Statistical mechanics and computation of large deviation rate functions

Metastability in systems of coupled multistable SDEs

Nils Berglund

MAPMO, Université d'Orléans

ENS Lyon, June 16, 2015

With Sébastien Dutercq (Orléans), Bastien Fernandez (Marseille/Paris) and Barbara Gentz (Bielefeld)

Nils Berglund

nils.berglund@univ-orleans.fr

http://www.univ-orleans.fr/mapmo/membres/berglund/

Interacting SDEs with noise

Example 1 [B, Fernandez, Gentz, Nonlinearity 2007]

- ▷ *N* particles on a circle $\mathbb{Z}/N\mathbb{Z}$
- Bistable local dynamics
- Ferromagnetic nearest neighbour coupling
- Independent noise on each site

$$dx_t^{i} = [x_t^{i} - (x_t^{i})^3] dt + \frac{\gamma}{2} [x_t^{i+1} - 2x_t^{i} + x_t^{i-1}] dt + \sqrt{2\varepsilon} dW_t^{i}$$

Interacting SDEs with noise

Example 1 [B, Fernandez, Gentz, Nonlinearity 2007]

- ▷ *N* particles on a circle $\mathbb{Z}/N\mathbb{Z}$
- Bistable local dynamics
- Ferromagnetic nearest neighbour coupling
- Independent noise on each site

$$dx_t^{i} = [x_t^{i} - (x_t^{i})^3] dt + \frac{\gamma}{2} [x_t^{i+1} - 2x_t^{i} + x_t^{i-1}] dt + \sqrt{2\varepsilon} dW_t^{i}$$

Gradient system $dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$ potential $V(x) = \sum_i U(x^i) + \frac{\gamma}{4} \sum_i (x^{i+1} - x^i)^2 \qquad U(\xi) = \frac{1}{4}\xi^4 - \frac{1}{2}\xi^2$

Metastability in systems of coupled multistable SDEs

Interacting SDEs with noise

Example 1 [B, Fernandez, Gentz, Nonlinearity 2007]

- ▷ *N* particles on a circle $\mathbb{Z}/N\mathbb{Z}$
- Bistable local dynamics
- Ferromagnetic nearest neighbour coupling
- Independent noise on each site

$$dx_t^{i} = [x_t^{i} - (x_t^{i})^3] dt + \frac{\gamma}{2} [x_t^{i+1} - 2x_t^{i} + x_t^{i-1}] dt + \sqrt{2\varepsilon} dW_t^{i}$$

Gradient system $dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$ potential $V(x) = \sum_i U(x^i) + \frac{\gamma}{4} \sum_i (x^{i+1} - x^i)^2 \qquad U(\xi) = \frac{1}{4}\xi^4 - \frac{1}{2}\xi^2$

Example 2 [B, Dutercq, JoTP 2015]: Same potential + constraint $\sum_{i} x^{i} = 0$

General gradient systems with noise

$$\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$$

 $V:\mathbb{R}^{N}\rightarrow\mathbb{R}:$ confining potential, class \mathcal{C}^{2}

General gradient systems with noise

$$\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$$

 $V: \mathbb{R}^N \to \mathbb{R}$: confining potential, class \mathcal{C}^2

- ▷ Stationary points: $\mathcal{X} = \{x : \nabla V(x) = 0\}$
- ▷ Local minima: $\mathcal{X}_0 = \{x \in \mathcal{X} : \text{ all ev of Hessian } \nabla^2 V(x) \text{ are } > 0\}$
- ▷ Saddles of index 1: $\mathcal{X}_1 = \{x \in \mathcal{X} : \nabla^2 V(x) \text{ has } 1 \text{ negative ev } \}$

General gradient systems with noise

$$\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$$

 $V: \mathbb{R}^N \to \mathbb{R}$: confining potential, class \mathcal{C}^2

- ▷ Stationary points: $\mathcal{X} = \{x : \nabla V(x) = 0\}$
- ▷ Local minima: $\mathcal{X}_0 = \{x \in \mathcal{X} : \text{ all ev of Hessian } \nabla^2 V(x) \text{ are } > 0\}$
- ▷ Saddles of index 1: $\mathcal{X}_1 = \{x \in \mathcal{X} : \nabla^2 V(x) \text{ has } 1 \text{ negative ev } \}$

Dynamics \sim markovian jump process on $\mathcal{G} = (\mathcal{X}_0, \mathcal{E}), \ \mathcal{E} \subset \mathcal{X}_1$

t	Rhätische Bahn
ün	ganzjährig offen
u	Wintersperre

Pass	Land	Passhöhe (m.ü.M.)
Flüela	CH	2383
Albula	CH	2312
Julier	CH	2284
Maloja	CH	1815
Splügen	I - CH	2115
Reschen	A - I	1507
Ofen	CH	2149
Umbrail	CH - I	2502
Stilfserjoch	1	2757
Foscagno	1	2291
Bernina	CH - I	2323
Fla. di Livigno	1	2315
	Pass Flüela Albula Julier Maloja Splügen Reschen Ofen Umbrail Stilfserjoch Foscagno Bernina Fla. di Livigno	Pass Land Flüela CH Albula CH Julier CH Maloja CH Splügen I - CH Reschen A - I Ofen CH - I Sultiserjoch I Foscagno I Bernina CH - I Fla.d Litvigno I

Wentzell–Freidlin theory

$$\mathrm{d} x_t = f(x_t) \, \mathrm{d} t + \sqrt{2\varepsilon} \, \mathrm{d} W_t$$

Large-deviation rate function: $I_{[0,T]}(\varphi) = \frac{1}{2} \int_0^T \|\dot{\varphi}(t) - f(\varphi(t))\|^2 dt$

Noise-induxed exit from domain \mathcal{D} containing unique attractor x^*

Mean exit time:

 $\lim_{\varepsilon \to 0} 2\varepsilon \log \mathbb{E}^{x_0}[\tau] = \inf_{z \in \partial \mathcal{D}} \overline{V}(x^*, z) \qquad \overline{V}(x^*, z) = \inf_{T > 0} \inf_{\varphi: x^* \to z} I_{[0, T]}(\varphi)$

- ▷ Gradient case: $\overline{V}(x^*, z) = 2[V(z) V(x^*)]$
- \triangleright Exit location: concentrated where \overline{V} is minimal

Wentzell–Freidlin theory

$$\mathrm{d} x_t = f(x_t) \, \mathrm{d} t + \sqrt{2\varepsilon} \, \mathrm{d} W_t$$

Large-deviation rate function: $I_{[0,T]}(\varphi) = \frac{1}{2} \int_0^T ||\dot{\varphi}(t) - f(\varphi(t))||^2 dt$

Noise-induxed exit from domain ${\mathcal D}$ containing unique attractor x^\star

- $\stackrel{\triangleright}{\underset{\varepsilon \to 0}{\text{ Hean exit time:}}} \lim_{\varepsilon \to 0} 2\varepsilon \log \mathbb{E}^{x_0}[\tau] = \inf_{z \in \partial \mathcal{D}} \overline{V}(x^*, z) \qquad \overline{V}(x^*, z) = \inf_{T > 0} \inf_{\varphi: x^* \to z} I_{[0, T]}(\varphi)$
- ▷ Gradient case: $\overline{V}(x^*, z) = 2[V(z) V(x^*)]$
- \triangleright Exit location: concentrated where \overline{V} is minimal

Case of multiple attractors: $V^{(k)} = \min_{g \ W\text{-graph}, |W|=k} \sum_{(\alpha \to \beta) \in g} \overline{V}(\alpha, \beta)$ Small eigenval. λ_k of generator satisfy $-\lim_{\varepsilon \to 0} \varepsilon \log(|\lambda_k|) = V^{(k)} - V^{(k+1)}$ Efficient computation of λ_k : [Cameron and Vanden–Eijnden 2014]

Eyring–Kramers law for $dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$

Definition: Communication height $H(x_i^*, x_j^*) = \inf_{\gamma: x_i^* \to x_j^*} \sup_t V(\gamma_t) - V(x_i^*)$ $= V(z_{ii}^*) - V(x_i^*)$

Definition: Metastable hierarchy $x_1^* \prec x_2^* \prec \cdots \prec x_n^* \Leftrightarrow \exists \theta > 0: \forall k$ $H_k := H(x_k^*, \{x_1^*, \dots, x_{k-1}^*\})$ $\leq \min_{i < k} H(x_i^*, \{x_1^*, \dots, x_{i-1}^*, x_{i+1}^*, \dots, x_k^*\}) - \theta$

Eyring–Kramers law for $dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$

Definition: Communication height $H(x_i^*, x_j^*) = \inf_{\substack{\gamma: x_i^* \to x_j^*}} \sup_t V(\gamma_t) - V(x_i^*)$ $= V(z_{ij}^*) - V(x_i^*)$

Definition: Metastable hierarchy $x_1^* \prec x_2^* \prec \cdots \prec x_n^* \Leftrightarrow \exists \theta > 0: \forall k$ $H_k := H(x_k^*, \{x_1^*, \dots, x_{k-1}^*\})$ $\leq \min_{i < k} H(x_i^*, \{x_1^*, \dots, x_{i-1}^*, x_{i+1}^*, \dots, x_k^*\}) - \theta$

Theorem: Eyring–Kramers law [Bovier,Eckhoff,Gayrard,Klein 2004] $\tau_k = \text{first-hitting time of nbh of } \{x_1^*, \dots, x_k^*\} \qquad \lambda_k = k^{\text{th}} \text{ ev of generator}$ $\mathbb{E}^{x_k^*}[\tau_{k-1}] = \frac{2\pi}{|\lambda_-(z_k^*)|} \sqrt{\frac{|\det \nabla^2 V(z_k^*)|}{\det \nabla^2 V(x_k^*)}} e^{H_k/\varepsilon} [1 + \mathcal{O}_{\varepsilon}(1)] \simeq |\lambda_k|^{-1}$

Potential landscape for Example 1

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0: \ \mathcal{X} = \{-1, 0, 1\}^N$, $\mathcal{X}_0 = \{-1, 1\}^N$, $\mathcal{X}_1 = \{x \in \mathcal{X}: \text{ one } x^i = 0\}$

Potential landscape for Example 1

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0: \ \mathcal{X} = \{-1, 0, 1\}^N, \ \mathcal{X}_0 = \{-1, 1\}^N, \ \mathcal{X}_1 = \{x \in \mathcal{X}: \text{ one } x^i = 0\}$

Theorem [BFG, Nonlinearity 2007] No bifurcation for $0 \le \gamma \le \gamma^*(N)$ where $\gamma^*(N) > \frac{1}{4} \quad \forall N \ge 2$

 $V_{\gamma}(z_{\gamma}^{*}) = V_{0}(z_{0}^{*}) + \gamma(\# \text{ interfaces}) + \cdots$ Ising-like dynamics

Potential landscape for Example 1

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0$: $\mathcal{X} = \{-1, 0, 1\}^N$, $\mathcal{X}_0 = \{-1, 1\}^N$, $\mathcal{X}_1 = \{x \in \mathcal{X} : \text{one } x^i = 0\}$

Theorem [BFG, Nonlinearity 2007] No bifurcation for $0 \le \gamma \le \gamma^*(N)$ where $\gamma^*(N) > \frac{1}{4} \quad \forall N \ge 2$

 $V_{\gamma}(z_{\gamma}^{*}) = V_{0}(z_{0}^{*}) + \gamma(\# ext{ interfaces}) + \cdots$ Ising-like dynamics

Theorem [BFG, Nonlinearity 2007]

$$\gamma > \frac{1}{2\sin^2(\pi/N)} \Leftrightarrow \mathcal{X}_0 = \{\pm(1,\ldots,1)\}, \ \mathcal{X}_1 = \{0\} \Leftrightarrow \text{Synchronization}$$

++++++++

Transition to synchronization

Symmetry group $G = D_N \times \mathbb{Z}_2 = \langle r, s, c \rangle$ $r(x) = (x^2, x^3, \dots, x^N, x^1)$ $s(x) = (x^N, x^{N-1}, \dots, x^1)$ c(x) = -x

 \mathcal{X} partitionned into group orbits $O_x = \{gx : g \in G\}$ Stabilizer: $G_x = \{g \in G : gx = x\}$ $\Rightarrow |O_x||G_x| = |G|$

Transition to synchronization

Symmetry group

$$G = D_N \times \mathbb{Z}_2 = \langle r, s, c \rangle$$

$$r(x) = (x^2, x^3, \dots, x^N, x^1)$$

$$s(x) = (x^N, x^{N-1}, \dots, x^1)$$

$$c(x) = -x$$

- \mathcal{X} partitionned into group orbits $O_x = \{gx : g \in G\}$ Stabilizer: $G_x = \{g \in G : gx = x\}$ $\Rightarrow |O_x||G_x| = |G|$
- Useful to study bifurcation diagram

Example: N = 4, $|\mathcal{X}| = 3^4$ for $\gamma = 0$

Transition to synchronization

Symmetry group

$$G = D_N \times \mathbb{Z}_2 = \langle r, s, c \rangle$$

$$r(x) = (x^2, x^3, \dots, x^N, x^1)$$

$$s(x) = (x^N, x^{N-1}, \dots, x^1)$$

$$c(x) = -x$$

- $\mathcal{X} \text{ partitionned into} \\ \text{group orbits } O_x = \{gx : g \in G\} \\ \text{Stabilizer: } G_x = \{g \in G : gx = x\} \\ \Rightarrow |O_x||G_x| = |G| \end{cases}$
- Useful to study bifurcation diagram

Example: N = 4, $|\mathcal{X}| = 3^4$ for $\gamma = 0$

Problem: no metastable hierarchy \Rightarrow Usual Eyring–Kramers law invalid

Limitations of the standard Eyring–Kramers law

▶ Question 1:

What happens when V is invariant under a group of symmetries? (no metastable hierarchy)

Limitations of the standard Eyring–Kramers law

Question 1:

What happens when V is invariant under a group of symmetries? (no metastable hierarchy)

▶ Question 2:

What happens when V has saddles with zero eigenvalues? (det $\nabla^2 V(z^*) = 0$ at bifurcations)

Limitations of the standard Eyring–Kramers law

Question 1:

What happens when V is invariant under a group of symmetries? (no metastable hierarchy)

Question 2:

What happens when V has saddles with zero eigenvalues? (det $\nabla^2 V(z^*) = 0$ at bifurcations)

Question 3:

What happens when $\gamma \sim N^2$ and $N \to \infty$ in example 1? One expects convergence to Allen–Cahn SPDE

$$\partial_t u(t,x) = \frac{\gamma}{N^2} \Delta u(t,x) + u(t,x) - u(t,x)^3 + \sqrt{2\varepsilon} \xi(t,x)$$

where ξ is space-time white noise

Is there an Eyring-Kramers law for such SPDEs?

Q1: Markovian jump processes with symmetries

Generator L: transition rates $L_{ij} = \frac{c_{ij}}{m_i} e^{-h_{ij}/\varepsilon}$, $c_{ij} = c_{ji}$ $\forall i, j \in \mathcal{X}_0$ Assumptions

- ▷ Reversibility: $m_i e^{-V_i/\varepsilon} L_{ij} = m_j e^{-V_j/\varepsilon} L_{ji}$ $\forall i, j \in \mathcal{X}_0$
- ▷ Symmetry: $L_{ij} = L_{g(i)g(j)}$ $\forall g \in G$, (G, *) a finite group i.e. $\pi(g)L = L\pi(g)$ where $\pi(g)_{ab} = 1_{\{g(a)=b\}}$ permutation matrix
- \triangleright Metastable order on the set of *G*-orbits $A_1 \prec \cdots \prec A_m$
- No accidental degeneracy

Q1: Markovian jump processes with symmetries

Generator *L*: transition rates $L_{ij} = \frac{c_{ij}}{m_i} e^{-h_{ij}/\varepsilon}$, $c_{ij} = c_{ji}$ $\forall i, j \in \mathcal{X}_0$ Assumptions

- ▷ Reversibility: $m_i e^{-V_i/\varepsilon} L_{ij} = m_j e^{-V_j/\varepsilon} L_{ji}$ $\forall i, j \in \mathcal{X}_0$
- ▷ Symmetry: $L_{ij} = L_{g(i)g(j)}$ $\forall g \in G$, (G, *) a finite group i.e. $\pi(g)L = L\pi(g)$ where $\pi(g)_{ab} = 1_{\{g(a)=b\}}$ permutation matrix
- \triangleright Metastable order on the set of *G*-orbits $A_1 \prec \cdots \prec A_m$
- No accidental degeneracy

Main observation: π is a representation: $\pi(g * h) = \pi(g)\pi(h) \forall g, h \in G$ Representation theory of finite groups: $\pi = \bigoplus_{p=0}^{r-1} \alpha^{(p)} \pi^{(p)}$ where $\pi^{(p)}$: irreducible representations of G

$$P^{(p)}L = LP^{(p)}$$
 $p = 0, ..., r - 1$

where $P^{(p)}$: projector on im $\pi^{(p)} \Rightarrow$ each subspace $P^{(p)}\mathbb{C}^n$ invariant for LEach restricted generator satisfies an asymmetric Eyring–Kramers law

Q1: Modified Eyring–Kramers law

Trivial representation: $\pi^{(0)}(g) = 1 \forall g \Rightarrow m \text{ ev } (m = \# \text{ orbits})$

Theorem [B, Dutercq, J Theor Proba 2015]

 $k \leq m$, initial distribution μ uniform on each $A_i, i \geq k$ $\tau_{k-1} =$ first-hitting time of $A_1 \cup A_2 \cup \cdots \cup A_{k-1}$ $G_a := \{g : g(a) = a\}$

$$\mathbb{E}^{\mu}[\tau_{k-1}] = \frac{|\mathcal{G}_{a_i} \cap \mathcal{G}_{a_j}|}{|\mathcal{G}_{a_k}|} \frac{m_{a_k}}{c_{a_i a_j}} e^{H_k/\varepsilon} \left[1 + \mathcal{O}(e^{-\theta/\varepsilon})\right] = \frac{1 + \mathcal{O}(e^{-\theta/\varepsilon})}{\lambda_k^{(0)}}$$

where $a_k \in A_k$, (a_i, a_j) relevant saddle for $H_k := H(A_k, A_1 \cup \cdots \cup A_{k-1})$

Q1: Modified Eyring–Kramers law

Trivial representation: $\pi^{(0)}(g) = 1 \forall g \Rightarrow m \text{ ev } (m = \# \text{ orbits})$

Theorem [B, Dutercq, J Theor Proba 2015]

 $k \leq m$, initial distribution μ uniform on each $A_i, i \geq k$ $\tau_{k-1} = \text{first-hitting time of } A_1 \cup A_2 \cup \cdots \cup A_{k-1} \qquad G_a := \{g : g(a) = a\}$

$$\mathbb{E}^{\mu}[\tau_{k-1}] = \frac{|G_{a_i} \cap G_{a_j}|}{|G_{a_k}|} \frac{m_{a_k}}{c_{a_i a_j}} e^{H_k/\varepsilon} \left[1 + \mathcal{O}(e^{-\theta/\varepsilon})\right] = \frac{1 + \mathcal{O}(e^{-\theta/\varepsilon})}{\lambda_k^{(0)}}$$

where $a_k \in A_k$, (a_i, a_j) relevant saddle for $H_k := H(A_k, A_1 \cup \cdots \cup A_{k-1})$

Other representations: Similar result for process on set of active orbits \Rightarrow clustering of eigenvalues: $\lambda_k^{(p)} = C_k^{(p)} e^{-H_k/\varepsilon}$

$$\xrightarrow{\mathcal{O}(\varepsilon)}_{H_3} \xrightarrow{\mathcal{O}(\varepsilon)}_{H_2} \xrightarrow{\mathcal{O}(\varepsilon)}_{H_1} \rightarrow -\varepsilon \log(-\lambda)$$

Q1: Modified Eyring–Kramers law

Trivial representation: $\pi^{(0)}(g) = 1 \forall g \Rightarrow m \text{ ev } (m = \# \text{ orbits})$

Theorem [B, Dutercq, J Theor Proba 2015]

 $k \leq m$, initial distribution μ uniform on each $A_i, i \geq k$ $\tau_{k-1} =$ first-hitting time of $A_1 \cup A_2 \cup \cdots \cup A_{k-1}$ $G_a := \{g : g(a) = a\}$

$$\mathbb{E}^{\mu}[\tau_{k-1}] = \frac{|G_{a_i} \cap G_{a_j}|}{|G_{a_k}|} \frac{m_{a_k}}{c_{a_i a_j}} e^{H_k/\varepsilon} \left[1 + \mathcal{O}(e^{-\theta/\varepsilon})\right] = \frac{1 + \mathcal{O}(e^{-\theta/\varepsilon})}{\lambda_k^{(0)}}$$

where $a_k \in A_k$, (a_i, a_j) relevant saddle for $H_k := H(A_k, A_1 \cup \cdots \cup A_{k-1})$

Other representations: Similar result for process on set of active orbits \Rightarrow clustering of eigenvalues: $\lambda_k^{(p)} = C_k^{(p)} e^{-H_k/\varepsilon}$

$$\xrightarrow{\mathcal{O}(\varepsilon)}_{H_3} \xrightarrow{\mathcal{O}(\varepsilon)}_{H_2} \xrightarrow{\mathcal{O}(\varepsilon)}_{H_1} \rightarrow -\varepsilon \log(-\lambda)$$

Case of diffusions: similar results [S. Dutercq, PhD thesis, 2015]

Q2: Eyring–Kramers law for nonquadratic saddles

Facts from potential theory: $A, B \subset \mathbb{R}^d$, $\tau_A = \inf\{t > 0 \colon x_t \in A\}$ Committor function: $h_{A,B}(x) = \mathbb{P}^x\{\tau_A < \tau_B\}$

Capacity:
$$\operatorname{cap}(A, B) = \int_{(A \cup B)^c} \|\nabla h_{A,B}(x)\|^2 e^{-V(x)/\varepsilon} dx$$

$$\frac{\int_{A^c} h_{B,A}(y) \,\mathrm{e}^{-V(y)/\varepsilon} \,\mathrm{d}y}{\mathrm{cap}(B,A)} = \mathbb{E}^{\mu}[\tau_A] \stackrel{B = \mathcal{B}_{\varepsilon}(x))}{\simeq} \mathbb{E}^{\times}[\tau_A] \qquad (\mathrm{supp} \, \mu \subset \partial B)$$

Q2: Eyring–Kramers law for nonquadratic saddles

Facts from potential theory: $A, B \subset \mathbb{R}^d$, $\tau_A = \inf\{t > 0 \colon x_t \in A\}$ Committor function: $h_{A,B}(x) = \mathbb{P}^x\{\tau_A < \tau_B\}$

Capacity:
$$\operatorname{cap}(A, B) = \int_{(A \cup B)^c} \|\nabla h_{A,B}(x)\|^2 e^{-V(x)/\varepsilon} dx$$

$$\frac{\int_{A^c} h_{B,A}(y) \,\mathrm{e}^{-V(y)/\varepsilon} \,\mathrm{d}y}{\mathrm{cap}(B,A)} = \mathbb{E}^{\mu}[\tau_A] \overset{B = \mathcal{B}_{\varepsilon}(x))}{\simeq} \mathbb{E}^{x}[\tau_A] \qquad (\mathrm{supp} \, \mu \subset \partial B)$$

Theorem: [B & Gentz, MPRF 2010]

▷ Saddle in 0, separating A and B ▷ $V(x) = -u_1(x_1) + u_2(x_2, ..., x_q) + \frac{1}{2} \sum_{j=q+1}^d \lambda_j x_j^2 + \cdots, \quad \lambda_j > 0$ $\operatorname{cap}(A, B) = \varepsilon \frac{\int e^{-u_2(x_2, ..., x_q)/\varepsilon} dx_2 \dots dx_q}{\int e^{-u_1(x_1)/\varepsilon} dx_1} \prod_{j=q+1}^d \sqrt{\frac{2\pi\varepsilon}{\lambda_j}} \left[1 + \mathcal{O}((\varepsilon |\log \varepsilon|)^{\alpha})\right]$

with α related to growth of u_1 and u_2

for $\lambda_2 > 0$ where $\Psi_+(\alpha) = \sqrt{\frac{\alpha(1+\alpha)}{8\pi}} e^{\alpha^2/16} K_{1/4}(\frac{\alpha^2}{16})$ $\lim_{\alpha \to +\infty} \Psi_+(\alpha) = 1$ $\lim_{\alpha \to 0} \Psi_+(\alpha) = \frac{\Gamma(1/4)}{2^{5/4}\pi^{1/2}} \simeq 0.860$ Similar expression for $\lambda_2 < 0$

with $\Psi_{-}(\alpha)$ involving $I_{\pm 1/4}$

Metastability in systems of coupled multistable SDEs

June 16, 2015

$$\partial_t u_t(x) = \partial_{xx} u_t(x) + f(u_t(x)) + \sqrt{2\varepsilon} \xi(t, x)$$
 e.g. $f(u) = u - u^3$

 $x \in [0, L]$ with periodic or Neumann b.c.

$$u_t(x) = \frac{1}{\sqrt{L}} \sum_{k \in \mathbb{Z}} z_k(t) e^{i\pi kx/L} \quad \Rightarrow \quad dz_t = -\nabla V(z_t) dt + \sqrt{2\varepsilon} dW_t$$
$$V = \int_0^L \left[\frac{1}{2} u'^2 - \frac{1}{2} u^2 + \frac{1}{4} u^4 \right] dx = \frac{1}{2} \sum_{k \in \mathbb{Z}} \lambda_k |z_k|^2 + \frac{1}{4L} \sum_{\sum k_i = 0} z_{k_1} z_{k_2} z_{k_3} z_{k_4}$$

$$\partial_t u_t(x) = \partial_{xx} u_t(x) + f(u_t(x)) + \sqrt{2\varepsilon} \xi(t, x)$$
 e.g. $f(u) = u - u^3$

 $x \in [0, L]$ with periodic or Neumann b.c.

$$\begin{aligned} u_t(x) &= \frac{1}{\sqrt{L}} \sum_{k \in \mathbb{Z}} z_k(t) e^{i\pi kx/L} \quad \Rightarrow \quad \mathrm{d}z_t = -\nabla V(z_t) \,\mathrm{d}t + \sqrt{2\varepsilon} \,\mathrm{d}W_t \\ V &= \int_0^L \left[\frac{1}{2} u'^2 - \frac{1}{2} u^2 + \frac{1}{4} u^4 \right] \mathrm{d}x = \frac{1}{2} \sum_{k \in \mathbb{Z}} \lambda_k |z_k|^2 + \frac{1}{4L} \sum_{\sum k_i = 0} z_{k_1} z_{k_2} z_{k_3} z_{k_4} \\ \text{Initial cond } u_{\mathrm{in}} \simeq -1. \text{ Target } u_+ \equiv 1, \ \tau_+ = \inf\{t > 0: \|u_t - u_+\|_\infty\} < \rho \\ \text{Transition state: } (\beta = 1 \text{ for Neumann b.c. } \beta = 2 \text{ for periodic b.c.}) \end{aligned}$$

$$u_{\rm ts}(x) = \begin{cases} u_0(x) \equiv 0 & \text{if } L \leqslant \beta \pi \\ u_1(x) \ \beta \text{-kink stationary sol.} & \text{if } L > \beta \pi \end{cases} \quad \text{with ev } \lambda_k = (\frac{\beta k \pi}{L})^2 - 1$$

Metastability in systems of coupled multistable SDEs

$$\partial_t u_t(x) = \partial_{xx} u_t(x) + f(u_t(x)) + \sqrt{2\varepsilon} \xi(t, x)$$
 e.g. $f(u) = u - u^3$

 $x \in [0, L]$ with periodic or Neumann b.c.

$$\begin{aligned} u_t(x) &= \frac{1}{\sqrt{L}} \sum_{k \in \mathbb{Z}} z_k(t) e^{i\pi kx/L} \quad \Rightarrow \quad \mathrm{d}z_t = -\nabla V(z_t) \,\mathrm{d}t + \sqrt{2\varepsilon} \,\mathrm{d}W_t \\ V &= \int_0^L \left[\frac{1}{2} u'^2 - \frac{1}{2} u^2 + \frac{1}{4} u^4 \right] \,\mathrm{d}x = \frac{1}{2} \sum_{k \in \mathbb{Z}} \lambda_k |z_k|^2 + \frac{1}{4L} \sum_{\sum k_i = 0} z_{k_1} z_{k_2} z_{k_3} z_{k_4} \\ \text{Initial cond } u_{\mathrm{in}} \simeq -1. \text{ Target } u_+ \equiv 1, \ \tau_+ = \inf\{t > 0 \colon \|u_t - u_+\|_\infty\} < \rho \\ \text{Transition state: } (\beta = 1 \text{ for Neumann b.c. } \beta = 2 \text{ for periodic b.c.}) \end{aligned}$$

$$u_{\rm ts}(x) = \begin{cases} u_0(x) \equiv 0 & \text{if } L \leq \beta \pi \\ u_1(x) \ \beta \text{-kink stationary sol.} & \text{if } L > \beta \pi \end{cases} \quad \text{with ev } \lambda_k = (\frac{\beta k \pi}{L})^2 - 1$$

[Faris & Jona-Lasinio 82]: LDP $\Rightarrow \mathbb{E}^{u_{in}}[\tau_+] \simeq e^{(V[u_{ts}] - V[u_-])/\varepsilon}$ [Maier & Stein 01]: formal computation; for Neumann b.c. $\Rightarrow \mathbb{E}^{u_{in}}[\tau_+] \simeq 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k}} e^{(V[u_{ts}] - V[u_-])/\varepsilon} \qquad (\nu_k = \text{ev at } u_-)$

Metastability in systems of coupled multistable SDEs

Theorem: [B & Gentz, Elec J Proba 2013]

Neumann b.c:

▷ If $L < \pi - c$, then

$$\mathbb{E}^{u_{\rm in}}[\tau_+] = 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0}} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} \, \operatorname{e}^{(V[u_{\rm ts}] - V[u_-])/\varepsilon} \left[1 + \mathcal{O}(\varepsilon^{1/2} |\log \varepsilon|^{3/2})\right]$$

▷ If $L > \pi + c$, then same formula with extra factor $\frac{1}{2}$ (since 2 saddles)

Theorem: [B & Gentz, Elec J Proba 2013]

Neumann b.c:

▷ If $L < \pi - c$, then

$$\mathbb{E}^{u_{\rm in}}[\tau_+] = 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0}} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} \, \operatorname{e}^{(V[u_{\rm ts}] - V[u_-])/\varepsilon} \left[1 + \mathcal{O}(\varepsilon^{1/2} |\log \varepsilon|^{3/2})\right]$$

▷ If $L > \pi + c$, then same formula with extra factor $\frac{1}{2}$ (since 2 saddles) ▷ If $\pi - c \leq L \leq \pi$, then

$$\mathbb{E}^{u_{\rm in}}[\tau_+] = 2\pi \sqrt{\frac{\lambda_1 + \sqrt{3\varepsilon/2L}}{|\lambda_0|\nu_0\nu_1}} \prod_{k=2}^{\infty} \frac{\lambda_k}{\nu_k} \frac{{\rm e}^{(V[u_{\rm ts}] - V[u_-])/\varepsilon}}{\Psi_+(\lambda_1/\sqrt{3\varepsilon/2L})} [1 + R(\varepsilon)]$$

with Ψ_+ as before

 \triangleright If $\pi \leqslant L \leqslant \pi + c$, similar formula with Ψ_-

Periodic b.c: Similar expressions with different Ψ_{\pm} and extra factor $arepsilon^{1/2}$

Concluding remarks

Irreversible systems:

Cycling: ∂D periodic orbit, WKB doesn't work [Day '92, B & Gentz '14] Transition-path theory [Vanden-Eijnden & E '06, Lu & Nolen '15]

▷ SPDEs in higher space dim: Regularity structures [Hairer & Weber '14]

References

- N. B., Bastien Fernandez and Barbara Gentz, Metastability in interacting nonlinear stochastic differential equations I: From weak coupling to synchronisation
 & II: Large-N behaviour, Nonlinearity 20, 2551–2581; 2583–2614 (2007)
- ▷ N.B. and Barbara Gentz, Anomalous behavior of the Kramers rate at bifurcations in classical field theories, J. Phys. A: Math. Theor. 42, 052001 (2009)
- _____, The Eyring-Kramers law for potentials with nonquadratic saddles, Markov Processes Relat. Fields 16, 549–598 (2010)
- _____, Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers' law and beyond, Electronic J. Probability 18, (24):1–58 (2013)
- On the noise-induced passage through an unstable periodic orbit II: General case, SIAM J. Math. Anal. 46, (1):310–352 (2014)
- N.B. and Sébastien Dutercq, The Eyring–Kramers law for Markovian jump processes with symmetries, J. Theoretical Probability, Online First (2015)