Imperial College London – DynamIC Seminar

Precise estimates on noise-induced transitions in oscillating double-well potentials

Nils Berglund

Institut Denis Poisson, University of Orléans, France

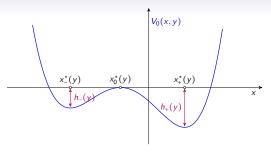
INSTITUT MANAGEMENT FOLIAS

DENIS POISSON

27 October 2020 (video talk)

partly based on joint work with Barbara Gentz (Bielefeld)

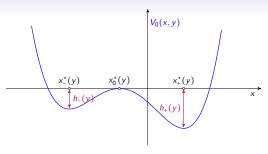
The problem



$$dx_t = -\partial_x V_0(x_t, y_t) dt + \sigma dW_t^x$$

$$dy_t = \varepsilon dt + \sigma \sqrt{\varepsilon} \varrho dW_t^y$$

The problem

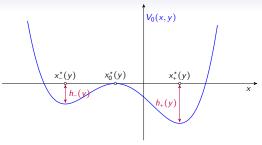


$$dx_t = -\partial_x V_0(x_t, y_t) dt + \sigma dW_t^x$$

$$dy_t = \varepsilon dt + \sigma \sqrt{\varepsilon} \varrho dW_t^y$$

- $ho x \mapsto V_0(x,y)$ confining double-well potential, class C^4 $V_0(x,y+1) = V_0(x,y)$
- $\triangleright 0 \le \varepsilon, \sigma \ll 1, \ \varrho > 0$
- \triangleright W_t^{\times} , W_t^{y} independent standard Wiener processes

The problem



$$dx_t = -\partial_x V_0(x_t, y_t) dt + \sigma dW_t^x$$

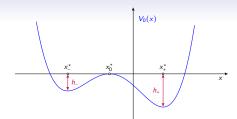
$$dy_t = \varepsilon dt + \sigma \sqrt{\varepsilon} \varrho dW_t^y$$

- $ho x \mapsto V_0(x,y)$ confining double-well potential, class C^4 $V_0(x,y+1) = V_0(x,y)$
- $\triangleright 0 \le \varepsilon, \sigma \ll 1, \ \varrho > 0$
- $\triangleright W_t^X$, W_t^Y independent standard Wiener processes

Question: describe law of $\tau_+ = \inf\{t > 0: x_t = x_+^*(y_t) | (x_0 = x_-^*(y_0), y_0)\}$

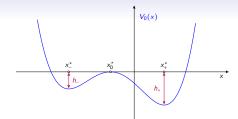
$$dx_t = -V_0'(x_t) dt + \sigma dW_t$$

$$\omega_{\pm} = \sqrt{V_0^{\prime\prime}(x_{\pm}^*)} \quad \omega_0 = \sqrt{-V_0^{\prime\prime}(x_0^*)}$$



$$dx_t = -V_0'(x_t) dt + \sigma dW_t$$

$$\omega_{\pm} = \sqrt{V_0''(x_{\pm}^*)} \quad \omega_0 = \sqrt{-V_0''(x_0^*)}$$

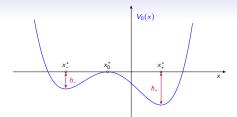


▷ By Dynkin's equation, $\forall x < x_+^*$,

$$\mathbb{E}^{x}[\tau_{+}] = \frac{2}{\sigma^{2}} \int_{x}^{x_{+}^{*}} \int_{-\infty}^{x_{2}} e^{2[V_{0}(x_{2}) - V_{0}(x_{1})]/\sigma^{2}} dx_{1} dx_{2}$$

$$dx_t = -V_0'(x_t) dt + \sigma dW_t$$

$$\omega_{\pm} = \sqrt{V_0''(x_{\pm}^*)} \quad \omega_0 = \sqrt{-V_0''(x_0^*)}$$



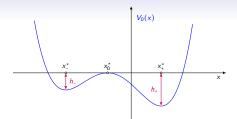
By Dynkin's equation, $\forall x < x_{+}^{*}$,

$$\mathbb{E}^{x}[\tau_{+}] = \frac{2}{\sigma^{2}} \int_{x}^{x_{+}^{*}} \int_{-\infty}^{x_{2}} e^{2[V_{0}(x_{2}) - V_{0}(x_{1})]/\sigma^{2}} dx_{1} dx_{2}$$

Eyring–Kramers law:
$$\mathbb{E}^{x_{-}^*}[\tau_+] = \frac{2\pi}{\omega_0\omega_-} e^{2h_-/\sigma^2} [1 + \mathcal{O}(\sigma^2)]$$

$$dx_t = -V_0'(x_t) dt + \sigma dW_t$$

$$\omega_{\pm} = \sqrt{V_0''(x_{\pm}^*)} \quad \omega_0 = \sqrt{-V_0''(x_0^*)}$$



▷ By Dynkin's equation, $\forall x < x_+^*$,

$$\mathbb{E}^{x}[\tau_{+}] = \frac{2}{\sigma^{2}} \int_{x}^{x_{+}^{*}} \int_{-\infty}^{x_{2}} e^{2[V_{0}(x_{2}) - V_{0}(x_{1})]/\sigma^{2}} dx_{1} dx_{2}$$

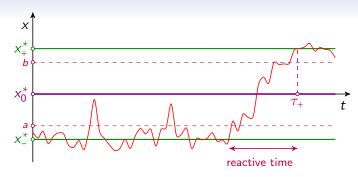
$$\Rightarrow$$
 Eyring-Kramers law: $\mathbb{E}^{x_{-}^{*}}[\tau_{+}] = \frac{2\pi}{\omega_{0}\omega_{-}} e^{2h_{-}/\sigma^{2}} [1 + \mathcal{O}(\sigma^{2})]$

▷ [Day '83]:
$$\forall s \ge 0$$
, $\lim_{\sigma \to 0} \mathbb{P}^{x_{-}^{*}} \{ \tau_{+} > s \mathbb{E}^{x_{-}^{*}} [\tau_{+}] \} = e^{-s}$

(Convergence to exponential law $\mathscr{E}(1)$)

Static case: reactive time

Static case: reactive time



$$\begin{split} & \hspace{-0.5cm} \vdash \hspace{-0.5cm} \text{[C\'erou, Guyader, Leli\`evre, Malrieu '13]:} \quad x_-^* < \textbf{\textit{a}} < \textbf{\textit{x}}_0 < x_0^* < \textbf{\textit{b}} < x_+^* \\ & \hspace{-0.5cm} \lim_{\sigma \to 0} \text{Law} \Big(\omega_0^2 \tau_{\textbf{\textit{b}}} - 2 \log(\sigma^{-1}) \; \Big| \; \tau_{\textbf{\textit{b}}} < \tau_{\textbf{\textit{a}}} \Big) = \text{Law} \Big(\underbrace{\mathcal{G}}_{\text{Gumbel}} + \underbrace{\mathcal{T}(\textbf{\textit{x}}_0, \textbf{\textit{b}})}_{\text{deterministic}} \Big) \end{split}$$

Static case: reactive time

$$\begin{split} & \hspace{-0.5cm} \hspace{0.2cm} \hspace{0.$$

Gumbel law: $\mathbb{P}\{\mathcal{G} < t\} = e^{-e^{-t}} \ \forall t \in \mathbb{R}$

(max-stable distribution from extreme value theory, cf. [Bakhtin '15])

$$\Rightarrow$$
 reactive time $\simeq \omega_0^{-2} [2 \log(\sigma^{-1}) + \mathcal{G} + \mathcal{T}(x_0, \mathbf{b})]$

riangleright [Freidlin & Wentzell '79]: Large-deviation theory gives exponent of $\mathbb{E}[au_+]$

- riangle [Freidlin & Wentzell '79]: Large-deviation theory gives exponent of $\mathbb{E}[au_+]$
- ▷ Gradient case $dx_t = -\nabla V(x_t) dt + \sigma dW_t$ Invariant measure $\pi(x) = Z^{-1} e^{-2V(x)/\sigma^2} dx$ Process reversible wrt π

- riangle [Freidlin & Wentzell '79]: Large-deviation theory gives exponent of $\mathbb{E}[au_+]$
- ▷ Gradient case $dx_t = -\nabla V(x_t) dt + \sigma dW_t$ Invariant measure $\pi(x) = Z^{-1} e^{-2V(x)/\sigma^2} dx$ Process reversible wrt π Eyring–Kramers law and asympt. exponential character of τ_+ known
 - ♦ [Bovier, Eckhoff, Gayrard & Klein 2004]: Potential theory
 - ♦ [Helffer, Klein & Nier 2005]: Semiclassical analysis

- riangle [Freidlin & Wentzell '79]: Large-deviation theory gives exponent of $\mathbb{E}[au_+]$
- ▷ Gradient case $dx_t = -\nabla V(x_t) dt + \sigma dW_t$ Invariant measure $\pi(x) = Z^{-1} e^{-2V(x)/\sigma^2} dx$ Process reversible wrt π Eyring–Kramers law and asympt. exponential character of τ_+ known
 - ♦ [Bovier, Eckhoff, Gayrard & Klein 2004]: Potential theory
 - ♦ [Helffer, Klein & Nier 2005]: Semiclassical analysis
- ightharpoonup Nongradient case Invariant measure π not known in general Process in general not reversible wrt π

- riangle [Freidlin & Wentzell '79]: Large-deviation theory gives exponent of $\mathbb{E}[au_+]$
- ▷ Gradient case $dx_t = -\nabla V(x_t) dt + \sigma dW_t$ Invariant measure $\pi(x) = Z^{-1} e^{-2V(x)/\sigma^2} dx$ Process reversible wrt π Eyring–Kramers law and asympt. exponential character of τ_+ known
 - ♦ [Bovier, Eckhoff, Gayrard & Klein 2004]: Potential theory
 - ♦ [Helffer, Klein & Nier 2005]: Semiclassical analysis
- ▶ Nongradient case

Invariant measure π not known in general Process in general not reversible wrt π

- ♦ [Bouchet & Reygner 2016]: Formal computations → Eyring–Kramers law in bistable situations
- \diamond [Landim, Mariani & Seo 2019]: Non-reversible potential theory Confirms result by [B & R 2016] for some systems with known π
- $\diamond~$ [Le Peutrec & Michel 2019]: Semiclassical analysis for systems with known π

$$dx_t = -\frac{1}{\varepsilon} \partial_x V_0(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t^x$$

$$dy_t = dt + \sigma \varrho dW_t^y$$

(time scaled by ε)

$$\begin{split} \mathrm{d}x_t &= -\frac{1}{\varepsilon} \partial_x V_0(x_t, y_t) \, \mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \, \mathrm{d}W_t^X \\ \mathrm{d}y_t &= \mathrm{d}t + \sigma\varrho \, \mathrm{d}W_t^Y \end{split} \qquad \text{(time scaled by } \varepsilon\text{)}$$

▷ Det. eq. $\varepsilon \dot{x} = -\partial_x V_0(x, t)$: $\exists ! 3$ periodic orbits $\bar{x}_i(t) = x_i^*(t) + \mathcal{O}(\varepsilon)$

$$\begin{split} \mathrm{d}x_t &= -\frac{1}{\varepsilon} \partial_x V_0(x_t, y_t) \, \mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \, \mathrm{d}W_t^X \\ \mathrm{d}y_t &= \mathrm{d}t + \sigma\varrho \, \mathrm{d}W_t^Y \end{split} \qquad \text{(time scaled by } \varepsilon\text{)}$$

- ▷ Det. eq. $\varepsilon \dot{x} = -\partial_x V_0(x, t)$: $\exists ! \ 3$ periodic orbits $\bar{x}_i(t) = x_i^*(t) + \mathcal{O}(\varepsilon)$
- $\triangleright \tau_0$ hitting time of $\bar{x}_0(y)$

Theorem: [B & Gentz, SIAM J Math Analysis 2014]

$$\lim_{\sigma \to 0} \mathsf{Law} \Big(\theta \big(y_{\tau_0} \big) - \mathsf{log} \big(\sigma^{-1} \big) - \frac{\lambda_+}{\varepsilon} Y^{\sigma} \Big) = \mathsf{Law} \Big(\frac{\mathcal{G}}{2} - \frac{\mathsf{log} \, 2}{2} \Big)$$

$$\begin{split} \mathrm{d}x_t &= -\frac{1}{\varepsilon} \partial_x V_0(x_t, y_t) \, \mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \, \mathrm{d}W_t^X \\ \mathrm{d}y_t &= \mathrm{d}t + \sigma\varrho \, \mathrm{d}W_t^Y \end{split} \qquad \text{(time scaled by } \varepsilon\text{)}$$

- ▷ Det. eq. $\varepsilon \dot{x} = -\partial_x V_0(x, t)$: $\exists ! \ 3$ periodic orbits $\bar{x}_i(t) = x_i^*(t) + \mathcal{O}(\varepsilon)$
- $\triangleright \tau_0$ hitting time of $\bar{x}_0(y)$

Theorem: [B & Gentz, SIAM J Math Analysis 2014]

$$\lim_{\sigma \to 0} \mathsf{Law} \Big(\theta \big(y_{\tau_0} \big) - \mathsf{log} \big(\sigma^{-1} \big) - \frac{\lambda_+}{\varepsilon} Y^{\sigma} \Big) = \mathsf{Law} \Big(\frac{\mathcal{G}}{2} - \frac{\mathsf{log} \, 2}{2} \Big)$$

- \triangleright $\theta(y)$: explicit parametrisation of $\bar{x}_0(y)$, $\theta(y+1) = \theta(y) + \frac{\lambda_+}{\varepsilon}$
- $\triangleright \lambda_+$: Lyapunov exponent of $\bar{x}_0(y)$ $(\lambda_+ = \int_0^1 \omega_0(y)^2 dy + \mathcal{O}(\varepsilon))$
- $\triangleright Y^{\sigma} \in \mathbb{N}$: asymptotically geometric \mathbb{N} -valued r.v:

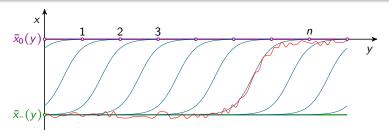
$$\lim_{n\to\infty} \mathbb{P}\{Y^{\sigma} = n+1|Y^{\sigma} > n\} = p(\sigma)$$

$$p(\sigma) \simeq e^{-\mathcal{I}/\sigma^2}$$
, \mathcal{I} Freidlin–Wentzell quasipotential, $\mathbb{E}[\tau_0] \simeq p(\sigma)^{-1}$

Sketch of proof

Theorem: [B & Gentz, SIAM J Math Analysis 2014]

$$\lim_{\sigma \to 0} \mathsf{Law} \Big(\theta \big(y_{\tau_0} \big) - \mathsf{log} \big(\sigma^{-1} \big) - \frac{\lambda_+}{\varepsilon} Y^{\sigma} \Big) = \mathsf{Law} \Big(\frac{\mathcal{G}}{2} - \frac{\mathsf{log} \, 2}{2} \Big)$$



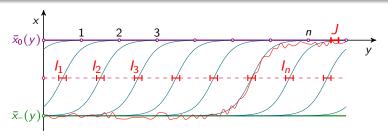
Instantons: minimize Freidlin-Wentzell large-deviation rate function

$$\frac{1}{2} \int_0^T \left[(\dot{x}_t + \partial_x V_0(x_t, y_t))^2 + \frac{1}{\varepsilon \rho^2} (\dot{y}_t - \varepsilon)^2 \right] dt \qquad T > 0 \text{ arbitrary}$$

Sketch of proof

Theorem: [B & Gentz, SIAM J Math Analysis 2014]

$$\lim_{\sigma \to 0} \mathsf{Law} \Big(\theta \big(y_{\tau_0} \big) - \mathsf{log} \big(\sigma^{-1} \big) - \frac{\lambda_+}{\varepsilon} \, Y^\sigma \Big) = \mathsf{Law} \Big(\frac{\mathcal{G}}{2} - \frac{\mathsf{log} \, 2}{2} \Big)$$



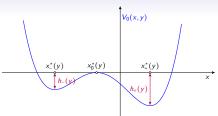
Instantons: minimize Freidlin-Wentzell large-deviation rate function

$$\frac{1}{2} \int_0^T \left[(\dot{x}_t + \partial_x V_0(x_t, y_t))^2 + \frac{1}{\varepsilon \rho^2} (\dot{y}_t - \varepsilon)^2 \right] dt \qquad T > 0 \text{ arbitrary}$$

$$\mathbb{P}\big\{y_{\tau_0} \in J\big\} \simeq \sum_k \underbrace{\mathbb{P}\big\{y_{\tau_-} \in I_k\big\}}_{\simeq \mathbb{P}\big\{Y^{\sigma} = k\big\}} \underbrace{\mathbb{P}^{I_k}\big\{y_{\tau_0} \in J\big\}}_{\simeq \mathbb{P}\big\{\frac{\mathcal{G}}{2} + const \in J - k\big\}}$$

Eyring–Kramers-type law for $\mathbb{E}[au_+]$

$$\begin{split} &\omega_{\pm}(y) = \sqrt{\partial_{xx} V_0(x_{\pm}^*(y), y)} \\ &\omega_0(y) = \sqrt{-\partial_{xx}(x_0^*(y), y)} \\ &r_{\pm}(y) = \frac{\omega_{\pm}(y)\omega_0(y)}{2\pi} \, \mathrm{e}^{-2h_{\pm}(y)/\sigma^2} \end{split}$$

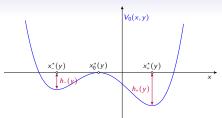


Eyring–Kramers-type law for $\mathbb{E}[au_{\scriptscriptstyle{+}}]$

$$\omega_{\pm}(y) = \sqrt{\partial_{xx} V_0(x_{\pm}^*(y), y)}$$

$$\omega_0(y) = \sqrt{-\partial_{xx}(x_0^*(y), y)}$$

$$r_{\pm}(y) = \frac{\omega_{\pm}(y)\omega_0(y)}{2\pi} e^{-2h_{\pm}(y)/\sigma^2}$$

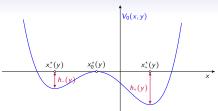


▶ Leading eigenvalue of $-\mathcal{L}_x = -\frac{\sigma^2}{2}\partial_{xx} + \partial_x V_0 \partial_x$:

$$\lambda_1(y) = [r_+(y) + r_-(y)][1 + \mathcal{O}(\sigma^2)]$$

Eyring–Kramers-type law for $\mathbb{E}[au_{\scriptscriptstyle{+}}]$

$$\begin{aligned} \omega_{\pm}(y) &= \sqrt{\partial_{xx} V_0(x_{\pm}^*(y), y)} \\ \omega_0(y) &= \sqrt{-\partial_{xx}(x_0^*(y), y)} \\ r_{\pm}(y) &= \frac{\omega_{\pm}(y)\omega_0(y)}{2\pi} e^{-2h_{\pm}(y)/\sigma^2} \end{aligned}$$



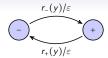
▶ Leading eigenvalue of $-\mathcal{L}_X = -\frac{\sigma^2}{2}\partial_{xx} + \partial_x V_0 \partial_x$:

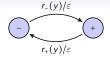
$$\lambda_1(y) = [r_+(y) + r_-(y)][1 + \mathcal{O}(\sigma^2)] \qquad \langle \lambda_1 \rangle = \int_0^1 \lambda_1(y) \, \mathrm{d}y$$

Theorem: [B 2020, arXiv:2007.08443]

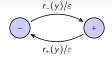
$$\mathbb{E}^{(\mathbf{x}_{-}^{*}(y_{0}),y_{0})}[\tau_{+}] = \frac{2\pi\varepsilon[1+R(\varepsilon,\sigma)]}{\int_{0}^{1}\omega_{0}(y)\omega_{-}(y)\,\mathrm{e}^{-2h_{-}(y)/\sigma^{2}}\,\mathrm{d}y}$$

where $R(\varepsilon, \sigma)$ complicated but small if $\langle \lambda_1 \rangle \ll \varepsilon \ll \langle \lambda_1 \rangle^{1/4}$

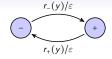




$$\frac{\mathsf{d}}{\mathsf{d}y}\mathbb{P}^{-,y_0}\left\{\tau_+>y\right\}=-\frac{1}{\varepsilon}r_-(y)\mathbb{P}^{-,y_0}\left\{\tau_+>y\right\}$$



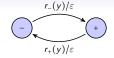
$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}y}\mathbb{P}^{-,y_0}\big\{\tau_+>y\big\} &= -\frac{1}{\varepsilon}r_-(y)\mathbb{P}^{-,y_0}\big\{\tau_+>y\big\} \\ \mathbb{P}^{-,y_0}\big\{\tau_+>y\big\} &= \mathrm{e}^{-R_-(y,y_0)/\varepsilon} \qquad \text{where } R_-(y_1,y_0) = \int_{y_0}^{y_1} r_-(y)\,\mathrm{d}y \end{split}$$



$$\frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}^{-,y_0} \left\{ \tau_+ > y \right\} = -\frac{1}{\varepsilon} r_-(y) \mathbb{P}^{-,y_0} \left\{ \tau_+ > y \right\}$$

$$\mathbb{P}^{-,y_0} \left\{ \tau_+ > y \right\} = \mathrm{e}^{-R_-(y,y_0)/\varepsilon} \qquad \text{where } R_-(y_1,y_0) = \int_{y_0}^{y_1} r_-(y) \, \mathrm{d}y$$

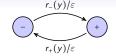
$$\mathbb{E}^{-,y_0}\left[\tau_+\right] = \int_{y_0}^{\infty} e^{-R_-(y,y_0)/\varepsilon} \, \mathrm{d}y$$



$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}y}\mathbb{P}^{-,y_0}\big\{\tau_+>y\big\} &= -\frac{1}{\varepsilon}r_-(y)\mathbb{P}^{-,y_0}\big\{\tau_+>y\big\} \\ \mathbb{P}^{-,y_0}\big\{\tau_+>y\big\} &= \mathrm{e}^{-R_-(y,y_0)/\varepsilon} \qquad \text{where } R_-(y_1,y_0) = \int_{y_0}^{y_1} r_-(y)\,\mathrm{d}y \end{split}$$

$$\mathbb{E}^{-,y_0} \left[\tau_+ \right] = \int_{y_0}^{\infty} e^{-R_-(y,y_0)/\varepsilon} \, \mathrm{d}y$$

$$= \frac{1}{1 - e^{-R_-(1,0)/\varepsilon}} \int_0^1 e^{-R_-(y_0 + y,y_0)/\varepsilon} \, \mathrm{d}y \qquad \text{(by periodicity of } r_-\text{)}$$



$$\frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}^{-,y_0} \left\{ \tau_+ > y \right\} = -\frac{1}{\varepsilon} r_-(y) \mathbb{P}^{-,y_0} \left\{ \tau_+ > y \right\}$$

$$\mathbb{P}^{-,y_0} \left\{ \tau_+ > y \right\} = \mathrm{e}^{-R_-(y,y_0)/\varepsilon} \qquad \text{where } R_-(y_1, y_0) = \int_{y_0}^{y_1} r_-(y) \, \mathrm{d}y$$

$$\mathbb{P}^{-,y_0} \left\{ \tau_+ > y \right\} = -\frac{1}{\varepsilon} \mathrm{e}^{-R_-(y,y_0)/\varepsilon} \, \mathrm{d}y$$

$$\mathbb{E}^{-,y_0} \Big[\tau_+ \Big] = \int_{y_0}^{\infty} \mathrm{e}^{-R_-(y,y_0)/\varepsilon} \, \mathrm{d}y$$

$$= \frac{1}{1 - \mathrm{e}^{-R_-(1,0)/\varepsilon}} \int_0^1 \mathrm{e}^{-R_-(y_0 + y,y_0)/\varepsilon} \, \mathrm{d}y \qquad \text{(by periodicity of } r_-\text{)}$$

$$\int_0^{\varepsilon} \frac{\varepsilon}{R_-(1,0)} = \frac{2\pi\varepsilon}{\int_0^1 \omega_0(y)\omega_-(y) \, \mathrm{e}^{-2h_-(y)/\sigma^2} \, \mathrm{d}y} \qquad \text{if } \varepsilon \gg \max_{y \in [0,1]} r_-(y)$$

$$\cong \begin{cases} \frac{\varepsilon}{r_-(y_0)} & \text{if } \varepsilon \ll \min_{y \in [0,1]} r_-(y) \\ \text{In between: Stochastic resonance} \end{cases}$$

Noise-induced transitions in oscillating double-well potentials

$$\triangleright \text{ Generator } \mathscr{L} = \frac{1}{\varepsilon} \mathscr{L}_{\mathsf{X}} + \mathscr{L}_{\mathsf{y}}, \qquad \mathscr{L}_{\mathsf{y}} = \frac{\varrho^2 \sigma^2}{2} \partial_{\mathsf{y}\mathsf{y}} + \partial_{\mathsf{y}}$$

- $\triangleright \text{ Generator } \mathscr{L} = \frac{1}{\varepsilon} \mathscr{L}_X + \mathscr{L}_Y, \quad \mathscr{L}_Y = \frac{\varrho^2 \sigma^2}{2} \partial_{yy} + \partial_Y$
- ▷ Invariant measure $d\pi = e^{-2V(x,y)/\sigma^2} dx dy$, V sat. Hamilton–Jacobi eq.

- $\triangleright \text{ Generator } \mathscr{L} = \frac{1}{\varepsilon} \mathscr{L}_X + \mathscr{L}_Y, \quad \mathscr{L}_Y = \frac{\varrho^2 \sigma^2}{2} \partial_{yy} + \partial_Y$
- ▷ Invariant measure $d\pi = e^{-2V(x,y)/\sigma^2} dx dy$, V sat. Hamilton–Jacobi eq.
- ▷ Decompose $\mathcal{L} = \mathcal{L}_s + \mathcal{L}_a$ where
 - $\qquad \qquad \& \leq_{\rm s} = \frac{\sigma^2}{2\varepsilon} \, {\rm e}^{2V/\sigma^2} \, \nabla \cdot D \, {\rm e}^{-2V/\sigma^2} \, \nabla \text{, where } D = \left(\begin{smallmatrix} 1 & 0 \\ 0 & \varepsilon \rho^2 \end{smallmatrix} \right) \text{, is self-adjoint wrt } \pi$
 - ♦ $\mathcal{L}_a = c \cdot \nabla$ (c explicitly known) is skew-symmetric: $\mathcal{L}_a^{\dagger} = -\mathcal{L}_a$

- $\triangleright \text{ Generator } \mathscr{L} = \frac{1}{\varepsilon} \mathscr{L}_X + \mathscr{L}_Y, \quad \mathscr{L}_Y = \frac{\varrho^2 \sigma^2}{2} \partial_{yy} + \partial_Y$
- ▷ Invariant measure $d\pi = e^{-2V(x,y)/\sigma^2} dx dy$, V sat. Hamilton–Jacobi eq.
- ▷ Decompose $\mathcal{L} = \mathcal{L}_s + \mathcal{L}_a$ where

 - ♦ $\mathcal{L}_a = c \cdot \nabla$ (c explicitly known) is skew-symmetric: $\mathcal{L}_a^{\dagger} = -\mathcal{L}_a$
- \triangleright Adjoint system: generator $\mathcal{L}^* = \mathcal{L}_s \mathcal{L}_a$

[Landim, Mariani & Seo 2019]:

- $\triangleright \text{ Generator } \mathscr{L} = \frac{1}{\varepsilon} \mathscr{L}_{\mathsf{X}} + \mathscr{L}_{\mathsf{y}}, \qquad \mathscr{L}_{\mathsf{y}} = \frac{\varrho^2 \sigma^2}{2} \partial_{\mathsf{y}\mathsf{y}} + \partial_{\mathsf{y}}$
- ▷ Invariant measure $d\pi = e^{-2V(x,y)/\sigma^2} dx dy$, V sat. Hamilton–Jacobi eq.
- ▷ Decompose $\mathcal{L} = \mathcal{L}_s + \mathcal{L}_a$ where

 - ♦ $\mathcal{L}_a = c \cdot \nabla$ (c explicitly known) is skew-symmetric: $\mathcal{L}_a^{\dagger} = -\mathcal{L}_a$
- \triangleright Adjoint system: generator $\mathscr{L}^* = \mathscr{L}_s \mathscr{L}_a$

Theorem: [LMS 2019] For any $A, B \subset \mathbb{R}^2$, $A \cap B = \emptyset$

$$\int_{\partial A} \mathbb{E}^{(x,y)} [\tau_B] d\nu_{AB} = \frac{1}{\mathsf{cap}(A,B)} \int_{B^c} h_{AB}^*(x,y) d\pi$$

- \triangleright d ν_{AB} probability measure on ∂A
- \triangleright cap(A, B): capacity, satisfies variational principles
- $\vdash h_{AB}^*(x,y) = \mathbb{P}^{*,(x,y)} \{ \tau_A < \tau_B \}$ committor for adjoint dynamics

$$\vdash \text{ For } \varphi : \mathbb{R}^2 \to \mathbb{R}^2, \text{ define } \mathscr{D}(\varphi) = \frac{2\varepsilon}{\sigma^2} \int_{(A \cup B)^c} \varphi \cdot (D^{-1}\varphi) \frac{\mathrm{d}x \, \mathrm{d}y}{\pi(x,y)}$$

$$\vdash \text{ For } \varphi : \mathbb{R}^2 \to \mathbb{R}^2, \text{ define } \mathscr{D}(\varphi) = \frac{2\varepsilon}{\sigma^2} \int_{(A \cup B)^c} \varphi \cdot (D^{-1}\varphi) \frac{\mathrm{d} x \, \mathrm{d} y}{\pi(x,y)}$$

ightharpoonup Given $f: \mathbb{R}^2 \to \mathbb{R}$, define vector fields $\Psi_f = \frac{\sigma^2}{2\varepsilon} \pi D \nabla f$, $\Phi_f = \Psi_f - \pi f c$

- $\vdash \text{ For } \varphi : \mathbb{R}^2 \to \mathbb{R}^2, \text{ define } \mathscr{D}(\varphi) = \frac{2\varepsilon}{\sigma^2} \int_{(A \cup B)^c} \varphi \cdot (D^{-1}\varphi) \frac{\mathrm{d} x \, \mathrm{d} y}{\pi(x,y)}$
- ho Given $f: \mathbb{R}^2 \to \mathbb{R}$, define vector fields $\Psi_f = \frac{\sigma^2}{2\varepsilon} \pi D \nabla f$, $\Phi_f = \Psi_f \pi f c$
- $\triangleright \mathcal{H}_{AB}^{\alpha,\beta}$: space of $f:\mathbb{R}^2 \to \mathbb{R}$ such that $f|_A = \alpha, f|_B = \beta$
- $\triangleright \mathscr{F}_{AB}^{\gamma}$: space of divergence-free flows of flux γ through ∂A

- $\triangleright \text{ For } \varphi : \mathbb{R}^2 \to \mathbb{R}^2, \text{ define } \mathscr{D}(\varphi) = \frac{2\varepsilon}{\sigma^2} \int_{(A \cup B)^c} \varphi \cdot (D^{-1}\varphi) \frac{\mathrm{d}x \, \mathrm{d}y}{\pi(x,y)}$
- ho Given $f: \mathbb{R}^2 \to \mathbb{R}$, define vector fields $\Psi_f = \frac{\sigma^2}{2\varepsilon} \pi D \nabla f$, $\Phi_f = \Psi_f \pi f c$
- $\triangleright \mathcal{H}_{AB}^{\alpha,\beta}$: space of $f:\mathbb{R}^2 \to \mathbb{R}$ such that $f|_A = \alpha, f|_B = \beta$
- $\triangleright \mathscr{F}_{AB}^{\gamma}$: space of divergence-free flows of flux γ through ∂A

Proposition: [LMS 2019] Dirichlet principle

$$\mathsf{cap}(A,B) = \inf_{f \in \mathscr{H}_{AB}^{1,0}} \inf_{\varphi \in \mathscr{F}_{AB}^{0}} \mathscr{D}(\Phi_{f} - \varphi)$$

Infimum reached for $f = \frac{1}{2}(h_{AB} + h_{AB}^*)$ and $\varphi = \Phi_f - \Psi_{h_{AB}}$

Proposition: [LMS 2019] Thomson principle

$$cap(A, B) = \sup_{f \in \mathcal{H}_{AB}^{0,0}} \sup_{\varphi \in \mathcal{F}_{AB}^{1}} \frac{1}{\mathscr{D}(\Phi_f - \varphi)}$$

Supremum reached for $f = \frac{1}{2\operatorname{cap}(A,B)}(h_{AB} - h_{AB}^*)$ and $\varphi = \Phi_f - \frac{1}{\operatorname{cap}(A,B)}\Psi_{h_{AB}}$

Main difficulty: estimating $\pi(x,y)$

Static eigenfunctions: $\mathcal{L}_{x}\phi_{n}(x|y) = -\lambda_{n}(y)\phi_{n}(x|y), \ \phi_{0}(x|y) = 1$

Proposition:

$$\pi(x,y) = \frac{e^{-2V_0(x,y)/\sigma^2}}{Z_0(y)} \Big[1 + \alpha_1(y)\phi_1(x|y) + \Phi_{\perp}(x,y) \Big]$$

- $\triangleright \alpha_1(y)$ well-approximated in terms of jump process
- $\, \, \triangleright \, \, \Phi_\bot(x,y) \perp \operatorname{span}\{\phi_0,\phi_1\} \text{, satisfies } \langle \pi_0,\Phi_\bot \rangle^{1/2} \lesssim \frac{\varepsilon}{\sigma^2} \operatorname{cosh}\!\left(\frac{h_+(y)-h_-(y)}{\sigma^2}\right)$

Main difficulty: estimating $\pi(x,y)$

Static eigenfunctions: $\mathcal{L}_x \phi_n(x|y) = -\lambda_n(y)\phi_n(x|y)$, $\phi_0(x|y) = 1$

Proposition:

$$\pi(x,y) = \frac{e^{-2V_0(x,y)/\sigma^2}}{Z_0(y)} \Big[1 + \alpha_1(y)\phi_1(x|y) + \Phi_{\perp}(x,y) \Big]$$

 $\triangleright \alpha_1(y)$ well-approximated in terms of jump process

$$\, \triangleright \, \Phi_{\perp}(x,y) \perp \operatorname{span}\{\phi_0,\phi_1\}, \text{ satisfies } (\pi_0,\Phi_{\perp})^{1/2} \lesssim \frac{\varepsilon}{\sigma^2} \operatorname{cosh}\left(\frac{h_+(y)-h_-(y)}{\sigma^2}\right)$$

Case
$$\varrho = 0$$
: $\pi = \frac{e^{-2V_0/\sigma^2}}{Z_0} [1 + \sum_{n \geqslant 1} \alpha_n \phi_n]$. $\mathscr{L}^{\dagger} \pi = 0 \Leftrightarrow \alpha_n \text{ satisfy ODE}$

$$\varepsilon \alpha'_n = -\lambda_n(y) \alpha_n - \frac{\varepsilon}{\sigma^2} f_{n0}(y) - \frac{\varepsilon}{\sigma^2} \sum_{n \geqslant 1} f_{nm}(y) \alpha_m$$

with
$$f_{nm}(y) = -\sigma^2 \langle \pi_0 \phi_m, \partial_y \phi_n \rangle$$

- \triangleright if $\varepsilon \gg \langle \lambda_1 \rangle$, then (an affine function of) α_1 is slow variable
- \triangleright if $\varepsilon \ll 1$, then all α_n for $n \ge 2$ are fast variables

Open questions

- ▶ Larger values of ε ?
- ▶ Higher dimensions? Link with random Poincaré maps?

Open questions

- \triangleright Larger values of ε ?
- ▶ Higher dimensions? Link with random Poincaré maps?

References

- N. B. & Barbara Gentz, On the noise-induced passage through an unstable periodic orbit II, SIAM J. Math. Anal., 46(1):310–352, 2014
- ▶ N. B., Noise-induced phase slips, log-periodic oscillations, and the Gumbel distribution, Markov Process. Related Fields, 22(3):467–505, 2016
- Manon Baudel & N. B., Spectral theory for random Poincaré maps, SIAM J. Math. Analysis 49, 4319–4375, 2017
- C. Landim, M. Mariani, & I. Seo, Dirichlet's and Thomson's principles for non-selfadjoint elliptic operators with application to non-reversible metastable diffusion processes, Arch. Ration. Mech. Anal., 231(2):887–938, 2019
- N. B., An Eyring-Kramers law for slowly oscillating bistable diffusions, Preprint, July 2020, arXiv: 2007.08443

Thanks for your attention!