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Stochastic resonance in an SDE

youtu.be/HbJ I3xbIMgdxt = [−x3t + xt +A cos(εt)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=− ∂

∂x
[ 1
4
x4− 1

2
x2−Ax cos(εt)]∣

xt

dt + σ dWt
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▷ Ice Ages: deterministically bistable climate [Croll, Milankovitch]

▷ random perturbations due to weather [Benzi-Sutera-Vulpiani, Nicolis-Nicolis]

Sample paths {xt}t for ε = 0.001:

A = 0, σ = 0.3 A = 0.24, σ = 0.2

A = 0.1, σ = 0.27 A = 0.35, σ = 0.2
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Descriptions of stochastic resonance

▷ Fokker–Planck equation: [Caroli, Caroli, Roulet & Saint-James ’81]

▷ Two-state Markov chain: [Eckmann & Thomas ’82],
[Imkeller & Pavljukevich ’02], [Herrmann & Imkeller ’02]

▷ Signal-to-noise ratio: [Gammaitoni, Menichella-Saetta & . . . ’89],
[Fox ’89], [Jung& Hänggi ’89], [McNamara & Wiesenfeld ’89]

▷ Slow forcing: [Jung & Hänggi ’91], [Talkner ’99], [Talkner &  Luczka ’04]

▷ Large deviations: [Freidlin ’00, Freidlin ’01]

▷ Residence-time distributions: [Zhou, Moss & Jung ’90],
[Choi, Fox & Jung ’98], . . .

▷ Overview articles:
[Moss, Pierson & O’Gorman ’94], [Wiesenfeld & Moss ’95],
[McNamara & Wiesenfeld ’95], [Wiesenfeld & Jaramillo ’98],
[Gammaitoni, Hänggi, Jung & Marchesoni ’98], [Hänggi ’02],
[Wellens, Shatokhin & Buchleitner ’04], . . .

▷ Monograph: [Herrmann, Imkeller, Pavlyukevich & Peithmann ’14]
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The synchronisation regime
Ac = 2

3
√
3

, A = Ac − δ, 0 < δ ≪ 1. Critical noise intensity: σc = max{δ, ε}3/4

σ ≪ σc:
transitions unlikely

σ ≫ σc:
synchronisation

Theorem [B & Gentz, Annals App. Proba 2002]

▷ Away from (avoided) bifurcations, sample paths concentrated in
σ-neighbourhood of deterministic stable periodic solutions

▷ σ ≪ σc: transition probability per period ⩽ e−σ
2
c /σ

2

▷ σ ≫ σc: transition probability per period ⩾ 1 − e−cσ
4/3/(ε∣logσ∣)
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Proof ideas, 1D SDE below threshold
On slow time scale εt → t:

dxt =
1

ε
f (t, xt) dt + σ√

ε
dWt

x̄(t) deterministic solution tracking stable equilibrium x∗(t).
Write xt = x̄(t) + ξt and Taylor-expand:

dξt =
1

ε
[ā(t)ξt + b(t, ξt)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=O(ξ2t )

] dt + σ√
ε

dWt

where ā(t) = ∂x f (t, x̄(t)) = ∂x f (t, x∗(t)) +O(ε) < 0

Variations of constants (Duhamel formula), if ξ0 = 0:

ξt =
σ√
ε
∫

t

0
eᾱ(t,s)/ε dWs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ξ0t : sol of linearised system

+ 1

ε
∫

t

0
eᾱ(t,s)/ε b(s, ξs)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
treat as a perturbation

where ᾱ(t, s) = ∫ t
s ā(u)du
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Proof ideas, 1D SDE below threshold

Properties of ξ0t =
σ√
ε
∫

t

0
eᾱ(t,s)/ε dWs :

▷ Gaussian process, E[ξ0t ] = 0, Var(ξ0t ) = σ2

ε ∫
t
0 e2ᾱ(t,s)/ε ds

▷ Confidence interval: P{∣ξ0t ∣ > h
σ

√
Var(ξ0t )} = O(e−h

2/2σ2)
▷ σ−2 Var(ξ0t ) satisfies ODE εv̇ = 2ā(t)v + 1

Lemma [B & Gentz, PTRF 2002]

v̄(t) solution of ODE bounded away from 0: v̄(t) = 1
−2ā(t) +O(ε)

P{ sup
0⩽s⩽t

∣ξ0s ∣√
v̄(s)

> h} = C0(t, ε) e−h
2/2σ2

where C0(t, ε) =
√

2
π
1
ε
∣∫ t
0 ā(s)ds ∣ hσ [1 +O(ε +

t
ε e−h

2/σ2)]

Proof based on Doob’s submartingale inequality and partition of [0, t]
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0 e2ᾱ(t,s)/ε ds

▷ Confidence interval: P{∣ξ0t ∣ > h
σ

√
Var(ξ0t )} = O(e−h

2/2σ2)
▷ σ−2 Var(ξ0t ) satisfies ODE εv̇ = 2ā(t)v + 1
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Proof ideas, 1D SDE below threshold

Nonlinear equation: dξt =
1

ε
[ā(t)ξt + b(t, ξt)] dt + σ√

ε
dWt

Confidence strip: B(h) = {∣ξ∣ ⩽ h
√
v̄(t) ∀t} = {∣x − x̄(t)∣ ⩽ h

√
v̄(t) ∀t}

x̄(t)
xt

x⋆(t)

B(h)

Theorem B & Gentz, PTRF 2002

C(t, ε) e−κ−h
2/2σ2 ⩽ P{leaving B(h) before time t} ⩽ C(t, ε) e−κ+h

2/2σ2

where κ± = 1 ∓O(h) and C(t, ε) = C0(t, ε)[1 +O(h)] (requires h ⩽ h0)
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Avoided transcritical bifurcation

dxt =
1

ε
[t2 + δ − x2t + . . . ] dt + σ√

ε
dWt

Equil. curve: x⋆(t) ≃
√
t2 + δ

Slow sol.: x̄(t) = x⋆(t) +O(min{ ε
∣t ∣ ,

ε√
δ+ε
})

ā(t) = ∂x f (t, x̄(t)) ≍
⎧⎪⎪⎨⎪⎪⎩

−∣t ∣ ∣t ∣ ⩾
√
δ + ε

−
√
δ + ε ∣t ∣ ⩽

√
δ + ε

Confidence strip B(h): width ≍ h/
√
∣ā(t)∣

t

x

x⋆(t)
x̄(t)

B(h)

Theorem [B & Gentz, AAP 2002]

P{leaving B(h) before time t} ⩽ C(t, ε) e−κh
2/2σ2

where κ = 1 −O(sups⩽t h∣ā(s)∣−3/2) −O(ε) ⇒ requires h < h0 infs⩽t ∣ā(s)∣3/2

▷ σ < σc = max{δ, ε}3/4: result applies ∀ t, P{trans} = O(e−κσ2
c /σ

2)
▷ σ > σc = max{δ, ε}3/4: result applies up to t ≍ −σ2/3
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where κ = 1 −O(sups⩽t h∣ā(s)∣−3/2) −O(ε) ⇒ requires h < h0 infs⩽t ∣ā(s)∣3/2
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Above threshold
What happens for σ > σc and t > −σ2/3?
General principle: partition t0 = s0 < s1 < s2 < ⋅ ⋅ ⋅ < sn = t of [t0, t]

Lemma Let Pk = P{making no transition during (sk−1, sk]}. Then
P{making no transition during [t0, t]} ⩽

n

∏
k=1

Pk

Choose partition s.t. each Pk ⩽ q < 1 ⇒ P{no transition} ⩽ e−n log q

Define partition such that

∫
sk

sk−1
∣ā(s)∣ds = cε∣logσ∣ ⇒ Pk ⩽

2

3

Thm [B & Gentz, AAP 2002]

Transition probability ⩾1 − e−κσ
4/3/(ε∣logσ∣)
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PART II

Stochastic resonance
in stochastic PDEs

Stochastic resonance: From SODEs to SPDEs 9 February 2023 9/19



Stochastic Allen–Cahn equation on T2

dϕ(t, x) = [ν(εt)∆ϕ(t, x) + ϕ(t, x) − ϕ(t, x)3]dt + σ dW (t, x)

(Online: https://youtu.be/yX0EAxZHNCQ)
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Stochastic resonance in stochastic PDEs
dϕ(t, x) = [∆ϕ(t, x) + ϕ(t, x) − ϕ(t, x)3 +A cos(εt)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(εt)

]dt + σ dW (t, x)

Simulation available at youtu.be/eN3NWiEjBK8
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Stochastic resonance in SPDEs

dϕ(t, x) = [∆ϕ(t, x) + f (εt, ϕ(t, x))]dt + σ dW (t, x)

▷ ϕ = ϕ(t, x) ∈ R, εt ∈ [0,T ] or f is T -periodic, x ∈ T = R/LZ, L > 0

▷ ϕ↦ f (s, ϕ) bistable, C2, confining, e.g. f (s, ϕ) = ϕ − ϕ3 +A cos(s)
▷ dW (t, x) space-time white noise on R+ ×T
▷ 0 < ε, σ ≪ 1

▷ δ measures closeness to bifurcation (e.g. Ac −A)

Theorem [B & Nader, Stoch. & PDEs: Analysis & Comput., 2022]

▷ Away from bifurcations, solutions are concentrated around
deterministic solutions in Sobolev Hs -norm for any s < 1

2

▷ σ ≪ σc = max{δ, ε}3/4: transition probability per period ⩽ e−σ
2
c /σ

2

▷ σ ≫ σc: transition probability per period ⩾1 − e−cσ
4/3/(ε∣logσ∣)
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SPDE: stable case

dϕ(t, x) = 1

ε
[∆ϕ(t, x) + f (t, ϕ(t, x))]dt + σ√

ε
dW (t, x)

▷ f (t, ϕ∗(t)) = 0 for all t ∈ I = [0,T ]
▷ a(t) = ∂ϕf (t, ϕ∗(t)) ⩽ −a− < 0 for all t ∈ I

In deterministic case σ = 0: ∃ particular solution ϕ̄(t, x) such that

∥ϕ̄(t, ⋅) − ϕ∗(t)e0∥H1 ⩽ Cε ∀t ∈ I

Theorem [B & Nader 2021]

Fix s < 1
2 , and let B(h) = {(t, ϕ)∶ t ∈ I , ∥ϕ − ϕ̄(t, ⋅)∥Hs < h}

For any ν > 0

P{leaving B(h) before time t} ⩽ C(t, ε, s) exp{−κ h2

σ2 [1 −O( h
εν )]}

holds for some κ > 0, h = O(εν) and C(t, ε, s) = O(t/ε).
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Ideas of proof

▷ ϕ(x) = ∑
k∈Z

ϕkek(x) ⇒ ∥ϕ∥2Hs = ∑
k∈Z
⟨k⟩2sϕ2k , ⟨k⟩ =

√
1 + k2

▷ Deterministic case: ψ = ϕ − ϕ∗e0, ∥ψ∥2H1 is a Lyapunov function
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√
1 + k2

▷ Deterministic case: ψ = ϕ − ϕ∗e0, ∥ψ∥2H1 is a Lyapunov function

▷ Linear stoch case:

dψk =
1

ε
ak(t)ψk dt + σ√

ε
dWk(t), ak(t) = ā(t) − k2π2

L2
< 0

For any decomposition h2 = ∑k h
2
k ,

P{τ < T} ⩽∑
k

P{sup
t
ψk(t)2 ⩾ h2k⟨k⟩−2s} ⩽∑

k

Ck(T , ε) e−κh
2
k ⟨k⟩

2−2s/σ2

Choose h2k ∼ h2⟨k⟩−2+2s+η, η > 0
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Choose h2k ∼ h2⟨k⟩−2+2s+η, η > 0

▷ Schauder estimate: β ∈ H r , 0 < r < 1
2 ⇒

∥et∆ β∥Hq ⩽M(q, r)t−(q−r)/2∥β∥Hr ∀q < r + 2

Consequence: ψ = ψ0 + ψ1 where nonlinear term satisfies

∥ψ1∥Hq ⩽M ′ε(q−r)/2−1 sup
t
∥b(t, ψ(y , ⋅))∥Hr
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SPDE near a bifurcation point

dϕ = 1

ε
[∆ϕ + g(t) − ϕ2 − b(t, ϕ)]dt + σ√

ε
dW (t, x)

with g(t) = δ + t2 +O(t3) and b = O(ϕ3 + tϕ2 + t2ϕ)
▷ Decompose ϕ(t, x) = ϕ0(t)e0(x) + ϕ⊥(t, x) where e0 constant fct

▷ ϕ⊥ satisfies similar concentration result as ϕ in stable case

▷ ϕ0 satisfies similar equation as in 1D, with error term of order ∥ϕ⊥∥2Hs

Thm 1: Transverse component

P{τB⊥(h⊥) < t ∧ τB0(h)} ⩽ C(t, ε, s) exp{−κh2⊥
σ2 [1 −O(h⊥εν )]}

Thm 2: Mean

P{τB0(h) < t ∧ τB⊥(h⊥)} ⩽ C(t, ε) e−κh
2/2σ2

κ = 1 −O(sup
s

h∣ā(s)∣3/2)

Thm 3: Escape

P{ϕ0(t1) > −d ∀t ∈ [−σ2/3, t ∧ τB⊥(h⊥)]} ⩽ 3
2 e−α̂(t,−σ

2/3)/[ε log(σ−1)]
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h∣ā(s)∣3/2)

Thm 3: Escape

P{ϕ0(t1) > −d ∀t ∈ [−σ2/3, t ∧ τB⊥(h⊥)]} ⩽ 3
2 e−α̂(t,−σ

2/3)/[ε log(σ−1)]

Stochastic resonance: From SODEs to SPDEs 9 February 2023 15/19



SPDE on the 2d torus

dϕ(t, x) = 1

ε
[∆ϕ(t, x) +

n

∑
j=1

Aj(t)ϕ(t, x)j]dt + σ√
ε

dW (t, x) x ∈ T2

Stochastic resonance: From SODEs to SPDEs 9 February 2023 16/19



SPDE on the 2d torus

dϕ(t, x) = 1

ε
[∆ϕ(t, x) +

n

∑
j=1

Aj(t)ϕ(t, x)j]dt + σ√
ε

dW (t, x) x ∈ T2

▷ SPDE is not well-posed, needs to be renormalised
For N ∈ N, project on span{ek}∣k ∣<N :

dϕ(t, x) = 1

ε
[∆ϕ(t, x) +

n

∑
j=1

Aj(t)PN ∶ϕ(t, x)j ∶]dt + σ√
ε

dWN(t, x)

where ∶ϕn∶ = Hn(ϕ;CN) Wick power, CN ∼ logN variance of GFF
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where ∶ϕn∶ = Hn(ϕ;CN) Wick power, CN ∼ logN variance of GFF

▷ Let ψ be stochastic convolution:

dψ(t, x) = 1

ε
∆ψ(t, x)dt + σ√

ε
dWN(t, x)

[Da Prato & Debussche ’03]: ϕ − ψ cv to well-defined function
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where ∶ϕn∶ = Hn(ϕ;CN) Wick power, CN ∼ logN variance of GFF

▷ Let ψ be stochastic convolution:

dψ(t, x) = 1

ε
∆ψ(t, x)dt + σ√

ε
dWN(t, x)

[Da Prato & Debussche ’03]: ϕ − ψ cv to well-defined function

▷ Use Besov–Hölder spaces Bα2,∞, α < 0, instead of Sobolev spaces Hs :

∥ϕ∥Bα
2,∞
= sup

q⩾0
2qα∥δqϕ∥L2 δqϕ = ∑

2q−1⩽∣k ∣<2q
ϕkek
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SPDE on the 2d torus
Theorem [B & Nader 2022]

For α < 0, m ∈ N,

P{ sup
0⩽t⩽T

∥∶ψ(t, ⋅)m∶∥Bα
2,∞
> hm} ⩽ Cm(T , ε, α) e−κm(α)h2/σ2

where
κm(α) ⩾ c0 α2

m7 Cm(T , ε, α) ⩽ c1Tε
m3/2 em mm

∣α∣

▷ Binomial formula

∶ψm∶ = Hm(ψ;CN) = ∑
∣n∣=m

m!

n!
∏
q⩾0

Hnq(δqψ; cq) cq = O(1)

▷ Doob submartingale inequality for sup
t∈Iℓ

∥δq0(∏
q⩾0

Hnq(δqψ̂; cq))∥2L2

where ψ̂ martingale approximating ψ on intervals Il depending on q0
▷ Upgrade to bound for sup

t∈Iℓ

∥δq0(∏
q⩾0

Hnq(δqψ; cq))∥2L2
▷ Bound probability by summing over ℓ, q0 and n
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Concentration estimates

Theorem [B & Nader 2022]

Let ϕ1 = ϕ − ϕ∗ − ψ. Then ∀γ < 2,∀ν < 1 − γ
2 , ∀h < h0εν

P{ sup
t∈[0,T ]

∥ϕ1(t)∥Cγ−1 >Mε−νh(h + ε)} ⩽ C(T , ε) e−κh
2/σ2

▷ Use ∥ϕℓ∶ψm∶∥
B
(2ℓ+1)α
2,∞

⩽ ∥ϕ∥ℓBs
2,∞
∥∶ψm∶∥Bα

2,∞
to bnd nonlin term in dϕ1

▷ Use Schauder estimate and Bγ2,∞ ↪ B
γ−1
∞,∞ = Cγ−1

Example: Dynamic pitchfork bifurcation

dϕ(t, x) = 1

ε
[∆ϕ(t, x) + a(t)ϕ(t, x) − ∶ϕ(t, x)3∶]dt + σ√

ε
dW (t, x)

▷ Decompose ϕ = ψ⊥ + ϕ1, where ψ⊥ stoch conv driven by W⊥
▷ Decompose ϕ1 = ϕ01e0 + ϕ⊥1
▷ Concentration estimate for ∥ϕ⊥1∥Cγ−1 as long as a(t) < (2π)2

▷ For ϕ01, similar results as in SDE case (bif delay of order
√
ε log(σ−1))
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Open questions

▷ Case x ∈ T3 ? Regularity structures or similar needed . . .
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