ENS Lyon – Groupe de travail "MathsInFluids"

Modèles stochastiques et dynamique du climat

Nils Berglund

Institut Denis Poisson – Université d'Orléans, Université de Tours, CNRS, France

18 mars 2022

Basé sur des travaux avec Barbara Gentz et Rita Nader

Nils Berglund

nils.berglund@univ-orleans.fr

https://www.idpoisson.fr/berglund/

Mathematical modeling, or "let *S* be a spherical cow"

Mathematical modeling, or "let *S* be a spherical cow"

Modèles stochastiques et dynamique du climat

Mathematical modeling, or "let *S* be a spherical cow"

Modèles stochastiques et dynamique du climat

Climate in the past

Climate in the past

Figure 1. Oxygen isotope (s¹⁸O) record from Greenland (GISP2 ice core [Grootes and Stuiver, 1997]). Numerals above ³¹O maxima denote the "classical" Dansgaard-Oeschger interstadial events [Johnsen et al., 1992; Dansgaard et al., 1993].

Modèles stochastiques et dynamique du climat

18 mars 2022

Ice Ages – Milanković cycles

James Croll (1821-1890)

Milutin Milanković (1879–1958)

Theory: Ice Ages are caused by (quasi-)periodic variations in the Earth's orbital parameters (eccentricity, semi-axis, inclination)

Climate models by decreasing complexity

General Circulation Models (GCMs) Atmosphere + Oceans + Land masses/Ice sheets + ...

Climate models by decreasing complexity

- General Circulation Models (GCMs)
 Atmosphere + Oceans + Land masses/Ice sheets + ...
- ▷ Earth Models of Intermediate Complexity (EMICs)

Climate models by decreasing complexity

- General Circulation Models (GCMs)
 Atmosphere + Oceans + Land masses/Ice sheets + ...
- ▷ Earth Models of Intermediate Complexity (EMICs)
- ▷ Box Models

Simple compartmental models for the evolution of averaged quantities

The simplest box model: One single box

$$c \frac{\mathrm{d}T}{\mathrm{d}t} = R_{\mathrm{in}}(t) - R_{\mathrm{out}}(T,t)$$

- \triangleright T: average temperature on the Earth
- ▷ c: specific heat
- \triangleright $R_{in}(t) = Q(1 + K \cos(\omega t))$: incoming solar radiation, $K \simeq 5 \cdot 10^{-4}$

The simplest box model: One single box

$$c \frac{\mathrm{d}T}{\mathrm{d}t} = R_{\mathrm{in}}(t) - R_{\mathrm{out}}(T,t)$$

- \triangleright T: average temperature on the Earth
- ▷ c: specific heat
- $\triangleright R_{in}(t) = Q(1 + K \cos(\omega t))$: incoming solar radiation, $K \simeq 5 \cdot 10^{-4}$
- $\begin{tabular}{ll} & \mathcal{R}_{\rm out}(T,t) = \alpha(T) \mathcal{R}_{\rm in}(t) + E(T) \end{tabular} : \mbox{ outgoing radiation } \\ & E(T) \sim T^4 \simeq E_0 \end{tabular} : \mbox{ emissivity } \\ & \alpha(T) \end{tabular} : \mbox{ albedo, complicated dependence on } T \end{tabular}$

The simplest box model: One single box

$$c \frac{\mathrm{d}T}{\mathrm{d}t} = R_{\mathrm{in}}(t) - R_{\mathrm{out}}(T,t)$$

- \triangleright T: average temperature on the Earth
- ▷ c: specific heat
- $\triangleright R_{in}(t) = Q(1 + K \cos(\omega t))$: incoming solar radiation, $K \simeq 5 \cdot 10^{-4}$
- $\begin{tabular}{ll} & & \mathcal{R}_{\rm out}(T,t) = \alpha(T) \mathcal{R}_{\rm in}(t) + E(T): \mbox{ outgoing radiation } \\ & & E(T) \sim T^4 \simeq E_0: \mbox{ emissivity } \\ & & \alpha(T): \mbox{ albedo, complicated dependence on } T \end{tabular}$

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{E_0}{c} \Big[\gamma(T) (1 + K \cos(\omega t)) + K \cos(\omega t) \Big]$$

$$\gamma(T) = \frac{Q}{E_0}(1 - \alpha(T)) - 1$$

derives from double-well potential

Dansgaard–Oeschger events

Dansgaard–Oeschger events

Is there a periodic forcing involved?

Weather over the North Atlantic in Fall 2017

Source: NASA, https://youtu.be/h1eRp0EGOmE

Modèles stochastiques et dynamique du climat

18 mars 2022

7/30

Bistability: Stadial vs interstadial regime

Modèles stochastiques et dynamique du climat

- \triangleright T_i : temperatures
- \triangleright S_i: salinities
- ▷ *F*: freshwater flux
- $\triangleright Q(\Delta \rho)$: mass exchange
- $\triangleright \ \Delta \rho = \alpha_{S} \Delta S \alpha_{T} \Delta T$
- $\triangleright \Delta T = T_1 T_2$
- $\triangleright \Delta S = S_1 S_2$

- \triangleright T_i : temperatures
- \triangleright S_i: salinities
- ▷ *F*: freshwater flux
- $\triangleright Q(\Delta \rho)$: mass exchange
- $\triangleright \ \Delta \rho = \alpha_{S} \Delta S \alpha_{T} \Delta T$
- $\triangleright \Delta T = T_1 T_2$
- $\triangleright \Delta S = S_1 S_2$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Delta T = -\frac{1}{\tau_r}(\Delta T - \theta) - Q(\Delta \rho)\Delta T$$
$$\frac{\mathrm{d}}{\mathrm{d}t}\Delta S = \frac{S_0}{H}F - Q(\Delta \rho)\Delta S$$

Model for Q [Cessi]:
$$Q(\Delta \rho) = \frac{1}{\tau_d} + \frac{q}{V} \Delta \rho^2$$
.

Modèles stochastiques et dynamique du climat

18 mars 2022

Scaling: $x = \frac{\Delta T}{\theta}$, $y = \frac{\Delta S \alpha_S}{\alpha \tau \theta}$, $t \mapsto \tau_d t$

Separation of time scales: $\tau_r \ll \tau_d$, $\varepsilon = \tau_r/\tau_d \ll 1$

$$\varepsilon \dot{x} = -(x-1) - \varepsilon x \left[1 + \eta^2 (x-y)^2\right]$$
$$\dot{y} = \mu - y \left[1 + \eta^2 (x-y)^2\right]$$

where $\eta^2 = \tau_d (\alpha_T \theta)^2 \frac{q}{V}$, $\mu = \frac{\alpha_S S_0 \tau_d}{\alpha_T \theta H} F$

Slow manifold [Fenichel '79]: $x = 1 + \mathcal{O}(\varepsilon) \Rightarrow \varepsilon \dot{x} = 0$.

Scaling: $x = \frac{\Delta T}{\theta}$, $y = \frac{\Delta S \alpha_S}{\alpha \tau \theta}$, $t \mapsto \tau_d t$

Separation of time scales: $\tau_r \ll \tau_d$, $\varepsilon = \tau_r / \tau_d \ll 1$

$$\varepsilon \dot{x} = -(x-1) - \varepsilon x \left[1 + \eta^2 (x-y)^2\right]$$
$$\dot{y} = \mu - y \left[1 + \eta^2 (x-y)^2\right]$$

where $\eta^2 = \tau_d (\alpha_T \theta)^2 \frac{q}{V}$, $\mu = \frac{\alpha_S S_0 \tau_d}{\alpha_T \theta H} F$

Slow manifold [Fenichel '79]: $x = 1 + \mathcal{O}(\varepsilon) \Rightarrow \varepsilon \dot{x} = 0$.

Reduced equation on slow manifold:

 $\dot{y} = \mu - y \left[1 + \eta^2 (1 - y)^2 + \mathcal{O}(\varepsilon) \right]$

One or two stable equilibria, depending on μ (and η).

18 mars 2022

10/30

Improving the models – adding noise

[Klaus Hasselmann. Stochastic climate models. Part I. Theory. Tellus, **28**:473–485, 1976.]

- Separation of length/time scales
- ▷ Galerkin truncation to long/slow modes
- Unresolved modes: typically represented by parameterization (as in BBGKY hierarchy)
- Alternative: represent unresolved modes by stochastic process (random noise)

Picture by Daniel Reinhardt CC BY-SA 4.0

Improving the models – adding noise

[Klaus Hasselmann. Stochastic climate models. Part I. Theory. Tellus, **28**:473–485, 1976.]

- Separation of length/time scales
- ▷ Galerkin truncation to long/slow modes
- Unresolved modes: typically represented by parameterization (as in BBGKY hierarchy)
- Alternative: represent unresolved modes by stochastic process (random noise)

Picture by Daniel Reinhardt CC BY-SA 4.0

Justification of effective description by stochastic differential equations:

- System coupled to infinitely many harmonic oscillators [Ford, Kac, Mazur '65], [Lebowitz, Spohn '77], [Eckmann, Pillet, Rey-Bellet '99], [Rey-Bellet, Thomas '00, '02]
- Stochastic averaging for slow-fast systems [Khasminski '66], [Hasselmann '76], [Kifer '03]

Modèles stochastiques et dynamique du climat

[Benzi/Sutera/Vulpiani '81, Nicolis/Nicolis '81]

$$dx_t = \underbrace{\left[-x^3 + x + A\cos\varepsilon t\right]}_{= -\frac{\partial}{\partial x}\left[\frac{1}{4}x^4 - \frac{1}{2}x^2 - Ax\cos\varepsilon t\right]} dt + \sigma dW_t$$

[Benzi/Sutera/Vulpiani '81, Nicolis/Nicolis '81]

$$dx_t = \underbrace{\left[-x^3 + x + A\cos\varepsilon t\right]}_{= -\frac{\partial}{\partial x}\left[\frac{1}{4}x^4 - \frac{1}{2}x^2 - Ax\cos\varepsilon t\right]} dt + \sigma dW_t$$

Sample paths $\{x_t\}_t$ for $\varepsilon = 0.001$:

Modèles stochastiques et dynamique du climat

18 mars 2022

Simulation available at https://youtu.be/h1eRp0EGOmE

Modèles stochastiques et dynamique du climat

18 mars 2022

Descriptions of stochastic resonance

- ▷ Fokker–Planck equation: [Caroli, Caroli, Roulet & Saint-James '81]
- Two-state Markov chain: [Eckmann & Thomas '82], [Imkeller & Pavljukevich '02], [Herrmann & Imkeller '02]
- Signal-to-noise ratio: [Gammaitoni, Menichella-Saetta & ... '89], [Fox '89], [Jung& Hänggi '89], [McNamara & Wiesenfeld '89]
- Slow forcing: [Jung & Hänggi '91], [Talkner '99], [Talkner & Łuczka '04]
- ▷ Large deviations: [Freidlin '00, Freidlin '01]
- Residence-time distributions: [Zhou, Moss & Jung '90], [Choi, Fox & Jung '98], ...
- ▷ Overview articles:

[Moss, Pierson & O'Gorman '94], [Wiesenfeld & Moss '95], [McNamara & Wiesenfeld '95], [Wiesenfeld & Jaramillo '98], [Gammaitoni, Hänggi, Jung & Marchesoni '98], [Hänggi '02], [Wellens, Shatokhin & Buchleitner '04], ...

▷ Monograph: [Herrmann, Imkeller, Pavlyukevich & Peithmann '14]

On the slow time scale εt :

$$\varepsilon \frac{\mathrm{d}x}{\mathrm{d}t} = f(x,t)$$

▷ Equilibrium branch: $\{x = x^*(t)\}$ where $f(x^*(t), t) = 0$ for all t

▷ Stable if $a^*(t) = \partial_x f(x^*(t), t) \leq -a_0 < 0$ for all t

Then [Tikhonov '52, Fenichel '79]:

▷ There exists particular solution

 $\bar{x}(t) = x^{\star}(t) + \mathcal{O}(\varepsilon)$

- $\triangleright~\bar{x}$ attracts nearby orbits exp. fast
- $\triangleright \ ar{x}$ admits asymptotic series in arepsilon

Stochastic perturbation:

$$dx_t = \frac{1}{\varepsilon}f(x_t, t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Write $x_t = \bar{x}(t) + \xi_t$ and Taylor-expand:

$$d\xi_t = \frac{1}{\varepsilon} \left[\bar{a}(t)\xi_t + \underbrace{b(\xi_t, t)}_{=\mathcal{O}(\xi_t^2)} \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

where $\bar{a}(t) = \partial_x f(\bar{x}(t), t) = a^*(t) + \mathcal{O}(\varepsilon)$

Stochastic perturbation:

$$dx_t = \frac{1}{\varepsilon}f(x_t, t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Write $x_t = \bar{x}(t) + \xi_t$ and Taylor-expand:

$$d\xi_t = \frac{1}{\varepsilon} \left[\bar{a}(t)\xi_t + \underbrace{b(\xi_t, t)}_{=\mathcal{O}(\xi_t^2)} \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

where $\bar{a}(t) = \partial_x f(\bar{x}(t), t) = a^*(t) + \mathcal{O}(\varepsilon)$

Variations of constants (Duhamel formula), if $\xi_0 = 0$:

$$\xi_{t} = \underbrace{\frac{\sigma}{\sqrt{\varepsilon}} \int_{0}^{t} e^{\bar{\alpha}(t,s)/\varepsilon} dW_{s}}_{\xi_{t}^{0}: \text{ sol of linearised system}} + \underbrace{\frac{1}{\varepsilon} \int_{0}^{t} e^{\bar{\alpha}(t,s)/\varepsilon} b(\xi_{s},s) ds}_{\text{treat as a perturbation}}$$

where $\bar{\alpha}(t,s) = \int_{s}^{t} \bar{a}(u) du$

Modèles stochastiques et dynamique du climat

Properties of
$$\xi_t^0 = \frac{\sigma}{\sqrt{\varepsilon}} \int_0^t e^{\bar{\alpha}(t,s)/\varepsilon} dW_s$$
:

▷ Gaussian process, $\mathbb{E}[\xi_t^0] = 0$, $\operatorname{Var}(\xi_t^0) = \frac{\sigma^2}{\varepsilon} \int_0^t e^{2\bar{\alpha}(t,s)/\varepsilon} ds$

- $\triangleright \text{ Confidence interval:} \quad \mathbb{P}\left\{ |\xi_t^0| > \frac{h}{\sigma} \sqrt{\mathsf{Var}(\xi_t^0)} \right\} = \mathcal{O}(e^{-h^2/2\sigma^2})$
- $\triangleright \sigma^{-2} \operatorname{Var}(\xi_t^0)$ satisfies ODE $\varepsilon \dot{v} = 2\bar{a}(t)v + 1$

Properties of $\xi_t^0 = \frac{\sigma}{\sqrt{\varepsilon}} \int_0^t e^{\bar{\alpha}(t,s)/\varepsilon} \, \mathrm{d}W_s$:

▷ Gaussian process, $\mathbb{E}[\xi_t^0] = 0$, $\operatorname{Var}(\xi_t^0) = \frac{\sigma^2}{\varepsilon} \int_0^t e^{2\bar{\alpha}(t,s)/\varepsilon} ds$

 $\triangleright \text{ Confidence interval:} \quad \mathbb{P}\left\{ |\xi_t^0| > \frac{h}{\sigma} \sqrt{\operatorname{Var}(\xi_t^0)} \right\} = \mathcal{O}(e^{-h^2/2\sigma^2})$ $\triangleright \sigma^{-2} \operatorname{Var}(\xi_t^0) \text{ satisfies ODE} \quad \varepsilon \dot{v} = 2\bar{a}(t)v + 1$

Lemma [B & Gentz, Proba. Theory Relat. Fields 2002] $\bar{v}(t)$ solution of ODE bounded away from 0: $\bar{v}(t) = \frac{1}{-2\bar{a}(t)} + \mathcal{O}(\varepsilon)$

$$\mathbb{P}\left\{\sup_{0\leqslant s\leqslant t}\frac{|\xi_{s}^{0}|}{\sqrt{\bar{v}(s)}}>h\right\}=C_{0}(t,\varepsilon)\,\mathrm{e}^{-h^{2}/2\sigma^{2}}$$

17/30

where
$$C_0(t,\varepsilon) = \sqrt{\frac{2}{\pi}} \frac{1}{\varepsilon} \frac{h}{\sigma} \Big| \int_0^t \bar{a}(s) \, \mathrm{d}s \Big| \Big[1 + \mathcal{O}(\varepsilon + \frac{t}{\varepsilon} \, \mathrm{e}^{-h^2/\sigma^2}) \Big]$$

Proof based on Doob's submartingale inequality and partition of [0, t]Modèles stochastiques et dynamique du climat 18 mars 2022

Nonlinear equation: $d\xi_t = \frac{1}{\varepsilon} [\bar{a}(t)\xi_t + b(\xi_t, t)] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$ Confidence strip: $\mathcal{B}(h) = \{ |\xi| \le h\sqrt{\bar{v}(t)} \ \forall t \} = \{ |x - \bar{x}(t)| \le h\sqrt{\bar{v}(t)} \ \forall t \}$

Theorem [B & Gentz, Proba. Theory Relat. Fields 2002] $C(t,\varepsilon) e^{-\kappa_-h^2/2\sigma^2} \leq \mathbb{P} \{ \text{leaving } \mathcal{B}(h) \text{ before time } t \} \leq C(t,\varepsilon) e^{-\kappa_+h^2/2\sigma^2}$ where $\kappa_{\pm} = 1 \mp \mathcal{O}(h)$ and $C(t,\varepsilon) = C_0(t,\varepsilon) [1 + \mathcal{O}(h)]$ (requires $h \leq h_0$)

Rising variance near tipping points Saddle-node (fold) bifurcation: $dx_t = \frac{1}{\varepsilon} \left[-x_t^2 - t \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$

- \triangleright Fluctuations grow like $\frac{\sigma}{|\bar{a}(t)|^{1/2}} \simeq \frac{\sigma}{\max\{(-t)^{1/4}, \varepsilon^{1/6}\}}$
- $\triangleright\,$ Early transitions occur if $\sigma \gg \varepsilon^{1/2}$ at time $\asymp -\sigma^{4/3}$

Rising variance near tipping points

Saddle-node (fold) bifurcation: $dx_t = \frac{1}{\varepsilon} \left[-x_t^2 - t \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$

 $\triangleright~$ Early transitions occur if $\sigma \gg \varepsilon^{1/2}$ at time $\asymp -\sigma^{4/3}$

Theorem [B & Gentz, Nonlinearity 2002]

▷ $\sigma < \varepsilon^{1/2}$: transition probability before fold $\leq e^{-c\varepsilon/\sigma^2}$ ▷ $\sigma > \varepsilon^{1/2}$: probability of early transition $\geq 1 - e^{-c\sigma^2/(\varepsilon |\log \sigma|)}$

[Carpenter, Brock, *Rising variance: a leading indicator of ecological transition*, Ecology Letters **9**, 311–318 (2006)] Modèles stochastiques et dynamique du climat 18 mars 2022 19/30

Hysteresis

[B & Gentz, Nonlinearity 2002]

Modèles stochastiques et dynamique du climat

18 mars 2022

20/30

Hysteresis

[B & Gentz, Nonlinearity 2002]

Modèles stochastiques et dynamique du climat

Critical noise intensity:
$$\sigma_c = \max{\{\delta, \varepsilon\}^{3/4}}$$
, $\delta = A_c - A$, $A_c = \frac{2}{3\sqrt{3}}$

$$\label{eq:sigma_c} \begin{split} \sigma \ll \sigma_{\rm c}: \\ {\rm transitions \ unlikely} \end{split}$$

 $\sigma \gg \sigma_{\rm c}$: synchronisation

Critical noise intensity:
$$\sigma_c = \max{\{\delta, \varepsilon\}^{3/4}}$$
, $\delta = A_c - A$, $A_c = \frac{2}{3\sqrt{3}}$

$$\label{eq:sigma_c} \begin{split} \sigma \ll \sigma_{\rm c}: \\ {\rm transitions \ unlikely} \end{split}$$

 $\sigma \gg \sigma_{\rm c}$: synchronisation

Theorem [B & Gentz, Annals App. Proba 2002]

▷ $\sigma < \sigma_c$: transition probability per period $\leq e^{-\sigma_c^2/\sigma^2}$

 $\triangleright \ \sigma > \sigma_{\rm c}: \ {\rm transition \ probability \ per \ period } \geqslant 1 - {\rm e}^{-c\sigma^{4/3}/(\varepsilon |\log \sigma|)}$

Residence-time distribution

Residence-time distribution

- ▷ $x \mapsto V_0(x, y)$ confining double-well potential, class C^4 $V_0(x, y+1) = V_0(x, y)$
- $\triangleright \ \mathbf{0} \leqslant \varepsilon, \sigma \ll \mathbf{1}, \ \varrho > \mathbf{0}$
- \triangleright W_t^{\times} , W_t^{\vee} independent standard Wiener processes

Question: describe law of $\tau_{+} = \inf\{t > 0: x_{t} = x_{+}^{*}(y_{t}) | (x_{0} = x_{-}^{*}(y_{0}), y_{0})\}$

Static case

 $dx_t = -V'_0(x_t) dt + \sigma dW_t$ $\omega_{\pm} = \sqrt{V''_0(x_{\pm}^*)} \quad \omega_0 = \sqrt{-V''_0(x_0^*)}$

Static case

 $\begin{array}{l} \triangleright \quad \mathsf{By Dynkin's equation, } \forall x < x_{+}^{*}, \\ \mathbb{E}^{x}[\tau_{+}] = \frac{2}{\sigma^{2}} \int_{x}^{x_{+}^{*}} \int_{-\infty}^{x_{2}} \mathrm{e}^{2[V_{0}(x_{2}) - V_{0}(x_{1})]/\sigma^{2}} \, \mathrm{d}x_{1} \, \mathrm{d}x_{2} \\ \Rightarrow \quad \mathsf{Eyring-Kramers law:} \quad \mathbb{E}^{x_{-}^{*}}[\tau_{+}] = \frac{2\pi}{\omega_{0}\omega_{-}} \, \mathrm{e}^{2h_{-}/\sigma^{2}} \, [1 + \mathcal{O}(\sigma^{2})] \end{array}$

Static case

 $\mathbb{E}^{x}[\tau_{+}] = \frac{2}{\sigma^{2}} \int_{x}^{x_{+}^{*}} \int_{-\infty}^{x_{2}} e^{2[V_{0}(x_{2}) - V_{0}(x_{1})]/\sigma^{2}} dx_{1} dx_{2}$ $\Rightarrow \quad \text{Eyring-Kramers law:} \quad \mathbb{E}^{x_{-}^{*}}[\tau_{+}] = \frac{2\pi}{\omega_{0}\omega_{-}} e^{2h_{-}/\sigma^{2}} [1 + \mathcal{O}(\sigma^{2})]$ $\triangleright \quad [\text{Day '83]:} \quad \forall s \ge 0, \quad \lim_{\sigma \to 0} \mathbb{P}^{x_{-}^{*}} \{\tau_{+} > s \mathbb{E}^{x_{-}^{*}}[\tau_{+}]\} = e^{-s}$ (Convergence to exponential law $\mathscr{E}(1)$)

Modèles stochastiques et dynamique du climat

Static case: reactive time

Static case: reactive time

 $[C\acute{e}rou, Guyader, Lelièvre, Malrieu '13]: x_{-}^{*} < a < x_{0} < x_{0}^{*} < b < x_{+}^{*}$ $\lim_{\sigma \to 0} Law(\omega_{0}^{2}\tau_{b} - 2\log(\sigma^{-1}) \mid \tau_{b} < \tau_{a}) = Law(\underbrace{\mathcal{G}}_{Gumbel} + \underbrace{\mathcal{T}(x_{0}, b)}_{Gumbel})$

Modèles stochastiques et dynamique du climat

Static case: reactive time

 $\begin{array}{l} & \vdash [\text{Cérou, Guyader, Lelièvre, Malrieu '13}]: \quad x_{-}^{*} < a < x_{0} < x_{0}^{*} < b < x_{+}^{*} \\ & \lim_{\sigma \to 0} \text{Law} \left(\omega_{0}^{2} \tau_{b} - 2 \log(\sigma^{-1}) \mid \tau_{b} < \tau_{a} \right) = \text{Law} \left(\underbrace{\mathcal{G}}_{\text{Gumbel}} + \underbrace{\mathcal{T}(x_{0}, b)}_{\text{deterministic}} \right) \\ & \text{Gumbel law: } \mathbb{P} \left\{ \mathcal{G} < t \right\} = e^{-e^{-t}} \quad \forall t \in \mathbb{R} \\ & (\text{max-stable distribution from extreme value theory, cf. [Bakhtin '15])} \\ & \Rightarrow \text{ reactive time } \simeq \omega_{0}^{-2} [2 \log(\sigma^{-1}) + \mathcal{G} + \mathcal{T}(x_{0}, b)] \end{array}$

Modèles stochastiques et dynamique du climat

Law of first-passage times

$$dx_t = -\frac{1}{\varepsilon} \partial_x V_0(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t^x$$
$$dy_t = dt + \sigma \varrho dW_t^y$$

(time scaled by ε)

Law of first-passage times

$$dx_t = -\frac{1}{\varepsilon} \partial_x V_0(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t^x$$
$$dy_t = dt + \sigma \varrho dW_t^y$$

(time scaled by ε)

▷ Det. eq. $\varepsilon \dot{x} = -\partial_x V_0(x, t)$: $\exists ! 3$ periodic orbits $\bar{x}_i(t) = x_i^*(t) + \mathcal{O}(\varepsilon)$ ▷ τ_0 hitting time of $\bar{x}_0(y)$

Law of first-passage times

$$dx_t = -\frac{1}{\varepsilon} \partial_x V_0(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t^x$$
$$dy_t = dt + \sigma \varrho dW_t^y$$

(time scaled by ε)

▷ Det. eq. $\varepsilon \dot{x} = -\partial_x V_0(x, t)$: ∃! 3 periodic orbits $\bar{x}_i(t) = x_i^*(t) + \mathcal{O}(\varepsilon)$ ▷ τ_0 hitting time of $\bar{x}_0(y)$

Theorem: [B & Gentz, SIAM J Math Analysis 2014] $\lim_{\sigma \to 0} \text{Law}\Big(\theta(y_{\tau_0}) - \log(\sigma^{-1}) - \frac{\lambda_+}{\varepsilon}Y^{\sigma}\Big) = \text{Law}\Big(\frac{\mathcal{G}}{2} - \frac{\log 2}{2}\Big)$

 $\triangleright \ \theta(y)$: explicit parametrisation of $\bar{x}_0(y)$, $\theta(y+1) = \theta(y) + \frac{\lambda_+}{\varepsilon}$

- $\triangleright \lambda_+$: Lyapunov exponent of $\bar{x}_0(y) (\lambda_+ = \int_0^1 \omega_0(y)^2 dy + \mathcal{O}(\varepsilon))$
- $\triangleright \ \mathbf{Y}^{\sigma} \in \mathbb{N}: \text{ asymptotically geometric } \mathbb{N}\text{-valued r.v}:$

$$\lim_{n\to\infty} \mathbb{P}\{Y^{\sigma} = n+1 | Y^{\sigma} > n\} = p(\sigma)$$

 $p(\sigma) \simeq e^{-\mathcal{I}/\sigma^2}$, \mathcal{I} Freidlin–Wentzell quasipotential, $\mathbb{E}[\tau_0] \simeq p(\sigma)^{-1}$

First-passage and residence time distributions

First-passage time distribution

$$f(t) = f_{trans}(t) \frac{e^{-t/T_{K}}}{T_{K}}$$
$$\times \sum_{k=-\infty}^{\infty} A(\lambda_{+} T(k+\theta) - |\log \sigma|)$$
$$A(x) = e^{-x-e^{-x}}$$

Simulation available at https://youtu.be/XDM5aCmQ_HI

Residence-time distribution

$$q(t) = f_{\text{trans}}(t) \frac{e^{-t/T_{\text{K}}}}{T_{\text{K}}}$$
$$\times \sum_{k=-\infty}^{\infty} \frac{1}{\cosh^2(\lambda_+(t+\frac{T}{2}-kT))}$$

Simulation available at https://youtu.be/v-PZIedBQ00

Eyring–Kramers-type law for $\mathbb{E}[\tau_+]$

Eyring–Kramers-type law for $\mathbb{E}[\tau_+]$

▷ Leading eigenvalue of $-\mathscr{L}_x = -\frac{\sigma^2}{2}\partial_{xx} + \partial_x V_0 \partial_x$:

 $\lambda_1(y) = [r_+(y) + r_-(y)][1 + \mathcal{O}(\sigma^2)]$

Eyring–Kramers-type law for $\mathbb{E}[\tau_+]$

▷ Leading eigenvalue of $-\mathscr{L}_{x} = -\frac{\sigma^{2}}{2}\partial_{xx} + \partial_{x}V_{0}\partial_{x}$: $\lambda_{1}(y) = [r_{+}(y) + r_{-}(y)][1 + \mathcal{O}(\sigma^{2})] \qquad \langle \lambda_{1} \rangle = \int_{0}^{1} \lambda_{1}(y) dy$

Theorem: [B, Proba & Math Phys 2021]

$$\mathbb{E}^{(x_{-}^{*}(y_{0}),y_{0})}[\tau_{+}] = \frac{2\pi\varepsilon[1+R(\varepsilon,\sigma)]}{\int_{0}^{1}\omega_{0}(y)\omega_{-}(y)\,\mathrm{e}^{-2h_{-}(y)/\sigma^{2}}\,\mathrm{d}y}$$

where $R(\varepsilon, \sigma)$ complicated but small if $\langle \lambda_1 \rangle \ll \varepsilon \ll \langle \lambda_1 \rangle^{1/4}$

Stochastic resonance in stochastic PDEs $d\phi(t,x) = \left[\Delta\phi(t,x) + \phi(t,x) - \phi(t,x)^3 + A\cos(\varepsilon t)\right]dt + \sigma dW(t,x)$

Simulation available at https://youtu.be/eN3NWiEjBK8

Modèles stochastiques et dynamique du climat

18 mars 2022

Stochastic resonance in SPDEs

 $d\phi(t,x) = \left[\Delta\phi(t,x) + f(\varepsilon t,\phi(t,x))\right]dt + \sigma dW(t,x)$

- $\triangleright \ \phi = \phi(t, x) \in \mathbb{R}, \ \varepsilon t \in [0, T] \text{ or } f \text{ is } T \text{-periodic, } x \in \mathbb{T} = \mathbb{R}/L\mathbb{Z}, \ L > 0$
- $\triangleright \phi \mapsto f(s, \phi)$ bistable, e.g. $f(s, \phi) = \phi \phi^3 + A\cos(s)$
- $\triangleright \ \mathsf{d}W(t,x)$ space-time white noise on $\mathbb{R}_+ imes \mathbb{T}$
- \triangleright 0 < $\varepsilon, \sigma \ll 1$
- ▷ δ measures closeness to bifurcation (e.g. $A_c A$)

Stochastic resonance in SPDEs

 $d\phi(t,x) = \left[\Delta\phi(t,x) + f(\varepsilon t,\phi(t,x))\right]dt + \sigma dW(t,x)$

- $\triangleright \ \phi = \phi(t, x) \in \mathbb{R}, \ \varepsilon t \in [0, T] \text{ or } f \text{ is } T \text{-periodic, } x \in \mathbb{T} = \mathbb{R}/L\mathbb{Z}, \ L > 0$
- $\triangleright \phi \mapsto f(s, \phi)$ bistable, e.g. $f(s, \phi) = \phi \phi^3 + A\cos(s)$
- $\triangleright \ \mathsf{d}W(t,x)$ space-time white noise on $\mathbb{R}_+ \times \mathbb{T}$
- \triangleright 0 < $\varepsilon, \sigma \ll 1$
- $\triangleright \delta$ measures closeness to bifurcation (e.g. $A_{\rm c} A$)

Theorem [B & Nader, SPDEs: Analysis & Computations, 2022]

- ▷ Away from bifurcations, solutions are concentrated around deterministic solutions in Sobolev H^s-norm for any s < ¹/₂
- ▷ At bifurcations, $\phi_{\perp} = \phi \int_{\mathbb{T}^2} \phi \, dx$ remains small in H^s -norm
- ▷ $\sigma < \sigma_c = (\delta \lor \varepsilon)^{3/4}$: transition probability per period $\leq e^{-\sigma_c^2/\sigma^2}$

▷ $\sigma > \sigma_c$: transition probability per period $\ge 1 - e^{-c\sigma^{4/3}/(\varepsilon |\log \sigma|)}$

References

- N.B. & Barbara Gentz, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields 122:341–388 (2002)
- _____, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab. 12:1419–1470 (2002)
- The effect of additive noise on dynamical hysteresis, Nonlinearity 15:605–632 (2002)
- _____, Noise-Induced Phenomena in Slow-Fast Dynamical Systems. A Sample-Paths Approach, Springer, Probability and its Applications (2006)
- _____, On the noise-induced passage through an unstable periodic orbit II: General case, SIAM J. Math. Anal. 46 (1):310–352 (2014)
- N.B., An Eyring-Kramers law for slowly oscillating bistable diffusions, Probability and Mathematical Physics 2-4:685-743 (2021)
- N.B. & Rita Nader, Stochastic resonance in stochastic PDEs, Stochastics and Partial Differential Equations: Analysis and Computations, Online first (2022)
- N.B., Kramers' law: Validity, derivations and generalisations, Markov Processes Relat. Fields 19, 459–490 (2013)

Thanks for your attention!

Modèles stochastiques et dynamique du climat

18 mars 2022