Mathematischen Kolloquium, Universität Konstanz

Stochastic resonance: From stochastic ODEs to stochastic PDEs

Nils Berglund

Institut Denis Poisson, University of Orléans, France

DENIS POISSON

9 February 2023

Based on joint works with Rita Nader (Rennes) and Barbara Gentz (Bielefeld)

PART I

Stochastic resonance in stochastic ODEs

Stochastic resonance in an SDE

$$dx_t = \underbrace{\left[-x_t^3 + x_t + A\cos(\varepsilon t)\right]}_{=-\frac{\partial}{\partial x}\left[\frac{1}{4}x^4 - \frac{1}{2}x^2 - Ax\cos(\varepsilon t)\right]\Big|_{x_t}} dt + \sigma dW_t$$

youtu.be/HbJ_I3xbIMg

Stochastic resonance: From SODEs to SPDEs

9 February 2023

Stochastic resonance in an SDE

$$dx_{t} = \underbrace{\left[-x_{t}^{3} + x_{t} + A\cos(\varepsilon t)\right]}_{=-\frac{\partial}{\partial x}\left[\frac{1}{4}x^{4} - \frac{1}{2}x^{2} - Ax\cos(\varepsilon t)\right]\Big|_{x_{t}}} dt + \sigma dW_{t}$$

- ▶ Ice Ages: deterministically bistable climate [Croll, Milankovitch]
- ▷ random perturbations due to weather [Benzi-Sutera-Vulpiani, Nicolis-Nicolis]

Sample paths $\{x_t\}_t$ for $\varepsilon = 0.001$:

9 February 2023

Descriptions of stochastic resonance

- ▶ Fokker–Planck equation: [Caroli, Caroli, Roulet & Saint-James '81]
- ➤ Two-state Markov chain: [Eckmann & Thomas '82], [Imkeller & Pavljukevich '02], [Herrmann & Imkeller '02]
- Signal-to-noise ratio: [Gammaitoni, Menichella-Saetta & ... '89], [Fox '89], [Jung& Hänggi '89], [McNamara & Wiesenfeld '89]
- ▷ Slow forcing: [Jung & Hänggi '91], [Talkner '99], [Talkner & Łuczka '04]
- ▷ Large deviations: [Freidlin '00, Freidlin '01]
- ▶ Residence-time distributions: [Zhou, Moss & Jung '90], [Choi, Fox & Jung '98], . . .
- ▷ Overview articles:
 - [Moss, Pierson & O'Gorman '94], [Wiesenfeld & Moss '95], [McNamara & Wiesenfeld '95], [Wiesenfeld & Jaramillo '98], [Gammaitoni, Hänggi, Jung & Marchesoni '98], [Hänggi '02], [Wellens, Shatokhin & Buchleitner '04], . . .
- ▶ Monograph: [Herrmann, Imkeller, Pavlyukevich & Peithmann '14]

The synchronisation regime

$$A_{\rm c} = \frac{2}{3\sqrt{3}}$$
, $A = A_{\rm c} - \delta$, $0 < \delta \ll 1$. Critical noise intensity: $\sigma_{\rm c} = \max\{\delta, \varepsilon\}^{3/4}$

 $\sigma \ll \sigma_{\rm c}$: transitions unlikely

 $\sigma \gg \sigma_{\rm c}$: synchronisation

Theorem [B & Gentz, Annals App. Proba 2002]

- \triangleright Away from (avoided) bifurcations, sample paths concentrated in σ -neighbourhood of deterministic stable periodic solutions
- $ho \ \sigma \ll \sigma_{\rm c}$: transition probability per period $lap{e^{-\sigma_{\rm c}^2/\sigma^2}}$
- $\triangleright \sigma \gg \sigma_c$: transition probability per period $\geqslant 1 e^{-c\sigma^{4/3}/(\varepsilon|\log \sigma|)}$

The synchronisation regime

$$A_{\rm c} = \frac{2}{3\sqrt{3}}$$
, $A = A_{\rm c} - \delta$, $0 < \delta \ll 1$. Critical noise intensity: $\sigma_{\rm c} = \max\{\delta, \varepsilon\}^{3/4}$

 $\sigma \ll \sigma_{\rm c}$: transitions unlikely

 $\sigma \gg \sigma_{\rm c}$: synchronisation

- \triangleright Away from (avoided) bifurcations, sample paths concentrated in σ -neighbourhood of deterministic stable periodic solutions
- $ho \ \sigma \ll \sigma_{\rm c}$: transition probability per period $lap{} \leqslant {\rm e}^{-\sigma_{\rm c}^2/\sigma^2}$
- $ho \ \sigma \gg \sigma_{\rm c}$: transition probability per period $\geqslant 1 {\rm e}^{-c\sigma^{4/3}/(\varepsilon|\log\sigma|)}$

On slow time scale $\varepsilon t \rightarrow t$:

$$dx_t = \frac{1}{\varepsilon} f(t, x_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

 $\bar{x}(t)$ deterministic solution tracking stable equilibrium $x^*(t)$. Write $x_t = \bar{x}(t) + \xi_t$ and Taylor-expand:

$$d\xi_t = \frac{1}{\varepsilon} \left[\bar{a}(t)\xi_t + \underbrace{b(t,\xi_t)}_{=\mathcal{O}(\xi_t^2)} \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

where
$$\bar{a}(t) = \partial_x f(t, \bar{x}(t)) = \partial_x f(t, x^*(t)) + \mathcal{O}(\varepsilon) < 0$$

Variations of constants (Duhamel formula), if $\xi_0 = 0$:

$$\xi_t = \underbrace{\frac{\sigma}{\sqrt{\varepsilon}} \int_0^t e^{\bar{\alpha}(t,s)/\varepsilon} dW_s + \underbrace{\frac{1}{\varepsilon} \int_0^t e^{\bar{\alpha}(t,s)/\varepsilon} b(s,\xi_s) ds}_{\text{treat as a perturbation}}$$

where $\bar{\alpha}(t,s) = \int_{s}^{t} \bar{a}(u) du$

On slow time scale $\varepsilon t \rightarrow t$:

$$dx_t = \frac{1}{\varepsilon} f(t, x_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

 $\bar{x}(t)$ deterministic solution tracking stable equilibrium $x^*(t)$. Write $x_t = \bar{x}(t) + \xi_t$ and Taylor-expand:

$$d\xi_t = \frac{1}{\varepsilon} \left[\bar{a}(t)\xi_t + \underbrace{b(t,\xi_t)}_{=\mathcal{O}(\xi_t^2)} \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

where $\bar{a}(t) = \partial_x f(t, \bar{x}(t)) = \partial_x f(t, x^*(t)) + \mathcal{O}(\varepsilon) < 0$

Variations of constants (Duhamel formula), if $\xi_0 = 0$:

$$\xi_t = \underbrace{\frac{\sigma}{\sqrt{\varepsilon}} \int_0^t \mathrm{e}^{\bar{\alpha}(t,s)/\varepsilon} \, \mathrm{d}W_s}_{\xi_t^0: \text{ sol of linearised system}} + \underbrace{\frac{1}{\varepsilon} \int_0^t \mathrm{e}^{\bar{\alpha}(t,s)/\varepsilon} \, b(s,\xi_s) \, \mathrm{d}s}_{\text{treat as a perturbation}}$$

where $\bar{\alpha}(t,s) = \int_{s}^{t} \bar{a}(u) du$

Properties of
$$\xi_t^0 = \frac{\sigma}{\sqrt{\varepsilon}} \int_0^t e^{\bar{\alpha}(t,s)/\varepsilon} dW_s$$
:

- ho Gaussian process, $\mathbb{E}[\xi_t^0] = 0$, $\operatorname{Var}(\xi_t^0) = \frac{\sigma^2}{\varepsilon} \int_0^t \mathrm{e}^{2\bar{\alpha}(t,s)/\varepsilon} \,\mathrm{d}s$
- $ightharpoonup \sigma^{-2} \operatorname{Var}(\xi_t^0)$ satisfies ODE $\varepsilon \dot{v} = 2\bar{a}(t)v + 1$

Lemma [B & Gentz, PTRF 2002]

 $ar{v}(t)$ solution of ODE bounded away from 0: $ar{v}(t) = rac{1}{-2ar{s}(t)} + \mathcal{O}(arepsilon)$

$$\mathbb{P}\left\{\sup_{0\leqslant s\leqslant t}\frac{|\xi_s^0|}{\sqrt{\bar{v}(s)}}>h\right\}=C_0(t,\varepsilon)\,\mathrm{e}^{-h^2/2\sigma^2}$$

where
$$C_0(t,\varepsilon) = \sqrt{\frac{2}{\pi}} \frac{1}{\varepsilon} \Big| \int_0^t \bar{a}(s) \, \mathrm{d}s \Big| \frac{h}{\sigma} \Big[1 + \mathcal{O}(\varepsilon + \frac{t}{\varepsilon} \, \mathrm{e}^{-h^2/\sigma^2}) \Big]$$

Proof based on Doob's submartingale inequality and partition of [0,t]

Properties of
$$\xi_t^0 = \frac{\sigma}{\sqrt{\varepsilon}} \int_0^t e^{\bar{\alpha}(t,s)/\varepsilon} dW_s$$
:

- ▷ Gaussian process, $\mathbb{E}[\xi_t^0] = 0$, $\operatorname{Var}(\xi_t^0) = \frac{\sigma^2}{\varepsilon} \int_0^t \mathrm{e}^{2\bar{\alpha}(t,s)/\varepsilon} \, \mathrm{d}s$
- $\qquad \qquad \qquad \qquad \qquad \mathbb{P}\big\{ |\xi_t^0| > \frac{h}{\sigma} \sqrt{\mathsf{Var}(\xi_t^0)} \big\} = \mathcal{O}\big(\mathrm{e}^{-h^2/2\sigma^2}\big)$
- $ho \ \sigma^{-2} \operatorname{Var}(\xi_t^0)$ satisfies ODE $\varepsilon \dot{v} = 2\bar{a}(t)v + 1$

Lemma [B & Gentz, PTRF 2002]

 $\bar{v}(t)$ solution of ODE bounded away from 0: $\bar{v}(t) = \frac{1}{-2\bar{a}(t)} + \mathcal{O}(\varepsilon)$

$$\mathbb{P}\left\{\sup_{\substack{0 \le s \le t}} \frac{|\xi_s^0|}{\sqrt{\bar{v}(s)}} > h\right\} = C_0(t,\varepsilon) e^{-h^2/2\sigma^2}$$

where
$$C_0(t,\varepsilon) = \sqrt{\frac{2}{\pi}} \frac{1}{\varepsilon} \left| \int_0^t \bar{a}(s) \, ds \right| \frac{h}{\sigma} \left[1 + \mathcal{O}(\varepsilon + \frac{t}{\varepsilon} e^{-h^2/\sigma^2}) \right]$$

Proof based on Doob's submartingale inequality and partition of [0,t]

Nonlinear equation:
$$\mathrm{d}\xi_t = \frac{1}{\varepsilon} \left[\bar{a}(t)\xi_t + b(t,\xi_t) \right] \mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d}W_t$$

Confidence strip: $\mathcal{B}(h) = \left\{ |\xi| \leqslant h\sqrt{\bar{v}(t)} \ \forall t \right\} = \left\{ |x - \bar{x}(t)| \leqslant h\sqrt{\bar{v}(t)} \ \forall t \right\}$

Theorem B & Gentz, PTRF 2002

$$C(t,\varepsilon) e^{-\kappa_- h^2/2\sigma^2} \le \mathbb{P}\{\text{leaving } \mathcal{B}(h) \text{ before time } t\} \le C(t,\varepsilon) e^{-\kappa_+ h^2/2\sigma^2}$$

where
$$\kappa_{\pm} = 1 \mp \mathcal{O}(h)$$
 and $C(t, \varepsilon) = C_0(t, \varepsilon) [1 + \mathcal{O}(h)]$ (requires $h \leqslant h_0$)

Avoided transcritical bifurcation

$$dx_t = \frac{1}{\varepsilon} \left[t^2 + \delta - x_t^2 + \dots \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Equil. curve: $x^*(t) \simeq \sqrt{t^2 + \delta}$

Slow sol.:
$$\bar{x}(t) = x^*(t) + \mathcal{O}(\min\{\frac{\varepsilon}{|t|}, \frac{\varepsilon}{\sqrt{\delta + \varepsilon}}\})$$

$$\bar{a}(t) = \partial_{x} f(t, \bar{x}(t)) \times \begin{cases} -|t| & |t| \geqslant \sqrt{\delta + \varepsilon} \\ -\sqrt{\delta + \varepsilon} & |t| \leqslant \sqrt{\delta + \varepsilon} \end{cases}$$

Confidence strip $\mathcal{B}(h)$: width $\approx h/\sqrt{|\bar{a}(t)|}$

Theorem [B & Gentz, AAP 2002]

$$\mathbb{P}\{\mathsf{leaving}\;\mathcal{B}(h)\;\mathsf{before}\;\mathsf{time}\;t\}\leqslant C(t,arepsilon)\,\mathrm{e}^{-\kappa h^2/2\sigma^2}$$

where
$$\kappa = 1 - \mathcal{O}(\sup_{s \le t} h|\bar{a}(s)|^{-3/2}) - \mathcal{O}(\varepsilon)$$
 \Rightarrow requires $h < h_0 \inf_{s \le t} |\bar{a}(s)|^{3/2}$

$$\triangleright \ \sigma < \sigma_c = \max\{\delta, \varepsilon\}^{3/4}$$
: result applies $\forall \ t$, $\mathbb{P}\{\text{trans}\} = \mathcal{O}(e^{-\kappa\sigma_c^2/\sigma^2})$

$$\triangleright \sigma > \sigma_c = \max{\{\delta, \epsilon\}^{3/4}}$$
: result applies up to $t \approx -\sigma^{2/3}$

Avoided transcritical bifurcation

$$dx_t = \frac{1}{\varepsilon} \left[t^2 + \delta - x_t^2 + \dots \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Equil. curve: $x^*(t) \simeq \sqrt{t^2 + \delta}$

Slow sol.:
$$\bar{x}(t) = x^*(t) + \mathcal{O}(\min\{\frac{\varepsilon}{|t|}, \frac{\varepsilon}{\sqrt{\delta + \varepsilon}}\})$$

$$\bar{a}(t) = \partial_{x} f(t, \bar{x}(t)) \times \begin{cases} -|t| & |t| \geqslant \sqrt{\delta + \varepsilon} \\ -\sqrt{\delta + \varepsilon} & |t| \leqslant \sqrt{\delta + \varepsilon} \end{cases}$$

Confidence strip $\mathcal{B}(h)$: width $\approx h/\sqrt{|\bar{a}(t)|}$

Theorem [B & Gentz, AAP 2002]

$$\mathbb{P}\{\text{leaving }\mathcal{B}(h) \text{ before time } t\} \leq C(t,\varepsilon) e^{-\kappa h^2/2\sigma^2}$$

where
$$\kappa = 1 - \mathcal{O}(\sup_{s \leqslant t} h |\bar{a}(s)|^{-3/2}) - \mathcal{O}(\varepsilon) \implies \text{requires } h < h_0 \inf_{s \leqslant t} |\bar{a}(s)|^{3/2}$$

$$ho \ \sigma < \sigma_c = \max\{\delta, \varepsilon\}^{3/4}$$
: result applies $\forall t$, $\mathbb{P}\{\text{trans}\} = \mathcal{O}(e^{-\kappa\sigma_c^2/\sigma^2})$

$$\triangleright \ \sigma > \sigma_c = \max\{\delta, \varepsilon\}^{3/4}$$
: result applies up to $t \times -\sigma^{2/3}$

Above threshold

What happens for $\sigma > \sigma_c$ and $t > -\sigma^{2/3}$?

General principle: partition $t_0 = s_0 < s_1 < s_2 < \cdots < s_n = t$ of $[t_0, t]$

Lemma Let $P_k = \mathbb{P}\{\text{making no transition during } (s_{k-1}, s_k]\}$. Then $\mathbb{P}\{\text{making no transition during } [t_0, t]\} \leq \prod_{k=1}^n P_k$

Choose partition s.t. each $P_k \leq q < 1 \Rightarrow \mathbb{P}\{\text{no transition}\} \leq e^{-n \log q}$

Define partition such that

$$\int_{s_{k-1}}^{s_k} |\bar{a}(s)| \, \mathrm{d}s = c\varepsilon |\log \sigma| \quad \Rightarrow \quad P_k \leqslant \frac{2}{3}$$

Thm [B & Gentz, AAP 2002]

Transition probability $\geq 1 - e^{-\kappa \sigma^{4/3}/(\varepsilon |\log \sigma|)}$

Above threshold

What happens for $\sigma > \sigma_c$ and $t > -\sigma^{2/3}$?

General principle: partition $t_0 = s_0 < s_1 < s_2 < \cdots < s_n = t$ of $[t_0, t]$

Lemma Let $P_k = \mathbb{P}\{\text{making no transition during } (s_{k-1}, s_k)\}$. Then $\mathbb{P}\{\text{making no transition during }[t_0,t]\} \leqslant \prod P_k$

Choose partition s.t. each $P_k \leq q < 1 \Rightarrow \mathbb{P}\{\text{no transition}\} \leq e^{-n \log q}$

Define partition such that

$$\int_{s_{k-1}}^{s_k} |\bar{a}(s)| \, \mathrm{d}s = c\varepsilon |\log \sigma| \quad \Rightarrow \quad P_k \leqslant \frac{2}{3}$$

Thm [B & Gentz, AAP 2002]

Transition probability $\geqslant 1 - e^{-\kappa \sigma^{4/3}/(\varepsilon |\log \sigma|)}$

PART II

Stochastic resonance in stochastic PDEs

Stochastic Allen–Cahn equation on \mathbb{T}^2

$$\mathrm{d}\phi(t,x) = \left[\nu(\varepsilon t)\Delta\phi(t,x) + \phi(t,x) - \phi(t,x)^3\right]\mathrm{d}t + \sigma\,\mathrm{d}W(t,x)$$

(Online: https://youtu.be/yXOEAxZHNCQ)

Stochastic resonance in stochastic PDEs

$$d\phi(t,x) = \left[\Delta\phi(t,x) + \phi(t,x) - \phi(t,x)^3 + \underbrace{A\cos(\varepsilon t)}_{h(\varepsilon t)}\right]dt + \sigma dW(t,x)$$

Stochastic resonance in SPDEs

$$d\phi(t,x) = \left[\Delta\phi(t,x) + f(\varepsilon t,\phi(t,x))\right]dt + \sigma dW(t,x)$$

- $\triangleright \phi = \phi(t, x) \in \mathbb{R}, \ \varepsilon t \in [0, T] \text{ or } f \text{ is } T\text{-periodic, } x \in \mathbb{T} = \mathbb{R}/L\mathbb{Z}, \ L > 0$
- $\triangleright \phi \mapsto f(s,\phi)$ bistable, \mathcal{C}^2 , confining, e.g. $f(s,\phi) = \phi \phi^3 + A\cos(s)$
- ightharpoonup dW(t,x) space-time white noise on $\mathbb{R}_+ imes \mathbb{T}$
- $\triangleright 0 < \varepsilon, \sigma \ll 1$
- \triangleright δ measures closeness to bifurcation (e.g. $A_{\rm c}-A$)

Theorem [B & Nader, Stoch. & PDEs: Analysis & Comput., 2022]

- Away from bifurcations, solutions are concentrated around deterministic solutions in Sobolev H^s -norm for any $s < \frac{1}{2}$
- $ho \ \sigma \ll \sigma_{\rm c} = {\rm max}\{\delta, \varepsilon\}^{3/4}$: transition probability per period ${\rm sign} = {\rm constant}$
- $\sigma \gg \sigma_{\rm c}$: transition probability per period $\geqslant 1 {\rm e}^{-c\sigma^{4/3}/(\varepsilon|\log\sigma|}$

Stochastic resonance in SPDEs

$$d\phi(t,x) = \left[\Delta\phi(t,x) + f(\varepsilon t,\phi(t,x))\right]dt + \sigma dW(t,x)$$

- $\triangleright \phi = \phi(t, x) \in \mathbb{R}, \ \varepsilon t \in [0, T] \text{ or } f \text{ is } T\text{-periodic, } x \in \mathbb{T} = \mathbb{R}/L\mathbb{Z}, \ L > 0$
- $\triangleright \phi \mapsto f(s,\phi)$ bistable, \mathcal{C}^2 , confining, e.g. $f(s,\phi) = \phi \phi^3 + A\cos(s)$
- ightharpoonup dW(t,x) space-time white noise on $\mathbb{R}_+ imes \mathbb{T}$
- $\triangleright 0 < \varepsilon, \sigma \ll 1$
- \triangleright δ measures closeness to bifurcation (e.g. $A_{\rm c}-A$)

Theorem [B & Nader, Stoch. & PDEs: Analysis & Comput., 2022]

- ▷ Away from bifurcations, solutions are concentrated around deterministic solutions in Sobolev H^s -norm for any $s < \frac{1}{2}$
- $ho \ \sigma \ll \sigma_c = \max\{\delta, \varepsilon\}^{3/4}$: transition probability per period $\leq e^{-\sigma_c^2/\sigma^2}$
- $ho \sigma \gg \sigma_{\rm c}$: transition probability per period $\geqslant 1 {\rm e}^{-c\sigma^{4/3}/(\varepsilon|\log\sigma|)}$

SPDE: stable case

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta \phi(t,x) + f(t,\phi(t,x)) \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t,x)$$

$$f(t,\phi^*(t)) = 0 \text{ for all } t \in I = [0,T]$$

$$ho \ a(t) = \partial_{\phi} f(t, \phi^*(t)) \leqslant -a_- < 0 \text{ for all } t \in I$$

In deterministic case σ = 0: \exists particular solution $\bar{\phi}(t,x)$ such that

$$\|\bar{\phi}(t,\cdot) - \phi^*(t)e_0\|_{H^1} \leq C\varepsilon \quad \forall t \in I$$

Theorem [B & Nader 2021]

Fix $s < \frac{1}{2}$, and let $\mathcal{B}(h) = \left\{ (t, \phi) : t \in I, \|\phi - \overline{\phi}(t, \cdot)\|_{H^s} < h \right\}$ For any $\nu > 0$

$$\mathbb{P} \Big\{ \text{leaving } \mathcal{B}(h) \text{ before time } t \Big\} \leqslant C \big(t, \varepsilon, s \big) \exp \Big\{ - \kappa \frac{h^2}{\sigma^2} \Big[1 - \mathcal{O} \Big(\frac{h}{\varepsilon^{\nu}} \Big) \Big] \Big\}$$

holds for some $\kappa > 0$, $h = \mathcal{O}(\varepsilon^{\nu})$ and $C(t, \varepsilon, s) = \mathcal{O}(t/\varepsilon)$.

SPDE: stable case

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta \phi(t,x) + f(t,\phi(t,x)) \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t,x)$$

$$f(t, \phi^*(t)) = 0 \text{ for all } t \in I = [0, T]$$

$$ightharpoonup a(t) = \partial_{\phi} f(t, \phi^*(t)) \leqslant -a_- < 0 \text{ for all } t \in I$$

In deterministic case σ = 0: \exists particular solution $\bar{\phi}(t,x)$ such that

$$\|\bar{\phi}(t,\cdot) - \phi^*(t)e_0\|_{H^1} \le C\varepsilon \quad \forall t \in I$$

Theorem [B & Nader 2021]

Fix $s < \frac{1}{2}$, and let $\mathcal{B}(h) = \left\{ (t, \phi) \colon t \in I, \|\phi - \overline{\phi}(t, \cdot)\|_{H^s} < h \right\}$ For any $\nu > 0$

$$\mathbb{P} \big\{ \mathsf{leaving} \ \mathcal{B}(h) \ \mathsf{before \ time} \ t \big\} \leqslant C \big(t, \varepsilon, s \big) \exp \Big\{ - \kappa \frac{h^2}{\sigma^2} \Big[1 - \mathcal{O} \Big(\frac{h}{\varepsilon^{\nu}} \Big) \Big] \Big\}$$

holds for some $\kappa > 0$, $h = \mathcal{O}(\varepsilon^{\nu})$ and $C(t, \varepsilon, s) = \mathcal{O}(t/\varepsilon)$.

Ideas of proof

▷ Deterministic case: $\psi = \phi - \phi^* e_0$, $\|\psi\|_{H^1}^2$ is a Lyapunov function

Ideas of proof

$$\triangleright \ \phi(x) = \sum_{k \in \mathbb{Z}} \phi_k e_k(x) \quad \Rightarrow \quad \|\phi\|_{H^s}^2 = \sum_{k \in \mathbb{Z}} \langle k \rangle^{2s} \phi_k^2, \qquad \langle k \rangle = \sqrt{1 + k^2}$$

- ▶ Deterministic case: $\psi = \phi \phi^* e_0$, $\|\psi\|_{H^1}^2$ is a Lyapunov function
- Linear stoch case:

$$d\psi_k = \frac{1}{\varepsilon} a_k(t) \psi_k dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_k(t), \qquad a_k(t) = \bar{a}(t) - \frac{k^2 \pi^2}{L^2} < 0$$

For any decomposition $h^2 = \sum_k h_k^2$,

$$\mathbb{P}\{\tau < T\} \leqslant \sum_{k} \mathbb{P}\left\{\sup_{t} \psi_{k}(t)^{2} \geqslant h_{k}^{2} \langle k \rangle^{-2s}\right\} \leqslant \sum_{k} C_{k}(T, \varepsilon) e^{-\kappa h_{k}^{2} \langle k \rangle^{2-2s}/\sigma^{2}}$$

Choose $h_k^2 \sim h^2 \langle k \rangle^{-2+2s+\eta}$, $\eta > 0$

Ideas of proof

$$\triangleright \ \phi(x) = \sum_{k \in \mathbb{Z}} \phi_k e_k(x) \quad \Rightarrow \quad \|\phi\|_{H^s}^2 = \sum_{k \in \mathbb{Z}} \langle k \rangle^{2s} \phi_k^2, \qquad \langle k \rangle = \sqrt{1 + k^2}$$

- ▶ Deterministic case: $\psi = \phi \phi^* e_0$, $\|\psi\|_{H^1}^2$ is a Lyapunov function
- ▷ Linear stoch case:

$$d\psi_k = \frac{1}{\varepsilon} a_k(t) \psi_k dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_k(t), \qquad a_k(t) = \bar{a}(t) - \frac{k^2 \pi^2}{L^2} < 0$$

For any decomposition $h^2 = \sum_k h_k^2$,

$$\mathbb{P}\{\tau < T\} \leqslant \sum_{k} \mathbb{P}\left\{\sup_{t} \psi_{k}(t)^{2} \geqslant h_{k}^{2} \langle k \rangle^{-2s}\right\} \leqslant \sum_{k} C_{k}(T,\varepsilon) \, \mathrm{e}^{-\kappa h_{k}^{2} \langle k \rangle^{2-2s}/\sigma^{2}}$$
 Choose $h_{k}^{2} \sim h^{2} \langle k \rangle^{-2+2s+\eta}$, $\eta > 0$

▷ Schauder estimate: $\beta \in H^r$, $0 < r < \frac{1}{2}$ \Rightarrow $\|e^{t\Delta}\beta\|_{H^q} \le M(q,r)t^{-(q-r)/2}\|\beta\|_{H^r}$ $\forall q < r + 2$

Consequence: $\psi = \psi^0 + \psi^1$ where nonlinear term satisfies

$$\|\psi^1\|_{H^q} \leqslant M' \varepsilon^{(q-r)/2-1} \sup_t \|b(t,\psi(y,\cdot))\|_{H^r}$$

SPDE near a bifurcation point

$$d\phi = \frac{1}{\varepsilon} \left[\Delta \phi + g(t) - \phi^2 - b(t, \phi) \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t, x)$$

with
$$g(t) = \delta + t^2 + \mathcal{O}(t^3)$$
 and $b = \mathcal{O}(\phi^3 + t\phi^2 + t^2\phi)$

- ▷ Decompose $\phi(t,x) = \phi_0(t)e_0(x) + \phi_\perp(t,x)$ where e_0 constant fct
- $hd \ \phi_{\perp}$ satisfies similar concentration result as ϕ in stable case
- $riangleright \phi_0$ satisfies similar equation as in 1D, with error term of order $\|\phi_\perp\|_{H^1}^2$

Thm 1: Transverse component

$$\mathbb{P}\left\{\tau_{\mathcal{B}_{\perp}}(h_{\perp}) < t \wedge \tau_{\mathcal{B}_{0}(h)}\right\} \leqslant C(t, \varepsilon, s) \exp\left\{-\kappa \frac{h_{\perp}^{2}}{\sigma^{2}} \left[1 - \mathcal{O}\left(\frac{h_{\perp}}{\varepsilon^{\nu}}\right)\right]\right\}$$

Thm 2: Mean

$$\mathbb{P}\left\{\tau_{\mathcal{B}_0(h)} < t \wedge \tau_{\mathcal{B}_1(h_1)}\right\} \leqslant C(t,\varepsilon) \,\mathrm{e}^{-\kappa h^2/2\sigma^2} \qquad \kappa = 1 - \mathcal{O}\left(\sup_s h|\bar{a}(s)|^{3/2}\right)$$

Thm 3: Escape

$$\mathbb{P}\{\phi_0(t_1) > -d \ \forall t \in [-\sigma^{2/3}, t \wedge \tau_{\mathcal{B}_+(h_1)}]\} \leq \frac{3}{2} e^{-\hat{\alpha}(t, -\sigma^{2/3})/[\varepsilon \log(\sigma^{-1})]}$$

SPDE near a bifurcation point

$$d\phi = \frac{1}{\varepsilon} \left[\Delta \phi + g(t) - \phi^2 - b(t, \phi) \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t, x)$$

with
$$g(t) = \delta + t^2 + \mathcal{O}(t^3)$$
 and $b = \mathcal{O}(\phi^3 + t\phi^2 + t^2\phi)$

- ▷ Decompose $\phi(t,x) = \phi_0(t)e_0(x) + \phi_{\perp}(t,x)$ where e_0 constant fct
- $hd \ \phi_{\perp}$ satisfies similar concentration result as ϕ in stable case
- ho ϕ_0 satisfies similar equation as in 1D, with error term of order $\|\phi_\perp\|_{H^1}^2$

Thm 1: Transverse component

$$\mathbb{P}\left\{\tau_{\mathcal{B}_{\perp}}(h_{\perp}) < t \wedge \tau_{\mathcal{B}_{0}(h)}\right\} \leqslant C(t, \varepsilon, s) \exp\left\{-\kappa \frac{h_{\perp}^{2}}{\sigma^{2}} \left[1 - \mathcal{O}\left(\frac{h_{\perp}}{\varepsilon^{\nu}}\right)\right]\right\}$$

Thm 2: Mean

$$\mathbb{P}\left\{\tau_{\mathcal{B}_0(h)} < t \wedge \tau_{\mathcal{B}_\perp(h_\perp)}\right\} \leqslant C(t,\varepsilon) \,\mathrm{e}^{-\kappa h^2/2\sigma^2} \qquad \kappa = 1 - \mathcal{O}\left(\sup_s h|\bar{a}(s)|^{3/2}\right)$$

Thm 3: Escape

$$\mathbb{P}\left\{\phi_0(t_1) > -d \ \forall t \in \left[-\sigma^{2/3}, t \wedge \tau_{\mathcal{B}_\perp(h_\perp)}\right]\right\} \leqslant \frac{3}{2} \, \mathrm{e}^{-\hat{\alpha}(t, -\sigma^{2/3})/\left[\varepsilon \log(\sigma^{-1})\right]}$$

SPDE near a bifurcation point

$$d\phi = \frac{1}{\varepsilon} \left[\Delta \phi + g(t) - \phi^2 - b(t, \phi) \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t, x)$$

with
$$g(t) = \delta + t^2 + \mathcal{O}(t^3)$$
 and $b = \mathcal{O}(\phi^3 + t\phi^2 + t^2\phi)$

- ▷ Decompose $\phi(t,x) = \phi_0(t)e_0(x) + \phi_{\perp}(t,x)$ where e_0 constant fct
- $hd \ \phi_{\perp}$ satisfies similar concentration result as ϕ in stable case
- ho ϕ_0 satisfies similar equation as in 1D, with error term of order $\|\phi_\perp\|_{H^s}^2$

Thm 1: Transverse component

$$\mathbb{P}\left\{\tau_{\mathcal{B}_{\perp}}(h_{\perp}) < t \wedge \tau_{\mathcal{B}_{0}(h)}\right\} \leqslant C(t, \varepsilon, s) \exp\left\{-\kappa \frac{h_{\perp}^{2}}{\sigma^{2}} \left[1 - \mathcal{O}\left(\frac{h_{\perp}}{\varepsilon^{\nu}}\right)\right]\right\}$$

Thm 2: Mean

$$\mathbb{P}\left\{\tau_{\mathcal{B}_0(h)} < t \wedge \tau_{\mathcal{B}_\perp(h_\perp)}\right\} \leqslant C(t,\varepsilon) \,\mathrm{e}^{-\kappa h^2/2\sigma^2} \qquad \kappa = 1 - \mathcal{O}\left(\sup_s h|\bar{a}(s)|^{3/2}\right)$$

Thm 3: Escape

$$\mathbb{P}\left\{\phi_0(t_1) > -d \ \forall \, t \in \left[-\sigma^{2/3}, t \wedge \tau_{\mathcal{B}_\perp(h_\perp)}\right]\right\} \leqslant \frac{3}{2} \, \mathrm{e}^{-\hat{\alpha}(t, -\sigma^{2/3})/\left[\varepsilon \log(\sigma^{-1})\right]}$$

$$\mathrm{d}\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta\phi(t,x) + \sum_{i=1}^n A_j(t)\phi(t,x)^j \right] \mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \, \mathrm{d}W(t,x) \quad x \in \mathbb{T}^2$$

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta \phi(t,x) + \sum_{j=1}^{n} A_j(t) \phi(t,x)^j \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t,x) \quad x \in \mathbb{T}^2$$

▷ SPDE is not well-posed, needs to be renormalised For $N \in \mathbb{N}$, project on span $\{e_k\}_{|k| < N}$:

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta \phi(t,x) + \sum_{i=1}^{n} A_{i}(t) P_{N} : \phi(t,x)^{j} : \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_{N}(t,x)$$

where $:\phi^n:=H_n(\phi;C_N)$ Wick power, $C_N\sim\log N$ variance of GFF

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta \phi(t,x) + \sum_{j=1}^{n} A_j(t) \phi(t,x)^j \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t,x) \quad x \in \mathbb{T}^2$$

▷ SPDE is not well-posed, needs to be renormalised For $N \in \mathbb{N}$, project on span $\{e_k\}_{|k| < N}$:

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta\phi(t,x) + \sum_{j=1}^{n} A_j(t) P_N : \phi(t,x)^j : \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_N(t,x)$$

where $: \phi^n := H_n(\phi; C_N)$ Wick power, $C_N \sim \log N$ variance of GFF

 \triangleright Let ψ be stochastic convolution:

$$d\psi(t,x) = \frac{1}{\varepsilon}\Delta\psi(t,x)\,dt + \frac{\sigma}{\sqrt{\varepsilon}}\,dW_N(t,x)$$

[Da Prato & Debussche '03]: $\phi - \psi$ cv to well-defined function

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta \phi(t,x) + \sum_{j=1}^{n} A_j(t) \phi(t,x)^j \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t,x) \quad x \in \mathbb{T}^2$$

▷ SPDE is not well-posed, needs to be renormalised For $N \in \mathbb{N}$, project on span $\{e_k\}_{|k| < N}$:

$$\mathrm{d}\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta\phi(t,x) + \sum_{j=1}^n A_j(t) P_N : \phi(t,x)^j : \right] \mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \, \mathrm{d}W_N(t,x)$$

where $: \phi^n := H_n(\phi; C_N)$ Wick power, $C_N \sim \log N$ variance of GFF

 \triangleright Let ψ be stochastic convolution:

$$d\psi(t,x) = \frac{1}{\varepsilon}\Delta\psi(t,x)\,dt + \frac{\sigma}{\sqrt{\varepsilon}}\,dW_N(t,x)$$

[Da Prato & Debussche '03]: $\phi - \psi$ cv to well-defined function

▷ Use Besov–Hölder spaces $\mathcal{B}_{2,\infty}^{\alpha}$, α < 0, instead of Sobolev spaces \mathcal{H}^s :

$$\|\phi\|_{\mathcal{B}^{\alpha}_{2,\infty}}=\sup_{q\geqslant 0}2^{q\alpha}\|\delta_{q}\phi\|_{L^{2}}\qquad \delta_{q}\phi=\sum_{2^{q-1}\leqslant |k|<2^{q}}\phi_{k}e_{k}$$

Theorem [B & Nader 2022]

For $\alpha < 0$, $m \in \mathbb{N}$,

$$\mathbb{P}\left\{\sup_{0\leqslant t\leqslant T}\|:\psi(t,\cdot)^m:\|_{\mathcal{B}^{\alpha}_{2,\infty}}>h^m\right\}\leqslant C_m(T,\varepsilon,\alpha)\,\mathrm{e}^{-\kappa_m(\alpha)h^2/\sigma^2}$$

where

$$\kappa_m(\alpha) \geqslant c_0 \frac{\alpha^2}{m^7} \qquad C_m(T, \varepsilon, \alpha) \leqslant c_1 \frac{T}{\varepsilon} \frac{m^{3/2} e^m m^m}{|\alpha|}$$

▶ Binomial formula

$$: \psi^m := H_m(\psi; C_N) = \sum_{|\mathbf{n}| = m} \frac{m!}{\mathbf{n}!} \prod_{q \ge 0} H_{\mathbf{n}_q}(\delta_q \psi; c_q) \qquad c_q = \mathcal{O}(1)$$

- $\qquad \qquad \text{Doob submartingale inequality for } \sup_{t \in I_\ell} \|\delta_{q_0}(\prod_{q \geqslant 0} H_{\mathbf{n}_q}(\delta_q \hat{\psi}; c_q))\|_{L^2}^2 \\ \text{where } \hat{\psi} \text{ martingale approximating } \psi \text{ on intervals } I_l \text{ depending on } 0$
- ▶ Upgrade to bound for $\sup_{t \in I_{\ell}} \|\delta_{q_0}(\prod_{q \ge 0} H_{\mathbf{n}_q}(\delta_q \psi; c_q))\|_{L^2}^2$
- \triangleright Bound probability by summing over ℓ , q_0 and \mathbf{r}

Theorem [B & Nader 2022]

For $\alpha < 0$, $m \in \mathbb{N}$,

$$\mathbb{P}\left\{\sup_{0\leqslant t\leqslant T}\|:\psi(t,\cdot)^m:\|_{\mathcal{B}^{\alpha}_{2,\infty}}>h^m\right\}\leqslant C_m(T,\varepsilon,\alpha)\,\mathrm{e}^{-\kappa_m(\alpha)h^2/\sigma^2}$$

where

$$\kappa_m(\alpha) \geqslant c_0 \frac{\alpha^2}{m^7} \qquad C_m(T, \varepsilon, \alpha) \leqslant c_1 \frac{T}{\varepsilon} \frac{m^{3/2} e^m m^m}{|\alpha|}$$

▷ Binomial formula

$$: \psi^{m} := H_{m}(\psi; C_{N}) = \sum_{|\mathbf{n}| = m} \frac{m!}{\mathbf{n}!} \prod_{q \ge 0} H_{\mathbf{n}_{q}}(\delta_{q} \psi; c_{q}) \qquad c_{q} = \mathcal{O}(1)$$

- $\qquad \qquad \text{Doob submartingale inequality for } \sup_{t \in I_\ell} \|\delta_{q_0}(\prod_{q \geqslant 0} H_{\mathbf{n}_q}(\delta_q \hat{\psi}; c_q))\|_{L^2}^2 \\ \text{where } \hat{\psi} \text{ martingale approximating } \psi \text{ on intervals } I_l \text{ depending on } q_0$
- ightharpoonup Upgrade to bound for $\sup_{t \in I_{\ell}} \|\delta_{q_0}(\prod_{q \geqslant 0} H_{\mathbf{n}_q}(\delta_q \psi; c_q))\|_{L^2}^2$
- \triangleright Bound probability by summing over ℓ , q_0 and \mathbf{n}

Concentration estimates

Theorem [B & Nader 2022]

$$\begin{split} \text{Let } \phi_1 &= \phi - \phi^* - \psi. \text{ Then } \forall \gamma < 2, \forall \nu < 1 - \frac{\gamma}{2}, \ \forall \, h < h_0 \varepsilon^\nu \\ & \mathbb{P} \Big\{ \sup_{t \in [0,T]} \lVert \phi_1(t) \rVert_{\mathcal{C}^{\gamma-1}} > M \varepsilon^{-\nu} \, h(h+\varepsilon) \Big\} \leqslant C(T,\varepsilon) \, \mathrm{e}^{-\kappa h^2/\sigma^2} \end{split}$$

- \triangleright Use Schauder estimate and $\mathcal{B}_{2,\infty}^{\gamma} \hookrightarrow \mathcal{B}_{\infty,\infty}^{\gamma-1} = \mathcal{C}^{\gamma-1}$

Example: Dynamic pitchfork bifurcation

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta\phi(t,x) + a(t)\phi(t,x) - :\phi(t,x)^{3} : \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t,x)$$

- riangle Decompose ϕ = ψ_{\perp} + ϕ_{1} , where ψ_{\perp} stoch conv driven by W_{\perp}
- \triangleright Decompose $\phi_1 = \phi_1^0 e_0 + \phi_1^{\perp}$
- \triangleright Concentration estimate for $\|\phi_1^\perp\|_{\mathcal{C}^{\gamma-1}}$ as long as $a(t) < (2\pi)^2$
- ightharpoonup For ϕ_1^0 , similar results as in SDE case (bif delay of order $\sqrt{\varepsilon\log(\sigma^{-1})}$)

Concentration estimates

Theorem [B & Nader 2022]

Let
$$\phi_1 = \phi - \phi^* - \psi$$
. Then $\forall \gamma < 2, \forall \nu < 1 - \frac{\gamma}{2}$, $\forall h < h_0 \varepsilon^{\nu}$
$$\mathbb{P} \Big\{ \sup_{t \in [0,T]} \|\phi_1(t)\|_{\mathcal{C}^{\gamma-1}} > M \varepsilon^{-\nu} h(h+\varepsilon) \Big\} \leqslant C(T,\varepsilon) \, \mathrm{e}^{-\kappa h^2/\sigma^2}$$

- ${\rm \hspace{0.3mm} \hspace{0.3mm$
- \triangleright Use Schauder estimate and $\mathcal{B}_{2,\infty}^{\gamma} \hookrightarrow \mathcal{B}_{\infty,\infty}^{\gamma-1} = \mathcal{C}^{\gamma-1}$

Example: Dynamic pitchfork bifurcation

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta\phi(t,x) + a(t)\phi(t,x) - :\phi(t,x)^{3} : \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t,x)$$

- riangle Decompose $\phi = \psi_{\perp} + \phi_{1}$, where ψ_{\perp} stoch conv driven by W_{\perp}
- \triangleright Decompose $\phi_1 = \phi_1^0 e_0 + \phi_1^1$
- \triangleright Concentration estimate for $\|\phi_1^\perp\|_{\mathcal{C}^{\gamma-1}}$ as long as $a(t) < (2\pi)^2$
- ightharpoonup For ϕ_1^0 , similar results as in SDE case (bif delay of order $\sqrt{\varepsilon\log(\sigma^{-1})}$)

Concentration estimates

Theorem [B & Nader 2022]

$$\begin{split} \text{Let } \phi_1 &= \phi - \phi^* - \psi. \text{ Then } \forall \gamma < 2, \forall \nu < 1 - \frac{\gamma}{2}, \ \forall \, h < h_0 \varepsilon^\nu \\ & \mathbb{P} \Big\{ \sup_{t \in [0,T]} \lVert \phi_1(t) \rVert_{\mathcal{C}^{\gamma-1}} > M \varepsilon^{-\nu} \, h(h+\varepsilon) \Big\} \leqslant C(T,\varepsilon) \, \mathrm{e}^{-\kappa h^2/\sigma^2} \end{split}$$

- \triangleright Use Schauder estimate and $\mathcal{B}_{2,\infty}^{\gamma} \hookrightarrow \mathcal{B}_{\infty,\infty}^{\gamma-1} = \mathcal{C}^{\gamma-1}$

Example: Dynamic pitchfork bifurcation

$$d\phi(t,x) = \frac{1}{\varepsilon} \left[\Delta\phi(t,x) + a(t)\phi(t,x) - :\phi(t,x)^{3} : \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW(t,x)$$

- ightharpoonup Decompose $\phi = \psi_{\perp} + \phi_{1}$, where ψ_{\perp} stoch conv driven by W_{\perp}
- \triangleright Decompose $\phi_1 = \phi_1^0 e_0 + \phi_1^\perp$
- \triangleright Concentration estimate for $\|\phi_1^{\perp}\|_{\mathcal{C}^{\gamma-1}}$ as long as $a(t) < (2\pi)^2$
- ightharpoonup For ϕ_1^0 , similar results as in SDE case (bif delay of order $\sqrt{\varepsilon\log(\sigma^{-1})}$)

Open questions

 \triangleright Case $x \in \mathbb{T}^3$? Regularity structures or similar needed ...

References

- N. B. & Barbara Gentz, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab., 12(1):1419–1470, 2002
- Dynamical Systems. A Sample-Paths Approach, Springer, Probability and its Applications (2005)
- N. B. & Rita Nader, Stochastic resonance in stochastic PDEs, Stochastics & PDEs: Analysis and Computation, (2022)
- N. B, An Introduction to Singular Stochastic PDEs, EMS Press (2022)

Slides available at https://www.idpoisson.fr/berglund/Konstanz23.pdf