Equadiff 2019, Session "Stochastic Dynamics" Trace process and metastability

Nils Berglund
Institut Denis Poisson, Université d'Orléans, France
Leiden, July 12, 2019
Joint work with Manon Baudel (Ecole des Ponts, Paris)

A simple example

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} & \varepsilon^{3} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3} & \varepsilon^{2} \\
0 & \varepsilon & 1-\varepsilon
\end{array}\right) \\
0 \leqslant \varepsilon \leqslant \varepsilon_{\max }
\end{gathered}
$$

A simple example

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} & \varepsilon^{3} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3} & \varepsilon^{2} \\
0 & \varepsilon & 1-\varepsilon
\end{array}\right) \\
0 \leqslant \varepsilon \leqslant \varepsilon_{\max }
\end{gathered}
$$

$\triangleright \varepsilon=0: P=1 \mathrm{~d}$
$\triangleright 0<\varepsilon \leqslant \varepsilon_{\text {max }}$: irreducible, aperiodic, not reversible

A simple example

$$
P=\left(\begin{array}{ccc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} & \varepsilon^{3} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3} & \varepsilon^{2} \\
0 & \varepsilon & 1-\varepsilon
\end{array}\right)
$$

$$
0 \leqslant \varepsilon \leqslant \varepsilon_{\max }
$$

$\triangleright \varepsilon=0: P=1 d$
$\triangleright 0<\varepsilon \leqslant \varepsilon_{\text {max }}$: irreducible, aperiodic, not reversible Stationary distribution: $\pi_{0}=\frac{1}{2\left(1+\varepsilon+\varepsilon^{2}\right)}\left(1,1+\varepsilon, \varepsilon+2 \varepsilon^{2}\right)$ Speed of convergence to π_{0} ?

A simple example

$$
P=\left(\begin{array}{ccc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} & \varepsilon^{3} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3} & \varepsilon^{2} \\
0 & \varepsilon & 1-\varepsilon
\end{array}\right)
$$

$$
0 \leqslant \varepsilon \leqslant \varepsilon_{\max }
$$

$\triangleright \varepsilon=0: P=1 d$
$\triangleright 0<\varepsilon \leqslant \varepsilon_{\text {max }}$: irreducible, aperiodic, not reversible Stationary distribution: $\pi_{0}=\frac{1}{2\left(1+\varepsilon+\varepsilon^{2}\right)}\left(1,1+\varepsilon, \varepsilon+2 \varepsilon^{2}\right)$ Speed of convergence to π_{0} ?

Eigenvalues of $P: \quad \lambda_{0}=1$

$$
\begin{aligned}
& \lambda_{1}=1-2 \varepsilon^{3}+\mathcal{O}\left(\varepsilon^{5}\right) \\
& \lambda_{2}=1-\varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

Main question

How to easily determine leading term of spectral gap $1-\lambda_{1}$?
\triangleright Linear algebra/analytic methods (singular perturbation theory), e.g. [Schweitzer 68, Hassin \& Haviv 92, Avrachenkov \& Lasserre 99]

- Probabilistic methods, e.g. [Wentzell 72, Freidlin \& Wentzell 70s, Beltràn \& Landim 2010, Cameron \& Vanden-Eijnden 2014, Betz \& Le Roux 2016, Cameron \& Gan 2016]

Main question

How to easily determine leading term of spectral gap $1-\lambda_{1}$?
\triangleright Linear algebra/analytic methods (singular perturbation theory), e.g. [Schweitzer 68, Hassin \& Haviv 92, Avrachenkov \& Lasserre 99]
\triangleright Probabilistic methods, e.g. [Wentzell 72, Freidlin \& Wentzell 70s, Beltràn \& Landim 2010, Cameron \& Vanden-Eijnden 2014, Betz \& Le Roux 2016, Cameron \& Gan 2016]

Some probabilistic tools:

- W-graphs
\triangleright Lumping of states
\triangleright Speeding up time

Main question

How to easily determine leading term of spectral gap $1-\lambda_{1}$?
\triangleright Linear algebra/analytic methods (singular perturbation theory), e.g. [Schweitzer 68, Hassin \& Haviv 92, Avrachenkov \& Lasserre 99]

- Probabilistic methods, e.g. [Wentzell 72, Freidlin \& Wentzell 70s, Beltràn \& Landim 2010, Cameron \& Vanden-Eijnden 2014, Betz \& Le Roux 2016, Cameron \& Gan 2016]

Some probabilistic tools:
$\triangleright W$-graphs
\triangleright Lumping of states
\triangleright Speeding up time

- Here: trace process

Trace process

\mathcal{X} finite, $\left\{X_{n}\right\}_{n \in \mathbb{N}_{0}}$ irreducible aperiodic M.C., transition matrix $P, A \subset \mathcal{X}$
\triangleright Process killed upon leaving $A: P_{A}(x, y)=P(x, y) \mathbb{1}_{\{x, y \in A\}}$
\triangleright Trace process on A : process monitored only when in A

$$
{ }_{A} P(x, y)=\mathbb{P}^{x}\left\{X_{\tau_{A}^{+}=y}\right\}, \quad \tau_{A}^{+}=\inf \left\{n \geqslant 1: X_{n} \in A\right\}
$$

Trace process

\mathcal{X} finite, $\left\{X_{n}\right\}_{n \in \mathbb{N}_{0}}$ irreducible aperiodic M.C., transition matrix $P, A \subset \mathcal{X}$
\triangleright Process killed upon leaving $A: P_{A}(x, y)=P(x, y) \mathbb{1}_{\{x, y \in A\}}$
\triangleright Trace process on A : process monitored only when in A

$$
\begin{aligned}
{ }_{A} P(x, y)= & \mathbb{P}^{x}\left\{X_{\tau_{A}^{+}=y}\right\}, \quad \tau_{A}^{+}=\inf \left\{n \geqslant 1: X_{n} \in A\right\} \\
{ }_{A} P(x, y) & =\mathbb{P}^{\times}\left\{\tau_{A}^{+}=1, X_{\tau_{A}^{+}=y}\right\}+\mathbb{P}^{x}\left\{\tau_{A}^{+} \geqslant 2, X_{\tau_{A}^{+}=y}\right\} \\
& =P(x, y)+\sum_{z \in A^{c}} P(x, z) \sum_{n \geqslant 1} \mathbb{P}^{2}\left\{\tau_{A}^{+}=n, X_{\tau_{A}^{+}=y}\right\} \\
& =P_{A}(x, y)+\sum_{z, z^{\prime} \in A^{c}} P(x, z) \underbrace{\sum_{n \geqslant 1} P_{A^{c}}^{n-1}\left(z, z^{\prime}\right)}_{\left[11-P_{A}\right]^{-1}\left(z, z^{\prime}\right)} P\left(z^{\prime}, y\right)
\end{aligned}
$$

Trace process

\mathcal{X} finite, $\left\{X_{n}\right\}_{n \in \mathbb{N}_{0}}$ irreducible aperiodic M.C., transition matrix $P, A \subset \mathcal{X}$
\triangleright Process killed upon leaving $A: P_{A}(x, y)=P(x, y) \mathbb{1}_{\{x, y \in A\}}$
\triangleright Trace process on A : process monitored only when in A

$$
\begin{aligned}
&{ }_{A} P(x, y)=\mathbb{P}^{x}\left\{X_{\tau_{A}^{+}=y}\right\}, \quad \tau_{A}^{+}=\inf \left\{n \geqslant 1: X_{n} \in A\right\} \\
&{ }_{A} P(x, y)=\mathbb{P}^{x}\left\{\tau_{A}^{+}=1, X_{\tau_{A}^{+}=y}\right\}+\mathbb{P}^{x}\left\{\tau_{A}^{+} \geqslant 2, X_{\tau_{A}^{+}=y}\right\} \\
&=P(x, y)+\sum_{z \in A^{c}} P(x, z) \sum_{n \geqslant 1} \mathbb{P}^{z}\left\{\tau_{A}^{+}=n, X_{\tau_{A}^{+}=y}\right\} \\
&=P_{A}(x, y)+\sum_{z, z^{\prime} \in A^{c}} P(x, z) \underbrace{\sum_{n \geqslant 1} P_{A^{c}}^{n-1}\left(z, z^{\prime}\right)}_{\left[\mathbb{1}-P_{A^{c}}\right]^{-1}\left(z, z^{\prime}\right)} P\left(z^{\prime}, y\right)
\end{aligned}
$$

Matrix representation (Schur complement)

$$
P=\left(\begin{array}{cc}
P_{A} & P_{A A^{c}} \\
P_{A^{c} A} & P_{A^{c}}
\end{array}\right) \quad \Rightarrow \quad{ }_{A} P=P_{A}+P_{A A^{c}}\left[\mathbb{1}-P_{A^{c}}\right]^{-1} P_{A^{c} A}
$$

Application to the example

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} & \varepsilon^{3} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3} & \varepsilon^{2} \\
0 & \varepsilon & 1-\varepsilon
\end{array}\right) \\
A=\{1,2\}
\end{gathered}
$$

Application to the example

$$
P=\left(\begin{array}{ccc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} & \varepsilon^{3} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3} & \varepsilon^{2} \\
0 & \varepsilon & 1-\varepsilon
\end{array}\right)
$$

$$
A=\{1,2\}
$$

$$
{ }_{A} P=P_{A}+P_{A A^{c}}\left[\mathbb{1}-P_{A^{c}}\right]^{-1} P_{A^{c} A}
$$

$$
=\left(\begin{array}{cc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3}
\end{array}\right)+\binom{\varepsilon^{3}}{\varepsilon^{2}} \frac{1}{\varepsilon}\left(\begin{array}{ll}
0 & \varepsilon
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{3}+\varepsilon^{4} \\
\varepsilon^{3} & 1-\varepsilon^{3}
\end{array}\right)
$$

Application to the example

$$
P=\left(\begin{array}{ccc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} & \varepsilon^{3} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3} & \varepsilon^{2} \\
0 & \varepsilon & 1-\varepsilon
\end{array}\right)
$$

$$
A=\{1,2\}
$$

$$
{ }_{A} P=P_{A}+P_{A A^{c}}\left[\mathbb{1}-P_{A^{c}}\right]^{-1} P_{A^{c} A}
$$

$$
=\left(\begin{array}{cc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{4} \\
\varepsilon^{3} & 1-\varepsilon^{2}-\varepsilon^{3}
\end{array}\right)+\binom{\varepsilon^{3}}{\varepsilon^{2}} \frac{1}{\varepsilon}\left(\begin{array}{ll}
0 & \varepsilon
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
1-\varepsilon^{3}-\varepsilon^{4} & \varepsilon^{3}+\varepsilon^{4} \\
\varepsilon^{3} & 1-\varepsilon^{3}
\end{array}\right)
$$

$$
A \lambda_{0}=1 \quad \lambda_{0}=1
$$

$$
A \lambda_{1}=1-2 \varepsilon^{3}-\varepsilon^{4} \quad \lambda_{1}=1-2 \varepsilon^{3}+\mathcal{O}\left(\varepsilon^{5}\right)
$$

$$
\lambda_{2}=1-\varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)
$$

A nice application of the trace process

Recall: the chain in not assumed to be reversible:
$\pi_{0}(x) P(x, y) \neq \pi_{0}(y) P(y, x)$ in general

A nice application of the trace process

Recall: the chain in not assumed to be reversible:
$\pi_{0}(x) P(x, y) \neq \pi_{0}(y) P(y, x)$ in general
Proposition: $\forall x, y \in A$

$$
\pi_{0}(x) \mathbb{P}^{x}\left\{\tau_{y}^{+}<\tau_{x}^{+}\right\}=\pi_{0}(y) \mathbb{P}^{y}\left\{\tau_{x}^{+}<\tau_{y}^{+}\right\}
$$

A nice application of the trace process

Recall: the chain in not assumed to be reversible:
$\pi_{0}(x) P(x, y) \neq \pi_{0}(y) P(y, x)$ in general
Proposition: $\forall x, y \in A$

$$
\pi_{0}(x) \mathbb{P}^{x}\left\{\tau_{y}^{+}<\tau_{x}^{+}\right\}=\pi_{0}(y) \mathbb{P}^{y}\left\{\tau_{x}^{+}<\tau_{y}^{+}\right\}
$$

\triangleright First proof in non-reversible case: [Betz \& Le Roux 2016] Using $\pi_{0}(x)=1 / \mathbb{E}^{x}\left[\tau_{x}^{+}\right]$

A nice application of the trace process

Recall: the chain in not assumed to be reversible:
$\pi_{0}(x) P(x, y) \neq \pi_{0}(y) P(y, x)$ in general
Proposition: $\forall x, y \in A$

$$
\pi_{0}(x) \mathbb{P}^{x}\left\{\tau_{y}^{+}<\tau_{x}^{+}\right\}=\pi_{0}(y) \mathbb{P}^{y}\left\{\tau_{x}^{+}<\tau_{y}^{+}\right\}
$$

\triangleright First proof in non-reversible case: [Betz \& Le Roux 2016] Using $\pi_{0}(x)=1 / \mathbb{E}^{x}\left[\tau_{x}^{+}\right]$
\triangleright Alternative proof using trace process:
Remark: $\left.\pi_{0}\right|_{A}$ is invariant by ${ }_{A} P$
Take $A=\{x, y\}$. Then

$$
\begin{aligned}
\pi_{0}(x) & =\left(\pi_{0 A} P\right)(x) \\
& =\pi_{0}(x) \mathbb{P}^{x}\left\{X_{\tau_{A}^{+}}=x\right\}+\pi_{0}(y) \mathbb{P}^{y}\left\{X_{\tau_{A}^{+}}=x\right\} \\
& =\pi_{0}(x)\left[1-\mathbb{P}^{x}\left\{\tau_{y}^{+}<\tau_{x}^{+}\right\}\right]+\pi_{0}(y) \mathbb{P}^{y}\left\{\tau_{x}^{+}<\tau_{y}^{+}\right\}
\end{aligned}
$$

Good domains

Definition: For $A \subset \mathcal{X}$, let

$$
\begin{aligned}
p_{\text {in }}(A) & =\inf _{x \in A^{c}} \mathbb{P}^{x}\left\{X_{1} \in A\right\} \\
p_{\text {out }}(A) & =\sup _{x \in A} \mathbb{P}^{x}\left\{X_{1} \in A^{c}\right\}
\end{aligned}
$$

A is a good domain if $\lim _{\varepsilon \rightarrow 0} \frac{p_{\text {out }}(A)}{p_{\text {in }}(A)}=0$

Good domains

Definition: For $A \subset \mathcal{X}$, let

$$
\begin{aligned}
p_{\text {in }}(A) & =\inf _{x \in A^{c}} \mathbb{P}^{x}\left\{X_{1} \in A\right\} \\
p_{\text {out }}(A) & =\sup _{x \in A} \mathbb{P}^{x}\left\{X_{1} \in A^{c}\right\}
\end{aligned}
$$

A is a good domain if $\lim _{\varepsilon \rightarrow 0} \frac{p_{\text {out }}(A)}{p_{\text {in }}(A)}=0$

Example:

$$
\begin{gathered}
A=\{1,2\} \\
p_{\text {in }}(A)=\varepsilon \\
p_{\text {out }}(A)=\varepsilon^{2} \\
A \text { is a good domain }
\end{gathered}
$$

Main idea

For a good domain A,
$P=\left(\begin{array}{cc}P_{A} & P_{A A^{c}} \\ P_{A^{c} A} & P_{A^{c}}\end{array}\right)$ is well-approximated by $\widehat{P}=\left(\begin{array}{cc}A^{P} & 0 \\ P_{A^{c} A} & P_{A^{c}}\end{array}\right)$

Main idea

For a good domain A,
$P=\left(\begin{array}{cc}P_{A} & P_{A A^{c}} \\ P_{A^{c} A} & P_{A^{c}}\end{array}\right)$ is well-approximated by $\widehat{P}=\left(\begin{array}{cc}A^{P} & 0 \\ P_{A^{c} A} & P_{A^{c}}\end{array}\right)$
Norm: $\|Q\|=\sup _{\|\varphi\|_{\infty}=1}\|Q \varphi\|_{\infty}=\sup _{\|\mu\|_{1}=1}\|\mu Q\|_{1}=\sup _{x \in \mathcal{X}} \sum_{y \in \mathcal{X}}|Q(x, y)|$
Lemma: $\|P-\widehat{P}\|=2 p_{\text {out }}(A)$

Main idea

For a good domain A,
$P=\left(\begin{array}{cc}P_{A} & P_{A A^{c}} \\ P_{A^{c} A} & P_{A^{c}}\end{array}\right)$ is well-approximated by $\widehat{P}=\left(\begin{array}{cc}{ }_{A} P & 0 \\ P_{A^{c} A} & P_{A^{c}}\end{array}\right)$
Norm: $\|Q\|=\sup _{\|\varphi\|_{\infty}=1}\|Q \varphi\|_{\infty}=\sup _{\|\mu\|_{1}=1}\|\mu Q\|_{1}=\sup _{x \in \mathcal{X}} \sum_{y \in \mathcal{X}}|Q(x, y)|$

$$
\text { Lemma: }\|P-\widehat{P}\|=2 p_{\text {out }}(A)
$$

Fact from spectral theory (using complex analysis, Riesz projector): $\hat{\lambda}$ simple eigenvalue of \widehat{P} at distance $>\|P-\widehat{P}\|$ from remaining spectrum $\Rightarrow P$ has unique eigenvalue at distance $\mathcal{O}(\|P-\widehat{P}\|)$ from $\hat{\lambda}$

Main idea

For a good domain A,
$P=\left(\begin{array}{cc}P_{A} & P_{A A^{c}} \\ P_{A^{c} A} & P_{A^{c}}\end{array}\right)$ is well-approximated by $\widehat{P}=\left(\begin{array}{cc}A^{P} & 0 \\ P_{A^{c} A} & P_{A^{c}}\end{array}\right)$
Norm: $\|Q\|=\sup _{\|\varphi\|_{\infty}=1}\|Q \varphi\|_{\infty}=\sup _{\|\mu\|_{1}=1}\|\mu Q\|_{1}=\sup _{x \in \mathcal{X}} \sum_{y \in \mathcal{X}}|Q(x, y)|$

$$
\text { Lemma: }\|P-\widehat{P}\|=2 p_{\text {out }}(A)
$$

Fact from spectral theory (using complex analysis, Riesz projector): $\hat{\lambda}$ simple eigenvalue of \widehat{P} at distance $>\|P-\widehat{P}\|$ from remaining spectrum $\Rightarrow P$ has unique eigenvalue at distance $\mathcal{O}(\|P-\widehat{P}\|)$ from $\hat{\lambda}$

Consequence: If $A^{c}=\{x\}$ then $p_{\text {in }}(A)=1-P(x, x)=1-\hat{\lambda}$
$\Rightarrow 1-\lambda=1-\hat{\lambda}+\mathcal{O}\left(p_{\text {out }}(A)\right)=(1-\hat{\lambda})\left[1+\mathcal{O}\left(\frac{p_{\text {out }}(A)}{p_{\text {in }}(A)}\right)\right]$
Example: $\hat{\lambda}_{2}=1-\varepsilon$ perturbs to $\lambda_{2}=1-\varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)$
The argument does not suffice to compare spectra of P_{A} and ${ }_{A} P$

Laplace transforms

$u \in \mathbb{C} \Rightarrow \mathbb{E}^{\times}\left[\mathrm{e}^{u \tau_{A}^{+}}\right]$exists for $\left|\mathrm{e}^{-u}\right|>1-p_{\text {in }}(A)(*)$
Proposition [Feynman-Kac type relation]
Under (*),

$$
\begin{cases}(P \phi)(x)=\mathrm{e}^{-u} \phi(x) & x \in A^{c} \\ \phi(x)=\bar{\phi}(x) & x \in A\end{cases}
$$

admits unique solution $\phi(x)=\mathbb{E}^{x}\left[\mathrm{e}^{u \tau_{A}} \bar{\phi}\left(X_{\tau_{A}}\right)\right], \tau_{A}=\inf \left\{n \geqslant 0: X_{n} \in A\right\}$

Laplace transforms

$u \in \mathbb{C} \Rightarrow \mathbb{E}^{\times}\left[\mathrm{e}^{u \tau_{A}^{+}}\right]$exists for $\left|\mathrm{e}^{-u}\right|>1-p_{\text {in }}(A)(*)$
Proposition [Feynman-Kac type relation]
Under (*),

$$
\begin{cases}(P \phi)(x)=\mathrm{e}^{-u} \phi(x) & x \in A^{c} \\ \phi(x)=\bar{\phi}(x) & x \in A\end{cases}
$$

admits unique solution $\phi(x)=\mathbb{E}^{x}\left[e^{u \tau_{A}} \bar{\phi}\left(X_{\tau_{A}}\right)\right], \tau_{A}=\inf \left\{n \geqslant 0: X_{n} \in A\right\}$
Corollary [Reduction to eigenvalue problem on A]
Under $(*), P \phi=\mathrm{e}^{-u} \phi$ in $\mathcal{X} \Leftrightarrow{ }_{A} P^{u} \phi=\mathrm{e}^{-u} \phi$ in A where ${ }_{A} P^{u}(x, y)=\mathbb{E}^{x}\left[\mathrm{e}^{u\left(\tau_{A}^{+}-1\right)} \mathbb{1}_{\left\{X_{\tau_{A}^{+}}=y\right\}}\right]$ is such that ${ }_{A} P^{0}={ }_{A} P$

Laplace transforms

$u \in \mathbb{C} \Rightarrow \mathbb{E}^{\times}\left[\mathrm{e}^{u \tau_{A}^{+}}\right]$exists for $\left|\mathrm{e}^{-u}\right|>1-p_{\text {in }}(A)(*)$
Proposition [Feynman-Kac type relation]
Under (*),

$$
\begin{cases}(P \phi)(x)=\mathrm{e}^{-u} \phi(x) & x \in A^{c} \\ \phi(x)=\bar{\phi}(x) & x \in A\end{cases}
$$

admits unique solution $\phi(x)=\mathbb{E}^{x}\left[e^{u \tau_{A}} \bar{\phi}\left(X_{\tau_{A}}\right)\right], \tau_{A}=\inf \left\{n \geqslant 0: X_{n} \in A\right\}$
Corollary [Reduction to eigenvalue problem on A]
Under $(*), P \phi=\mathrm{e}^{-u} \phi$ in $\mathcal{X} \Leftrightarrow{ }_{A} P^{u} \phi=\mathrm{e}^{-u} \phi$ in A where ${ }_{A} P^{u}(x, y)=\mathbb{E}^{x}\left[\mathrm{e}^{u\left(\tau_{A}^{+}-1\right)} \mathbb{1}_{\left\{X_{\tau_{A}^{+}}=y\right\}}\right]$ is such that ${ }_{A} P^{0}={ }_{A} P$

Proposition

$$
\left\|_{A} P^{u}-{ }_{A} P^{0}\right\| \leqslant \frac{\left|1-\mathrm{e}^{-u}\right| \sup _{x \in A} \mathbb{E}^{x}\left[\tau_{A}^{+}-1\right]}{1-\left|1-\mathrm{e}^{-u}\right| \sup _{x \in A^{c}} \mathbb{E}^{x}\left[\tau_{A}^{+}\right]} \leqslant \frac{\left|1-\mathrm{e}^{-u}\right| p_{\mathrm{out}}(A)}{p_{\mathrm{in}}(A)-\left|1-\mathrm{e}^{-u}\right|}
$$

Main result - nondegenerate case

Algorithm in nondegenerate case:
\triangleright Assume $\exists x \in \mathcal{X}$ such that $1-P(x, x) \gg 1-P(y, y) \forall y \neq x$
\triangleright Take $A=\mathcal{X} \backslash\{x\}$ (A is a good set)
\triangleright Then $\mathbb{1}-P$ has ev $1-\lambda=P(x, x)\left[1+\mathcal{O}\left(p_{\text {in }}(A) / p_{\text {out }}(A)\right)\right] \in \mathbb{R}$
\triangleright Compute ${ }_{A} P$ and start again with P replaced by ${ }_{A} P$

Main result - nondegenerate case

Algorithm in nondegenerate case:
\triangleright Assume $\exists x \in \mathcal{X}$ such that $1-P(x, x) \gg 1-P(y, y) \forall y \neq x$
\triangleright Take $A=\mathcal{X} \backslash\{x\}$ (A is a good set)
\triangleright Then $\mathbb{1}-P$ has ev $1-\lambda=P(x, x)\left[1+\mathcal{O}\left(p_{\text {in }}(A) / p_{\text {out }}(A)\right)\right] \in \mathbb{R}$
\triangleright Compute ${ }_{A} P$ and start again with P replaced by ${ }_{A} P$
Theorem [Baudel \& B, 2017]

- Non-degenerate case: $\exists A_{1} \subset A_{2} \subset \cdots \subset A_{n}=\mathcal{X}$ s.t. $\#\left(A_{k+1} \backslash A_{k}\right)=1$, each A_{k} good set for ${ }_{A_{k+1}} P$
Renumber states s.t. $A_{k}=\{1, \ldots, k\}$. Then
$\triangleright \lambda_{0}=1, \lambda_{k}=1-\mathbb{P}^{k+1}\left\{\tau_{A_{k}}^{+}<\tau_{k+1}^{+}\right\}\left[1+\mathcal{O}\left(\frac{p_{\text {out }}\left(A_{k} \mid A_{k+1}\right)}{p_{\text {in }}\left(A_{k} \mid A_{k+1}\right)}\right)\right] \in \mathbb{R}$

Main result - nondegenerate case

Algorithm in nondegenerate case:
\triangleright Assume $\exists x \in \mathcal{X}$ such that $1-P(x, x) \gg 1-P(y, y) \forall y \neq x$
\triangleright Take $A=\mathcal{X} \backslash\{x\}$ (A is a good set)
\triangleright Then $\mathbb{1}-P$ has ev $1-\lambda=P(x, x)\left[1+\mathcal{O}\left(p_{\text {in }}(A) / p_{\text {out }}(A)\right)\right] \in \mathbb{R}$
\triangleright Compute ${ }_{A} P$ and start again with P replaced by ${ }_{A} P$
Theorem [Baudel \& B, 2017]

- Non-degenerate case: $\exists A_{1} \subset A_{2} \subset \cdots \subset A_{n}=\mathcal{X}$ s.t. $\#\left(A_{k+1} \backslash A_{k}\right)=1$, each A_{k} good set for ${ }_{A_{k+1}} P$ Renumber states s.t. $A_{k}=\{1, \ldots, k\}$. Then
$\triangleright \lambda_{0}=1, \lambda_{k}=1-\mathbb{P}^{k+1}\left\{\tau_{A_{k}}^{+}<\tau_{k+1}^{+}\right\}\left[1+\mathcal{O}\left(\frac{p_{\text {out }}\left(A_{k} \mid A_{k+1}\right)}{p_{\text {in }}\left(A_{k} \mid A_{k+1}\right)}\right)\right] \in \mathbb{R}$
$\triangleright k$ th right eigenvector ϕ_{k} close to $\mathbb{P}^{x}\left\{\tau_{k+1}<\tau_{A_{k}}\right\}$
$\triangleright k$ th left eigenvector π_{k} close to quasistationary distribution (QSD) of $P_{A_{k}}$ (left eigenvect of $P_{A_{k}}$ for Perron-Frobenius principal eigenval)

Continuous-space Markov chains

$\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ Markov chain in $\mathcal{X} \subset \mathbb{R}^{d}$ with kernel K_{σ} :

$$
\mathbb{P}\left\{X_{n+1} \in A \mid X_{n}=x\right\}=K_{\sigma}(x, A)=\int_{A} K_{\sigma}(x, \mathrm{~d} y)
$$

$\triangleright K_{0}(x, A)=\mathbb{1}_{\{\Pi(x) \in A\}}$ defined by deterministic map $\Pi: \mathcal{X} \rightarrow \mathcal{X}$
\triangleright For $\sigma>0, K_{\sigma}$ admits continuous density k_{σ}

Continuous-space Markov chains

$\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ Markov chain in $\mathcal{X} \subset \mathbb{R}^{d}$ with kernel K_{σ} :

$$
\mathbb{P}\left\{X_{n+1} \in A \mid X_{n}=x\right\}=K_{\sigma}(x, A)=\int_{A} K_{\sigma}(x, \mathrm{~d} y)
$$

$\triangleright K_{0}(x, A)=\mathbb{1}_{\{\Pi(x) \in A\}}$ defined by deterministic map $\Pi: \mathcal{X} \rightarrow \mathcal{X}$
\triangleright For $\sigma>0, K_{\sigma}$ admits continuous density k_{σ}
Example 1: Randomly perturbed map

$$
X_{n+1}=\Pi\left(X_{n}\right)+\sigma \xi_{n+1}
$$

$\left(\xi_{n}\right)_{n \geqslant 1}$ i.i.d. r.v. with density (e.g. $\sigma \xi_{n}$ Gaussian of variance σ^{2})

Continuous-space Markov chains

$\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ Markov chain in $\mathcal{X} \subset \mathbb{R}^{d}$ with kernel K_{σ} :

$$
\mathbb{P}\left\{X_{n+1} \in A \mid X_{n}=x\right\}=K_{\sigma}(x, A)=\int_{A} K_{\sigma}(x, \mathrm{~d} y)
$$

$\triangleright K_{0}(x, A)=\mathbb{1}_{\{\Pi(x) \in A\}}$ defined by deterministic map $\Pi: \mathcal{X} \rightarrow \mathcal{X}$
\triangleright For $\sigma>0, K_{\sigma}$ admits continuous density k_{σ}
Example 1: Randomly perturbed map

$$
x_{n+1}=\Pi\left(X_{n}\right)+\sigma \xi_{n+1}
$$

$\left(\xi_{n}\right)_{n \geqslant 1}$ i.i.d. r.v. with density (e.g. $\sigma \xi_{n}$ Gaussian of variance σ^{2})
Example 2: Random Poincaré map SDE

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma g\left(x_{t}\right) \mathrm{d} W_{t}
$$

X_{n} suitably defined location of nth return to surface of section $\Sigma \subset \mathcal{X}$

Assumptions

Assumption 1: Deterministic dynamics
$\Pi: \mathcal{X} \rightarrow \mathcal{X}$ admits positively invariant compact set $\mathcal{X}_{0} \subset \mathcal{X}$, finitely many limit sets in \mathcal{X}_{0}, all hyperbolic fixed points, N of which are stable

Assumptions

Assumption 1: Deterministic dynamics
$\Pi: \mathcal{X} \rightarrow \mathcal{X}$ admits positively invariant compact set $\mathcal{X}_{0} \subset \mathcal{X}$, finitely many limit sets in \mathcal{X}_{0}, all hyperbolic fixed points, N of which are stable

Assumption 2: Large-deviation principle
K_{σ} satisfies LDP with good rate function $I\left(K_{\sigma}(x, A) \sim \mathrm{e}^{-\inf _{A} I(x, \cdot) / \sigma^{2}}\right)$ $I(x, y)=0 \Leftrightarrow y=\Pi(x)$

Assumptions

Assumption 1: Deterministic dynamics
$\Pi: \mathcal{X} \rightarrow \mathcal{X}$ admits positively invariant compact set $\mathcal{X}_{0} \subset \mathcal{X}$, finitely many limit sets in \mathcal{X}_{0}, all hyperbolic fixed points, N of which are stable

Assumption 2: Large-deviation principle
K_{σ} satisfies LDP with good rate function $I\left(K_{\sigma}(x, A) \sim \mathrm{e}^{-\inf _{A} I(x, \cdot) / \sigma^{2}}\right)$ $I(x, y)=0 \Leftrightarrow y=\Pi(x)$

Assumption 3: Positive Harris recurrence In particular $\mathbb{E}^{x}\left[\tau_{A}^{+}\right]<\infty$ for $A \subset \mathcal{X}_{0}$ of positive Lebesgue measure

Assumptions

Assumption 1: Deterministic dynamics
$\Pi: \mathcal{X} \rightarrow \mathcal{X}$ admits positively invariant compact set $\mathcal{X}_{0} \subset \mathcal{X}$, finitely many limit sets in \mathcal{X}_{0}, all hyperbolic fixed points, N of which are stable

Assumption 2: Large-deviation principle
K_{σ} satisfies LDP with good rate function $I\left(K_{\sigma}(x, A) \sim \mathrm{e}^{-\inf _{A} I(x, \cdot) / \sigma^{2}}\right)$ $I(x, y)=0 \Leftrightarrow y=\Pi(x)$

Assumption 3: Positive Harris recurrence
In particular $\mathbb{E}^{x}\left[\tau_{A}^{+}\right]<\infty$ for $A \subset \mathcal{X}_{0}$ of positive Lebesgue measure
Assumption 4: Uniform positivity (Doeblin-type condition)
$\forall x_{i}^{\star}$ stable fixed point, $\exists B_{i}$ nbh of x_{i}^{\star} s.t. $k_{i}=B_{1} \cup \cdots \cup B_{i} k_{B_{i}}$ satisfies
$\sup _{x \in B_{i}} k_{i}^{n}(x, y) \leqslant L \inf _{x \in B_{i}} k_{i}^{n}(x, y) \forall y \in B_{i} \quad$ for some $L \in(1,2), n(\sigma) \in \mathbb{N}$

Main result

Theorem

\triangleright Non-degenerate case ($x_{1}^{\star}, \ldots, x_{N}^{\star}$ in metastable order)
\diamond Eigenvalues of K_{σ} :

$$
\begin{aligned}
\lambda_{0} & =1 & & \\
\lambda_{k} & =1-\mathbb{P}^{\tilde{N}_{0}^{k+1}}\left\{\tau_{B_{1} \cup \ldots \cup B_{k}}^{+}<\tau_{B_{k+1}}^{+}\right\}\left[1+\mathcal{O}\left(\mathrm{e}^{-\theta / \sigma^{2}}\right)\right] \in \mathbb{R} & & 1 \leqslant k<N \\
\left|\lambda_{k}\right| & <1-\frac{c}{\log \left(\sigma^{-1}\right)} & & k \geqslant N
\end{aligned}
$$

where π_{0}^{k+1} is a certain QSD on B_{k+1} and $c, \theta>0$
$\diamond \quad k$ th right eigenfunction ϕ_{k} close to $\mathbb{P}^{\times}\left\{\tau_{B_{k+1}}<\tau_{B_{1} \cup \ldots \cup B_{k}}\right\}$
$\diamond \quad k$ th left eigenfunction π_{k} close to QSD of $K_{\left(B_{1} \cup \ldots \cup B_{k}\right)^{c}}$

Main result

Theorem

\triangleright Non-degenerate case $\left(x_{1}^{\star}, \ldots, x_{N}^{\star}\right.$ in metastable order)
\diamond Eigenvalues of K_{σ} :

$$
\begin{aligned}
\lambda_{0} & =1 & & \\
\lambda_{k} & =1-\mathbb{P}^{\tilde{N}_{0}^{k+1}}\left\{\tau_{B_{1} \cup \ldots \cup B_{k}}^{+}<\tau_{B_{k+1}}^{+}\right\}\left[1+\mathcal{O}\left(\mathrm{e}^{-\theta / \sigma^{2}}\right)\right] \in \mathbb{R} & & 1 \leqslant k<N \\
\left|\lambda_{k}\right| & <1-\frac{c}{\log \left(\sigma^{-1}\right)} & & k \geqslant N
\end{aligned}
$$

$$
\text { where } \AA_{0}^{k+1} \text { is a certain QSD on } B_{k+1} \text { and } c, \theta>0
$$

$\diamond \quad k$ th right eigenfunction ϕ_{k} close to $\mathbb{P}^{\times}\left\{\tau_{B_{k+1}}<\tau_{B_{1} \cup \ldots \cup B_{k}}\right\}$
$\diamond \quad k$ th left eigenfunction π_{k} close to QSD of $K_{\left(B_{1} \cup \ldots \cup B_{k}\right)^{c}}$
\triangleright Degenerate case: similar to finite chain...

Approximation result

Theorem: Approximation by a finite Markov chain
$\exists m(\sigma)$, (signed) measures μ_{i} s.t. $\left\|\mu_{i}-\stackrel{\circ}{\pi}_{0}^{B_{i}}\right\|_{1} \leqslant \mathrm{e}^{-\theta / \sigma^{2}}$:

$$
\mathbb{P}^{\mu_{i}}\left\{X_{\tau_{B_{1}}^{+, n m} \ldots B_{N}} \in B_{j}\right\}=\mathbb{P}^{i}\left\{Y_{n}=j\right\}+\underbrace{\mathcal{O}\left(\mathrm{e}^{-\theta / \sigma^{2}}\right)}_{\text {uniform in } n}
$$

where $\left(Y_{n}\right)_{n \in \mathbb{N}_{0}}$ Markov chain with matrix

$$
P_{i j}=\mathbb{P}^{\mathbb{x}_{0}^{B_{i}}}\left\{X_{\left.\tau_{B_{1}+n \cdots \cup B_{N}} \in B_{j}\right\}\left[1+\mathcal{O}\left(\mathrm{e}^{-\theta / \sigma^{2}}\right)\right]}\right.
$$

Approximation result

Theorem: Approximation by a finite Markov chain
$\exists m(\sigma)$, (signed) measures μ_{i} s.t. $\left\|\mu_{i}-\stackrel{\pi}{\pi}_{0}^{B_{i}}\right\|_{1} \leqslant \mathrm{e}^{-\theta / \sigma^{2}}$:

$$
\mathbb{P}^{\mu_{i}}\left\{X_{\tau_{B_{1}}^{+} \cdots, \cdot \cup B_{N}} \in B_{j}\right\}=\mathbb{P}^{i}\left\{Y_{n}=j\right\}+\underbrace{\mathcal{O}\left(\mathrm{e}^{-\theta / \sigma^{2}}\right)}_{\text {uniform in } n}
$$

where $\left(Y_{n}\right)_{n \in \mathbb{N}_{0}}$ Markov chain with matrix

$$
P_{i j}=\mathbb{P}^{\mathbb{P}_{O_{0}}^{B_{i}}}\left\{X_{\tau_{B_{1} \cdots \cdots}^{+n B_{N}}} \in B_{j}\right\}\left[1+\mathcal{O}\left(\mathrm{e}^{-\theta / \sigma^{2}}\right)\right]
$$

Truncated spectral decomposition of $B_{1} \cup \ldots \cup B_{N} K$:

$$
K_{\text {trunc }}^{0}(x, \mathrm{~d} y)=\sum_{k=0}^{N-1} \lambda_{k}^{0} \phi_{k}^{0}(x) \pi_{k}^{0}(\mathrm{~d} y)
$$

Then $P_{i j}=\mu_{i}\left(K_{\text {trunc }}^{0}\right)^{m} \psi_{j}$ where $\left\|\psi_{j}-\mathbb{1}_{B_{j}}\right\|_{\infty} \leqslant \mathrm{e}^{-\theta / \sigma^{2}}$

Outlook

\triangleright Finite \mathcal{X} case: simple algorithm to obtain eigenvalues and vectors (complexity $\mathcal{O}\left(n^{2}\right), n=\#(\mathcal{X})$)

- Continuous-space Markov chains: eigen-elements in terms of committors and QSDs
\triangleright Needed: better ways to approximate QSDs and committors

Reference:

\triangleright Manon Baudel \& N. B., Spectral theory for random Poincaré maps, SIAM J. Math. Analysis 49, 4319-4375 (2017)

Related:

\triangleright N. B. \& Damien Landon, Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model, Nonlinearity 25, 2303-2335 (2012)
\triangleright N. B., Barbara Gentz \& Christian Kuehn, From random Poincaré maps to stochastic mixed-mode-oscillation patterns, J. Dynam. Diff. Eq. 27, 83-136 (2015)

Algorithm in degenerate case

Algorithm in degenerate case

Degenerate part, leading order:

Eigenvalues: 1

$$
\begin{aligned}
& 1-\varepsilon \\
& 1-2 \varepsilon
\end{aligned}
$$

Algorithm in degenerate case

Degenerate part, leading order:

Effective trace process:

Eigenvalues: 1

$$
\begin{aligned}
& 1-\varepsilon \\
& 1-2 \varepsilon
\end{aligned}
$$

Eigenvalues:

Algorithm in degenerate case

Degenerate part, leading order:

Eigenvalues: 1

$$
\begin{aligned}
& 1-\varepsilon \\
& 1-2 \varepsilon
\end{aligned}
$$

Eigenvalues:

$$
1-2 \varepsilon^{2}
$$

$$
1-\frac{3}{4} \varepsilon^{3}
$$

$$
1
$$

