
{ \frac { A _ { 0 } } { \varepsilon ^ { d - \rho } } } & { \varepsilon < \varepsilon _ { \mathrm { C } } }
\end{array} \quad C _ { 1 } ( \varepsilon , \rho ) \simeq \left\{\begin{array}{ll}
\frac{\log \left(\varepsilon^{-1}\right)}{\overline{\bar{c}}_{\mathrm{C}}^{d-2 \rho}} & \varepsilon \geqslant \bar{\varepsilon}_{\mathrm{C}} \\
\frac{\bar{A}_{0}}{\varepsilon^{d-2 \rho}} & \varepsilon<\bar{\varepsilon}_{\mathrm{C}}
\end{array}\right.\right.
$$

## Main result

Theorem: [B \& Bruned, '19] If $\xi^{\varepsilon}=\varrho^{\varepsilon} * \xi, \varrho^{\varepsilon}(t, x)=\frac{1}{\varepsilon^{\rho+d}} \varrho\left(\frac{t}{\varepsilon^{\rho}}, \frac{x}{\varepsilon}\right)$,

$$
\partial_{t} u+(-\Delta)^{\rho / 2} u=u^{2}+C_{0}(\varepsilon, \rho)+C_{1}(\varepsilon, \rho) u+\xi^{\varepsilon}
$$

has for $\rho>\rho_{\mathrm{c}}$ local solutions admitting limit as $\varepsilon \searrow 0$ for $C_{0}, C_{1}$ s.t.

$$
C_{0}(\varepsilon, \rho) \simeq\left\{\begin{array} { l l } 
{ \frac { \operatorname { l o g } ( \varepsilon ^ { - 1 } ) } { \varepsilon _ { \mathrm { C } } ^ { d - \rho } } } & { \varepsilon \geqslant \varepsilon _ { \mathrm { C } } } \\
{ \frac { A _ { 0 } } { \varepsilon ^ { d - \rho } } } & { \varepsilon < \varepsilon _ { \mathrm { C } } }
\end{array} \quad C _ { 1 } ( \varepsilon , \rho ) \simeq \left\{\begin{array}{ll}
\frac{\log \left(\varepsilon^{-1}\right)}{\bar{\varepsilon}_{\mathrm{C}}^{d-2 \rho}} & \varepsilon \geqslant \bar{\varepsilon}_{\mathrm{c}} \\
\frac{\bar{A}_{0}}{\varepsilon^{d-2 \rho}} & \varepsilon<\bar{\varepsilon}_{\mathrm{C}}
\end{array}\right.\right.
$$

where $\bar{\varepsilon}_{\mathrm{c}}(\rho)<\varepsilon_{\mathrm{c}}(\rho)$ both of order

$$
\exp \left\{-\frac{1}{\rho-\rho_{\mathrm{c}}}\left[\log \left(\frac{\text { const }}{\rho-\rho_{\mathrm{c}}}\right)+\mathcal{O}(1)\right]\right\}
$$

and $A_{0}, \bar{A}_{0}$ explicit constants


## Regularity structures

Mollified equation: $\partial_{t} u^{\varepsilon}+(-\Delta)^{\rho / 2} u^{\varepsilon}=\left(u^{\varepsilon}\right)^{2}+\xi^{\varepsilon}$

$\triangleright u^{\varepsilon}=\overline{\mathscr{S}}\left(u_{0}, \xi^{\varepsilon}\right)$ : fixed point of $u^{\varepsilon}=P_{\rho} u_{0}+P_{\rho} *\left[\left(u^{\varepsilon}\right)^{2}+\xi^{\varepsilon}\right]$
$\triangleright U=\mathscr{S}\left(u_{0}, \quad Z^{\varepsilon}\right)$ : fixed pnt of $U=P_{\rho} u_{0}+\mathcal{I}_{\rho}\left[U^{2}+\equiv\right]+p(U)$
$U \in \mathcal{D}^{\gamma}$ space of modelled distributions

## Regularity structures

Mollified equation: $\partial_{t} u^{\varepsilon}+(-\Delta)^{\rho / 2} u^{\varepsilon}=\left(u^{\varepsilon}\right)^{2}+\xi^{\varepsilon}+C(\varepsilon, \rho, u)$

$\triangleright u_{M}^{\varepsilon}=\overline{\mathscr{S}}_{M}\left(u_{0}, \xi^{\varepsilon}\right)$ : fixed point of $u_{M}^{\varepsilon}=P_{\rho} u_{0}+P_{\rho} *\left[\left(u_{M}^{\varepsilon}\right)^{2}+\xi^{\varepsilon}+C\right]$
$\triangleright U_{M}=\mathscr{S}\left(u_{0}, M Z^{\varepsilon}\right)$ : fixed pnt of $U_{M}=P_{\rho} u_{0}+\mathcal{I}_{\rho}\left[U_{M}^{2}+\overline{\text { I }}\right]+p\left(U_{M}\right)$
$U \in \mathcal{D}^{\gamma}$ space of modelled distributions

## Model space

$T_{0}$ set of symbols containing
$\triangleright \mathbf{X}^{k}=X_{0}^{k_{0}} \ldots X_{d}^{k_{d}}$, degree $\left|\mathbf{X}^{k}\right|_{\mathfrak{s}}=|k|_{\mathfrak{s}}$
$\triangleright$ 三 representing $\xi$, degree $|\equiv|_{\mathfrak{s}}=-\frac{\rho+d}{2}-\kappa$
$\triangleright \tau_{1}, \tau_{2} \in T_{0} \Rightarrow \tau_{1} \tau_{2} \in T_{0}$, degree $\left|\tau_{1} \tau_{2}\right|_{\mathfrak{s}}=\left|\tau_{1}\right|_{\mathfrak{s}}+\left|\tau_{2}\right|_{\mathfrak{s}}$
$\triangleright \tau \in T_{0}, \tau \neq \mathbf{X}^{k} \Rightarrow \mathcal{I}_{\rho}(\tau) \in T_{0}$ repres. $P_{\rho} * u,\left|\mathcal{I}_{\rho}(\tau)\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+\rho$
$\triangleright$ In some cases, need symbols $\partial^{\ell} \mathcal{I}_{\rho}(\tau),\left|\partial^{\ell} \mathcal{I}_{\rho}(\tau)\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+\rho-|\ell|_{\mathfrak{s}}$

## Model space

$T_{0}$ set of symbols containing
$\triangleright \mathbf{X}^{k}=X_{0}^{k_{0}} \ldots X_{d}^{k_{d}}$, degree $\left|\mathbf{X}^{k}\right|_{\mathfrak{s}}=|k|_{\mathfrak{s}}$
$\triangleright$ 三 representing $\xi$, degree $|\equiv|_{\mathfrak{s}}=-\frac{\rho+d}{2}-\kappa$
$\triangleright \tau_{1}, \tau_{2} \in T_{0} \Rightarrow \tau_{1} \tau_{2} \in T_{0}$, degree $\left|\tau_{1} \tau_{2}\right|_{\mathfrak{s}}=\left|\tau_{1}\right|_{\mathfrak{s}}+\left|\tau_{2}\right|_{\mathfrak{s}}$
$\triangleright \tau \in T_{0}, \tau \neq \mathbf{X}^{k} \Rightarrow \mathcal{I}_{\rho}(\tau) \in T_{0}$ repres. $P_{\rho} * u,\left|\mathcal{I}_{\rho}(\tau)\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+\rho$
$\triangleright$ In some cases, need symbols $\partial^{\ell} \mathcal{I}_{\rho}(\tau),\left|\partial^{\ell} \mathcal{I}_{\rho}(\tau)\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+\rho-|\ell|_{\mathfrak{s}}$
Convenient graphical notation:

$$
\begin{gathered}
\mathscr{V}=\mathcal{I}_{\rho}(\equiv)^{2} \quad \mathscr{V}=\left[\mathcal{I}_{\rho}\left(\mathcal{I}_{\rho}\left(\mathcal{I}_{\rho}(\equiv)^{2}\right) \mathcal{I}_{\rho}(\equiv)\right)\right]^{2} \\
{ }^{k} \mathrm{k}=\mathcal{I}_{\rho}\left(\mathbf{X}^{k} \partial^{l} \mathcal{I}_{\rho}(\equiv)\right)
\end{gathered}
$$

## Model space

$T_{0}$ set of symbols containing
$\triangleright \mathbf{X}^{k}=X_{0}^{k_{0}} \ldots X_{d}^{k_{d}}$, degree $\left|\mathbf{X}^{k}\right|_{\mathfrak{s}}=|k|_{\mathfrak{s}}$
$\triangleright$ 三 representing $\xi$, degree $|\equiv|_{\mathfrak{s}}=-\frac{\rho+d}{2}-\kappa$
$\triangleright \tau_{1}, \tau_{2} \in T_{0} \Rightarrow \tau_{1} \tau_{2} \in T_{0}$, degree $\left|\tau_{1} \tau_{2}\right|_{\mathfrak{s}}=\left|\tau_{1}\right|_{\mathfrak{s}}+\left|\tau_{2}\right|_{\mathfrak{s}}$
$\triangleright \tau \in T_{0}, \tau \neq \mathbf{X}^{k} \Rightarrow \mathcal{I}_{\rho}(\tau) \in T_{0}$ repres. $P_{\rho} * u,\left|\mathcal{I}_{\rho}(\tau)\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+\rho$
$\triangleright$ In some cases, need symbols $\partial^{\ell} \mathcal{I}_{\rho}(\tau),\left|\partial^{\ell} \mathcal{I}_{\rho}(\tau)\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+\rho-|\ell|_{\mathfrak{s}}$
Convenient graphical notation:

$$
\begin{gathered}
\mathscr{V}=\mathcal{I}_{\rho}(\equiv)^{2} \quad \bigcup \dot{Y}=\left[\mathcal{I}_{\rho}\left(\mathcal{I}_{\rho}\left(\mathcal{I}_{\rho}(\equiv)^{2}\right) \mathcal{I}_{\rho}(\equiv)\right)\right]^{2} \\
{ }^{k} \ell=\mathcal{I}_{\rho}\left(\mathbf{X}^{k} \partial^{\ell} \mathcal{I}_{\rho}(\equiv)\right)
\end{gathered}
$$

Model space: graded vector space $\mathcal{T}$ spanned by minimal $T \subset T_{0}$ allowing to represent $U=\mathcal{I}_{\rho}\left(\Xi+U^{2}\right)+p$ where $p=\sum_{k} c_{k} \mathbf{X}^{k}$ polynomial
Remark: $\rho>\rho_{\mathrm{c}} \Leftrightarrow$ degrees of $\tau \in T$ bdd below

## Iterations of the fixed-point equation

$$
U=\mathcal{I}_{\rho}\left(\equiv+U^{2}\right)+c_{1}(t, x) \mathbf{1}+\sum_{i=0}^{d} c_{\mathbf{X}_{i}}(t, x) \mathbf{X}_{i}+\ldots
$$

## Model space

Proposition: [B \& Kuehn '17]
Symbols $\tau \in T$ of negative degree are

- either full binary trees, e.g. $\tau=V, \forall, \forall, \bigvee Y, \dot{Y}$

$$
|\tau|_{\mathfrak{s}}=-\frac{2}{3} d+\frac{3 m-1}{2}\left(\rho-\rho_{c}\right)-\text { if } \tau \text { has } 2 m \text { edges }
$$

$\triangleright$ or almost full binary trees, e.g. $\tau=\boldsymbol{\imath}, \zeta, \boldsymbol{Y}$,禺栄 $|\tau|_{\mathfrak{s}}=-\frac{1}{3} d+\frac{3 \overline{\bar{m}}+1}{2}\left(\rho-\rho_{c}\right)-$ if $\tau$ has $2 \bar{m}+1$ edges
$\triangleright$ or almost full trees with one node decoration $\mathbf{X}_{i}, 1 \leqslant i \leqslant d$ (complete trees with decorations don't matter for symmetry reasons)

## Model space

Proposition: [B \& Kuehn '17]
Symbols $\tau \in T$ of negative degree are

- either full binary trees, e.g. $\tau=\vee, \mho_{V}$,


$$
|\tau|_{\mathfrak{s}}=-\frac{2}{3} d+\frac{3 m-1}{2}\left(\rho-\rho_{c}\right)-\text { if } \tau \text { has } 2 m \text { edges }
$$

$\triangleright$ or almost full binary trees, e.g. $\tau=\boldsymbol{\uparrow},\langle, \zeta \zeta$,


$$
|\tau|_{\mathfrak{s}}=-\frac{1}{3} d+\frac{3 \bar{m}+1}{2}\left(\rho-\rho_{c}\right)-\text { if } \tau \text { has } 2 \bar{m}+1 \text { edges }
$$

- or almost full trees with one node decoration $\mathbf{X}_{i}, 1 \leqslant i \leqslant d$ (complete trees with decorations don't matter for symmetry reasons)


## Proposition: [B \& Kuehn '17]

Number of symbols of negative degree is of order $\left(\rho-\rho_{c}\right)^{3 / 2} \mathrm{e}^{\beta d /\left(\rho-\rho_{c}\right)}$
Proof uses Wedderburn-Etherington numbers (rather than Catalan nbrs)

## Model expectations

$E(\tau):=\mathbb{E}\left[\left(\Pi^{\varepsilon} \tau\right)(0)\right]$ where $\Pi^{\varepsilon}$ canonical model defined by

$$
\begin{aligned}
\left(\boldsymbol{\Pi}^{\varepsilon} \mathbf{1}\right)(z) & =1 \quad\left(\boldsymbol{\Pi}^{\varepsilon} \mathbf{X}_{i}\right)(z)=z_{i} \quad\left(\boldsymbol{\Pi}^{\varepsilon} \equiv\right)(z)=\xi^{\varepsilon}(z) \\
\left(\boldsymbol{\Pi}^{\varepsilon} \tau \bar{\tau}\right)(z) & =\left(\boldsymbol{\Pi}^{\varepsilon} \tau\right)(z)\left(\boldsymbol{\Pi}^{\varepsilon} \bar{\tau}\right)(z) \\
\left(\boldsymbol{\Pi}^{\varepsilon} \partial^{k} \mathcal{I}_{\rho} \tau\right)(z) & =\int \partial^{k} K_{\rho}(z-\bar{z})\left(\boldsymbol{\Pi}^{\varepsilon} \tau\right)(\bar{z}) \mathrm{d} \bar{z} \quad P_{\rho}=K_{\rho}+R_{\rho}
\end{aligned}
$$

## Model expectations

$E(\tau):=\mathbb{E}\left[\left(\Pi^{\varepsilon} \tau\right)(0)\right]$ where $\Pi^{\varepsilon}$ canonical model defined by

$$
\begin{aligned}
\left(\boldsymbol{\Pi}^{\varepsilon} \mathbf{1}\right)(z) & =1 \quad\left(\boldsymbol{\Pi}^{\varepsilon} \mathbf{X}_{i}\right)(z)=z_{i} \quad\left(\boldsymbol{\Pi}^{\varepsilon} \equiv\right)(z)=\xi^{\varepsilon}(z) \\
\left(\boldsymbol{\Pi}^{\varepsilon} \tau \bar{\tau}\right)(z) & =\left(\boldsymbol{\Pi}^{\varepsilon} \tau\right)(z)\left(\boldsymbol{\Pi}^{\varepsilon} \bar{\tau}\right)(z) \\
\left(\boldsymbol{\Pi}^{\varepsilon} \partial^{k} \mathcal{I}_{\rho} \tau\right)(z) & =\int \partial^{k} K_{\rho}(z-\bar{z})\left(\boldsymbol{\Pi}^{\varepsilon} \tau\right)(\bar{z}) \mathrm{d} \bar{z} \quad P_{\rho}=K_{\rho}+R_{\rho}
\end{aligned}
$$

Remark: $E(\tau)=0$ for trees with odd \# of leaves, for planted trees $\mathcal{I}_{\rho}(\tau)$, and for trees with one $\mathbf{X}_{i}$ decoration (and no edge decoration)

## Model expectations

$E(\tau):=\mathbb{E}\left[\left(\Pi^{\varepsilon} \tau\right)(0)\right]$ where $\Pi^{\varepsilon}$ canonical model defined by

$$
\begin{aligned}
\left(\boldsymbol{\Pi}^{\varepsilon} 1\right)(z) & =1 \quad\left(\boldsymbol{\Pi}^{\varepsilon} \mathbf{X}_{i}\right)(z)=z_{i} \quad\left(\boldsymbol{\Pi}^{\varepsilon} \equiv\right)(z)=\xi^{\varepsilon}(z) \\
\left(\boldsymbol{\Pi}^{\varepsilon} \tau \bar{\tau}\right)(z) & =\left(\boldsymbol{\Pi}^{\varepsilon} \tau\right)(z)\left(\boldsymbol{\Pi}^{\varepsilon} \bar{\tau}\right)(z) \\
\left(\boldsymbol{\Pi}^{\varepsilon} \partial^{k} \mathcal{I}_{\rho} \tau\right)(z) & =\int \partial^{k} K_{\rho}(z-\bar{z})\left(\boldsymbol{\Pi}^{\varepsilon} \tau\right)(\bar{z}) \mathrm{d} \bar{z} \quad P_{\rho}=K_{\rho}+R_{\rho}
\end{aligned}
$$

Remark: $E(\tau)=0$ for trees with odd \# of leaves, for planted trees $\mathcal{I}_{\rho}(\tau)$, and for trees with one $\mathbf{X}_{i}$ decoration (and no edge decoration)

$$
\begin{aligned}
E(\bullet) & =\mathbb{E} \int K_{\rho}(-z) \xi^{\varepsilon}(z) \mathrm{d} z=\int K_{\rho}^{\varepsilon}(-z) \mathbb{E}[\xi(\mathrm{d} z)]=0 \quad K_{\rho}^{\varepsilon}=K_{\rho} * \varrho^{\varepsilon} \\
E(\mathscr{V}) & =\int K_{\rho}^{\varepsilon}\left(-z_{1}\right) K_{\rho}^{\varepsilon}\left(-z_{2}\right) \mathbb{E}\left[\xi\left(\mathrm{d} z_{1}\right) \xi\left(\mathrm{d} z_{2}\right)\right]=\int K_{\rho}^{\varepsilon}\left(-z_{1}\right)^{2} \mathrm{~d} z_{1} \\
E\left(\mathscr{V}^{\varepsilon}\right) & =\mathbb{E}\left[\left(\int K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) \xi\left(\mathrm{d} z_{1}\right) \xi\left(\mathrm{d} z_{2}\right) \mathrm{d} z\right)^{2}\right]
\end{aligned}
$$

Isserlis-Wick theorem: $\mathbb{E}\left[X_{1} \ldots X_{2 m}\right]=\sum_{\text {pairings }} \Pi \mathbb{E}\left[X_{i} X_{j}\right]$

## Feynman diagrams

$$
E\left(\mathrm{~V}^{2}\right)=\mathbb{E}\left[\left(K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) \xi\left(\mathrm{d} z_{1}\right) \xi\left(\mathrm{d} z_{2}\right) \mathrm{d} z\right)^{2}\right]
$$

## Feynman diagrams

$$
\begin{aligned}
& E(\mathscr{Y})=\mathbb{E}\left[\left(\int K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) \xi\left(d z_{1}\right) \xi\left(\mathrm{d} z_{2}\right) \mathrm{d} z\right)^{2}\right] \\
& =0+2 \int K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(\bar{z}-z_{1}\right) K_{\rho}(-\bar{z}) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) K_{\rho}^{\varepsilon}\left(\bar{z}-z_{2}\right) \mathrm{d} z \mathrm{~d} \bar{z} \mathrm{~d} z_{1} \mathrm{~d} z_{2}
\end{aligned}
$$

## Feynman diagrams

$$
\begin{aligned}
& E(\mho)=\mathbb{E}\left[\left(\int K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) \xi\left(d z_{1}\right) \xi\left(d z_{2}\right) \mathrm{d} z\right)^{2}\right] \\
& =0+2 \int K_{\rho}(-z) K_{\rho}^{\varepsilon}\left(z-z_{1}\right) K_{\rho}^{\varepsilon}\left(\bar{z}-z_{1}\right) K_{\rho}(-\bar{z}) K_{\rho}^{\varepsilon}\left(z-z_{2}\right) K_{\rho}^{\varepsilon}\left(\bar{z}-z_{2}\right) \mathrm{d} z \mathrm{~d} \bar{z} \mathrm{~d} z_{1} \mathrm{~d} z_{2} \\
& =2
\end{aligned}
$$

Definition: Feynman (vacuum) diagram
Given by $\Gamma=\left(\mathscr{V}, \mathscr{E}, v^{*}\right)$ directed (multi)graph, $v^{*}$ distinguished node, $\mathfrak{L}$ finite set of types, a map $\mathfrak{t}: \mathscr{E} \rightarrow \mathfrak{L}, e \mapsto \mathfrak{t}(e)$, kernels $K_{\mathfrak{t}}:\left(\mathbb{R}^{d+1}\right)^{*} \rightarrow \mathbb{R}$

$$
E(\Gamma)=\int_{\left(\mathbb{R}^{d+1}\right)^{V / v^{\star}}} \prod_{e \in \mathscr{E}} K_{\mathfrak{t}(e)}\left(z_{e_{+}}-z_{e_{-}}\right) \mathrm{d} z \quad e=\left(e_{-}, e_{+}\right), z_{v^{*}}=0
$$

## Simplification of Feynman diagrams

$v^{*}$ can be moved, and vertices of degree 2 can be integrated out:



## Simplification of Feynman diagrams

$v^{*}$ can be moved, and vertices of degree 2 can be integrated out:


$$
E(\mathscr{Y})=2 \Leftrightarrow=-\frac{1}{4}
$$

$$
E\left(Y_{0}\right)=2
$$

$$
E\left(\dot{V}^{\circ}\right)=\frac{1}{8}(\overbrace{0}
$$



## Degree of Feynman diagrams

Define
where

$$
\operatorname{deg}(\Gamma)=(\rho+d)(|\mathscr{V}|-1)+\sum_{e \in \mathscr{E}} \operatorname{deg}(\mathfrak{t}(e))
$$

$$
\begin{aligned}
& \operatorname{deg}(\longrightarrow)=\operatorname{deg}(-\cdots)=-d \\
& \operatorname{deg}(\cdots \sim M)=\operatorname{deg}(\ldots \sim M)=\rho-d \quad \operatorname{deg}(-m \rightarrow)=2 \rho-d
\end{aligned}
$$

Then for any pairing $P$, one has $\operatorname{deg}(\Gamma(\tau, P))=\left.|\tau| s\right|_{\kappa=0}$

## Degree of Feynman diagrams

Define
where

$$
\operatorname{deg}(\Gamma)=(\rho+d)(|\mathscr{V}|-1)+\sum_{e \in \mathscr{E}} \operatorname{deg}(\mathfrak{t}(e))
$$

$$
\begin{aligned}
& \operatorname{deg}(\longrightarrow)=\operatorname{deg}(-\cdots)=-d \\
& \operatorname{deg}(\cdots \sim M)=\operatorname{deg}(\ldots \sim M)=\rho-d \quad \operatorname{deg}(-m \rightarrow)=2 \rho-d
\end{aligned}
$$

Then for any pairing $P$, one has $\operatorname{deg}(\Gamma(\tau, P))=\left.|\tau| \mathfrak{s}\right|_{\kappa=0}$
Simple examples suggest that $|E(\Gamma)| \asymp \begin{cases}\varepsilon^{\operatorname{deg}} \Gamma & \text { if } \operatorname{deg} \Gamma<0 \\ \log \left(\varepsilon^{-1}\right) & \text { if } \operatorname{deg} \Gamma=0 \\ 1 & \text { if } \operatorname{deg} \Gamma>0\end{cases}$

## Degree of Feynman diagrams

Define
where

$$
\operatorname{deg}(\Gamma)=(\rho+d)(|\mathscr{V}|-1)+\sum_{e \in \mathscr{E}} \operatorname{deg}(\mathfrak{t}(e))
$$

$$
\begin{aligned}
& \operatorname{deg}(\longrightarrow)=\operatorname{deg}(-\cdots)=-d \\
& \operatorname{deg}(\cdots \sim M)=\operatorname{deg}(\ldots M \sim)=\rho-d \quad \operatorname{deg}(-m \rightarrow)=2 \rho-d
\end{aligned}
$$

Then for any pairing $P$, one has $\operatorname{deg}(\Gamma(\tau, P))=\left.|\tau| \mathfrak{s}\right|_{\kappa=0}$
Simple examples suggest that $|E(\Gamma)| \asymp \begin{cases}\varepsilon^{\operatorname{deg}} \Gamma & \text { if } \operatorname{deg} \Gamma<0 \\ \log \left(\varepsilon^{-1}\right) & \text { if } \operatorname{deg} \Gamma=0 \\ 1 & \text { if } \operatorname{deg} \Gamma>0\end{cases}$
This is however not the case in general, because of subdivergences: there can be subgraphs $\gamma \subset \Gamma$ with $\operatorname{deg} \gamma<\operatorname{deg} \Gamma \leqslant 0$


## Key estimate

Inductive def of twisted antipode: $\tilde{\mathcal{A}}_{-} \Gamma=-\Gamma-\sum_{\gamma \subsetneq\ulcorner: \operatorname{deg} \gamma<0} \tilde{\mathcal{A}}_{-} \gamma \cdot \underbrace{\Gamma / \gamma}_{\text {contraction }}$
Proposition: [ $\mathbf{B} \&$ Bruned '19] If $\tau$ has $p$ leaves,

$$
\left|E\left(\tilde{\mathcal{A}}_{-}(\Gamma)\right)\right| \leqslant \begin{cases}K_{1}^{p}(p-3)!\varepsilon^{\operatorname{deg}} \Gamma \log \left(\varepsilon^{-1}\right)^{\zeta} & \text { if } \operatorname{deg} \Gamma<0 \\ K_{1}^{p}(p-3)!\log \left(\varepsilon^{-1}\right)^{1+\zeta} & \text { if } \operatorname{deg} \Gamma=0\end{cases}
$$

where $K_{1}$ depends only on $K_{\mathrm{t}}$ and $\zeta \in\{0,1\}$ : \# of $\gamma \subset \Gamma$ with $\operatorname{deg} \gamma=0$

## Key estimate

Inductive def of twisted antipode: $\tilde{\mathcal{A}}_{-} \Gamma=-\Gamma-\sum_{\gamma ฐ \Gamma: \operatorname{deg} \gamma<0} \tilde{\mathcal{A}}_{-} \gamma \cdot \underbrace{\Gamma / \gamma}_{\text {contraction }}$
Proposition: [ $\mathbf{B} \&$ Bruned '19] If $\tau$ has $p$ leaves,

$$
\left|E\left(\tilde{\mathcal{A}}_{-}(\Gamma)\right)\right| \leqslant \begin{cases}K_{1}^{p}(p-3)!\varepsilon^{\operatorname{deg}} \Gamma \log \left(\varepsilon^{-1}\right)^{\zeta} & \text { if } \operatorname{deg} \Gamma<0 \\ K_{1}^{p}(p-3)!\log \left(\varepsilon^{-1}\right)^{1+\zeta} & \text { if } \operatorname{deg} \Gamma=0\end{cases}
$$

where $K_{1}$ depends only on $K_{\mathrm{t}}$ and $\zeta \in\{0,1\}$ : \# of $\gamma \subset \Gamma$ with $\operatorname{deg} \gamma=0$

- Extracting subdivergences (cf. [Connes \& Kreimer]):

$$
\Gamma=\underbrace{4}_{5}
$$



Then $E(\Gamma)-E\left(\mathscr{C}_{\gamma} \Gamma\right)$ contains a factor

$$
\left|K_{\rho}\left(z_{6}-z_{5}\right)-K_{\rho}\left(z_{6}-z_{4}\right)\right| \lesssim\left|\left(z_{5}-z_{4}\right) \cdot \nabla K_{\rho}\left(z_{6}-z_{4}\right)\right| \lesssim \frac{\left\|z_{5}-z_{4}\right\|_{s}}{\left\|z_{6}-z_{4}\right\|_{s}^{d+1}}
$$

- Hepp sector:


$\mathbf{T}=(T, \mathbf{n}): T$ binary tree, $|\mathscr{V}|$ leaves, $\mathbf{n}$ increasing node decoration Hepp sector: $D_{\mathrm{T}}=\left\{z \in \Lambda^{|\mathscr{V}|}: C^{-1} 2^{-\mathbf{n}_{i \wedge j}} \leqslant\left\|z_{i}-z_{j}\right\|_{\mathfrak{s}} \leqslant C 2^{-\mathbf{n}_{i \wedge j}}\right\}$ where $i \wedge j$ last common ancestor in $T$ $\Rightarrow \quad \Lambda^{|V|} \subset \cup_{T} D_{T}$
$\triangleright$ Hepp sector:

$\mathbf{T}=(T, \mathbf{n}): T$ binary tree, $|\mathscr{V}|$ leaves, $\mathbf{n}$ increasing node decoration Hepp sector: $D_{\mathrm{T}}=\left\{z \in \Lambda^{|\mathscr{V}|}: C^{-1} 2^{-\mathbf{n}_{i \wedge j}} \leqslant\left\|z_{i}-z_{j}\right\|_{\mathfrak{s}} \leqslant C 2^{-\mathbf{n}_{i \wedge j}}\right\}$ where $i \wedge j$ last common ancestor in $T \quad \Rightarrow \quad \wedge^{|\mathscr{V}|} \subset \cup_{T} D_{T}$
$\triangleright$ Zimmermann's forest formula:

$$
\tilde{\mathcal{A}}_{-} \Gamma=-\sum_{\text {forests } \mathscr{F}}(-1)^{|\mathscr{F}|} \mathscr{C}_{\mathscr{F}} \Gamma
$$


$\tilde{\mathcal{A}}_{-} \Gamma=-\sum_{\mathscr{F}_{\mathrm{s}} \text { safe }} \prod_{\gamma \in \mathscr{\mathscr { F }}_{\mathrm{s}}}\left(-\mathscr{C}_{\gamma}\right) \prod_{\bar{\gamma} \text { unsafe for } \mathscr{F}_{\mathrm{s}}}\left(\right.$ id $\left.-\mathscr{C}_{\bar{\gamma}}\right) \Gamma$
$\bar{\gamma}$ is unsafe for $\mathbf{T}$ if it is small and far from its parents

## General formula for the counterterms

Theorem: [Bruned, Hairer, Zambotti; Bruned, Chandra, Chevyrev, Hairer '19]
Counterterms given by

$$
C(\varepsilon, \rho, u)=\sum_{\tau \in T:|\tau|_{\mathfrak{s}}<0} E\left(\tilde{\mathcal{A}}_{-}(\tau)\right) \frac{\tau^{F}(\tau)(u)}{S(\tau)}
$$

$\triangleright \tilde{\mathcal{A}}_{-}(\tau)$ twisted antipode acting on trees
$\triangleright \Upsilon^{F}(\tau)(u)$ given by inductive relation with $\Upsilon^{F}(\equiv)(u)=1$; here

$$
\Upsilon^{F}(\tau)(u)= \begin{cases}2^{n_{\text {inner }}(\tau)} & \text { if } \tau \text { full } \\ 2^{n_{\text {inner }}(\tau)} u & \text { if } \tau \text { almost full without } X_{i}\end{cases}
$$

where $n_{\text {inner }}(\tau) \#$ of nodes of $\tau$ that are not leaves
$\triangleright S(\tau)$ symmetry factor; here $S(\tau)=2^{n_{\text {sym }}(\tau)}$ where $n_{\text {sym }}(\tau)$ \# of inner nodes with 2 identical lines of offspring, e.g.

$$
S(\mathscr{V})=S(\mathscr{V})=2
$$

$$
S(\mathscr{Y})=2^{3}
$$



## Thanks for your attention



$$
\text { arXiv/1907. } 13028
$$

## Main result (precise version)

Theorem: [B \& Bruned, arXiv/1907.13028]
$\exists M>0$ s.t. counterterm $C_{0}(\varepsilon, \rho)+C_{1}(\varepsilon, \rho) u$ satisfies

$$
\begin{aligned}
& \left|C_{0}(\varepsilon, \rho)\right| \leqslant M \varepsilon_{\mathrm{c}}^{-(d-\rho)}\left[\log \left(\varepsilon^{-1}\right)+\frac{1}{\rho-\rho_{\mathrm{c}}}\left(\frac{\varepsilon_{\mathrm{c}}}{\varepsilon}\right)^{3\left(\rho-\rho_{\mathrm{c}}\right)}\right] \quad \varepsilon \geqslant \varepsilon_{\mathrm{c}} \\
& \left|\frac{C_{0}(\varepsilon, \rho)}{A_{0} \varepsilon^{-(d-\rho)}}-1\right| \leqslant \frac{M}{\rho-\rho_{\mathrm{c}}}\left(\frac{\varepsilon}{\varepsilon_{\mathrm{c}}}\right)^{3\left(\rho-\rho_{\mathrm{c}}\right)} \quad \varepsilon<\varepsilon_{\mathrm{c}} \\
& \left|C_{1}(\varepsilon, \rho)\right| \leqslant M \bar{\varepsilon}_{\mathrm{c}}-(d-2 \rho)\left[\log \left(\varepsilon^{-1}\right)+\frac{1}{\rho-\rho_{\mathrm{c}}}\left(\frac{\bar{\varepsilon}_{\mathrm{c}}}{\varepsilon}\right)^{3\left(\rho-\rho_{\mathrm{c}}\right)}\right] \quad \varepsilon \geqslant \bar{\varepsilon}_{\mathrm{C}} \\
& \left|\frac{C_{0}(\varepsilon, \rho)}{\bar{A}_{0} \varepsilon^{-(d-2 \rho)}}-1\right| \leqslant \frac{M}{\rho-\rho_{\mathrm{c}}}\left(\frac{\varepsilon}{\bar{\varepsilon}_{\mathrm{c}}}\right)^{3\left(\rho-\rho_{\mathrm{c}}\right)} \\
& \varepsilon_{\mathrm{c}}=f\left(k_{\max }\right) \quad \bar{\varepsilon}_{\mathrm{c}}=f\left(\bar{k}_{\max }\right) \\
& f(k)=\exp \left\{-\frac{\left.\log k+a-\frac{\log k}{2 k}\right)}{\rho-\rho_{c}}\right\} \\
& k_{\text {max }}=\frac{d-\rho}{3\left(\rho-\rho_{\mathbf{c}}\right)} \quad \bar{k}_{\text {max }}=\frac{d-2 \rho}{3\left(\rho-\rho_{\mathbf{c}}\right)} \\
& A_{0}=-\lim _{\varepsilon \rightarrow 0} \varepsilon^{d-\rho} E(V) \\
& \bar{A}_{0}=-4 \lim _{\varepsilon \rightarrow 0} \varepsilon^{d-2 \rho} E\left(\iota_{0}\right)
\end{aligned}
$$

## Main estimate

$$
\left|E\left(\tilde{\mathcal{A}}_{-}(\tau)\right)\right| \leqslant \sum_{P} \sum_{T} \sum_{\mathscr{F}_{\mathbf{s}}} \sum_{\mathbf{n}} \int_{D_{T, \mathbf{n}}} \prod_{e \in \mathscr{E}(\tilde{\mathcal{A}}-\Gamma(\tau, P))}\left|K_{\mathfrak{t}(e)}\left(z_{e_{+}}-z_{e_{-}}\right)\right| \mathrm{d} z
$$

Proposition: [B \& Bruned '19]

$$
\sum_{\mathbf{n}} \sup _{z \in D_{\mathrm{T}}} \prod_{e}\left|K_{\mathfrak{t}(e)}(\ldots)\right| \operatorname{Vol}\left(D_{\mathrm{T}}\right) \leqslant \begin{cases}K_{1}^{|\mathscr{E}|} \varepsilon^{\operatorname{deg}} \Gamma \log \left(\varepsilon^{-1}\right)^{\zeta} & \text { if } \operatorname{deg} \Gamma<0 \\ K_{1}^{|\mathscr{E}|} \log \left(\varepsilon^{-1}\right)^{1+\zeta} & \text { if } \operatorname{deg} \Gamma=0\end{cases}
$$

where $K_{1}$ depends only on $K_{t}$ and $\zeta \in\{0,1\} \#$ of $\gamma \subset \Gamma$ with $\operatorname{deg} \gamma=0$
For $\tau$ complete with $2 k+2$ leaves, $k \leqslant k_{\max }=\frac{d-\rho}{3\left(\rho-\rho_{c}\right)}$ :
$\triangleright$ \# of pairings $P=(2 k+1)!!=\prod_{i=1}^{k}(2 i+1)$

- \# of Hepp trees $T \leqslant(2 k-1)$ !
$\triangleright$ \# of safe forests $\mathscr{F}_{s} \leqslant 2^{k}$
$\triangleright \%$ of pairings yielding $\zeta=1$ bdd by $2^{-\left(2 k-k_{\max }\right)}$

