SLOFADYBIO ANR kickoff meeting

A toolbox to quantify effects of noise on slow-fast dynamical systems

Nils Berglund

MAPMO, Université d'Orléans

Institut des Systèmes Complexes, Paris, March 20, 2015

With Barbara Gentz (Bielefeld), Christian Kuehn (Vienna) and Damien Landon (Dijon)

Slow-fast dynamical systems

Fast variables: $x \in \mathbb{R}^n$ (e.g. membrane potential, prey, atmosphere) Slow variables: $y \in \mathbb{R}^m$ (e.g. gating variables, predator, ocean)

$$\dot{x} = f(x,y) \\
\dot{y} = \varepsilon g(x,y) \qquad \qquad \dot{\varepsilon}\dot{x} = f(x,y) \\
\dot{y} = g(x,y) \qquad \qquad \dot{y} = g(x,y) \\
\downarrow \varepsilon \to 0 \qquad \qquad \downarrow \varepsilon \to 0 \\
\dot{x} = f(x,y) \\
\dot{y} = 0 \qquad \qquad \Leftrightarrow \qquad 0 = f(x,y) \\
\dot{y} = g(x,y)$$

Fast system

Slow system

- ▶ Averaging [Krylov–Bogoliubov '37, ...], Lyapunov fcts [Tihonov '52, ...]
- ▷ Nonstandard analysis, asymptotic/WKB expansions, Gevrey series. . .
- ▶ Geometric singular perturbation theory [Fenichel 1979, ...]
- ▶ Normal forms, Newton's polygon, blow-up, topological methods, etc. . .

Slow-fast dynamical systems perturbed by noise

$$dx_t = \frac{1}{\varepsilon} f(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) dW_t \qquad F \in \mathbb{R}^{n \times k}$$

$$dy_t = g(x_t, y_t) dt + \sigma' G(x_t, y_t) dW_t \qquad G \in \mathbb{R}^{m \times k}$$

Slow-fast dynamical systems perturbed by noise

$$dx_t = \frac{1}{\varepsilon} f(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) dW_t \qquad F \in \mathbb{R}^{n \times k}$$

$$dy_t = g(x_t, y_t) dt + \sigma' G(x_t, y_t) dW_t \qquad G \in \mathbb{R}^{m \times k}$$

- Near stable normally hyperbolic slow manifold
- Near unstable normally hyperbolic slow manifold
- Near fold points and other bifurcation points

Deterministic Fenichel theory

$$arepsilon \dot{x} = f(x,y)$$
 $x \in \mathbb{R}^n$, fast variables $\dot{y} = g(x,y)$ $y \in \mathbb{R}^m$, slow variables

- ▷ Critical manifold: $f(x^*(y), y) = 0$ (for all y in some domain)
- ▶ Stability: Eigenvalues of $A(y) = \partial_x f(x^*(y), y)$ have negative real parts

Theorem [Tihonov '52, Fenichel '79]

- \exists slow manifold $x = \bar{x}(y, \varepsilon)$ s.t.
 - $\triangleright \bar{x}(y,\varepsilon)$ is invariant
 - $ightharpoonup \bar{x}(y,\varepsilon)$ attracts nearby solutions
 - $\triangleright \bar{x}(y,\varepsilon) = x^*(y) + \mathcal{O}(\varepsilon)$

Stochastic Fenichel theory

$$\mathrm{d}x_t = \frac{1}{\varepsilon} f(x_t, y_t) \; \mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) \; \mathrm{d}W_t \qquad \qquad \text{(fast variables } \in \mathbb{R}^n\text{)}$$

$$\mathrm{d}y_t = g(x_t, y_t) \; \mathrm{d}t + \sigma' G(x_t, y_t) \; \mathrm{d}W_t \qquad \qquad \text{(slow variables } \in \mathbb{R}^m\text{)}$$

 $\mathcal{B}(h)$: confidence set defined by covariance of linearised equation for $x - \bar{x}(y, \varepsilon)$

Stochastic Fenichel theory

$$\mathrm{d} x_t = \frac{1}{\varepsilon} f(x_t, y_t) \, \mathrm{d} t + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) \, \mathrm{d} W_t$$
 (fast variables $\in \mathbb{R}^n$)
 $\mathrm{d} y_t = g(x_t, y_t) \, \mathrm{d} t + \sigma' G(x_t, y_t) \, \mathrm{d} W_t$ (slow variables $\in \mathbb{R}^m$)

 $\mathcal{B}(h)$: confidence set defined by covariance of linearised equation for $x - \bar{x}(y, \varepsilon)$

$$\bar{A}(y) := \partial_x f(\bar{x}(y,\varepsilon),y)$$

 \bar{X} : covariance matrix of linearisation, solution of deterministic slow-fast ODE

$$\varepsilon \dot{\bar{X}} = \bar{A}(y)\bar{X} + \bar{X}\bar{A}(y)^{\mathrm{T}} + F(\bar{x}(y,\varepsilon),y)F(\bar{x}(y,\varepsilon),y)^{\mathrm{T}}$$
$$\dot{y} = g(\bar{x}(y,\varepsilon),y)$$

$$\mathcal{B}(h) := \{(x,y) : \langle \lceil x - \bar{x}(y,\varepsilon) \rceil, \bar{X}(y)^{-1} \lceil x - \bar{x}(y,\varepsilon) \rceil \rangle < h^2 \}$$

Stochastic Fenichel theory

$$dx_t = \frac{1}{\varepsilon} f(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} F(x_t, y_t) dW_t \qquad \text{(fast variables } \in \mathbb{R}^n\text{)}$$

$$dy_t = g(x_t, y_t) dt + \sigma' G(x_t, y_t) dW_t \qquad \text{(slow variables } \in \mathbb{R}^m\text{)}$$

 $\mathcal{B}(h)$: confidence set defined by covariance of linearised equation for $x - \bar{x}(y, \varepsilon)$

$$\bar{A}(y) := \partial_x f(\bar{x}(y,\varepsilon),y)$$

Theorem [B & Gentz, J. Diff. Equ. 2004] Normally hyperbolic stable case:

$$C_-(t,\varepsilon)\,\mathrm{e}^{-\kappa h^2/2\sigma^2}\leqslant \mathbb{P}ig\{ \mathrm{leaving}\,\,\mathcal{B}(h)\,\,\mathrm{before}\,\,\mathrm{time}\,\,t ig\}\leqslant C_+(t,\varepsilon)\,\mathrm{e}^{-\kappa h^2/2\sigma^2}$$

where $\kappa = 1 - \mathcal{O}(h) - \mathcal{O}(\varepsilon)$

$$dx_t = \frac{1}{\varepsilon} \left[-t - x_t^2 + \dots \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Equil. curve: $x^*(t) \simeq \sqrt{-t}$

Slow sol.: $\bar{x}(t) = x^*(t) + \mathcal{O}(\min\{\frac{\varepsilon}{|t|}, \varepsilon^{1/3}\})$

$$ar{a}(t) = \partial_x f(ar{x}(t), arepsilon) symp egin{cases} -\sqrt{|t|} & t \leqslant -carepsilon^{2/3} \ -arepsilon^{1/3} & |t| \leqslant carepsilon^{2/3} \end{cases}$$

Confidence strip $\mathcal{B}(h)$: width $\asymp h/\sqrt{|\bar{a}(t)|}$

$$dx_t = \frac{1}{\varepsilon} \left[-t - x_t^2 + \dots \right] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Equil. curve: $x^*(t) \simeq \sqrt{-t}$

Slow sol.: $\bar{x}(t) = x^*(t) + \mathcal{O}(\min\{\frac{\varepsilon}{|t|}, \varepsilon^{1/3}\})$

$$ar{a}(t) = \partial_{\mathsf{x}} f(ar{x}(t), \varepsilon) symp \begin{cases} -\sqrt{|t|} & t \leqslant -c \varepsilon^{2/3} \\ -\varepsilon^{1/3} & |t| \leqslant c \varepsilon^{2/3} \end{cases}$$

Confidence strip $\mathcal{B}(h)$: width $\approx h/\sqrt{|\bar{a}(t)|}$

Theorem [B & Gentz, Nonlinearity 2002]

$$\mathbb{P}\{\text{leaving }\mathcal{B}(h) \text{ before time } t\} \leqslant C(t,\varepsilon) e^{-\kappa h^2/2\sigma^2}$$

$$\text{where } \kappa = 1 - \mathcal{O}(\sup_{s \leqslant t} h |\bar{a}(s)|^{-3/2}) - \mathcal{O}(\varepsilon) \quad \Rightarrow \text{requires } h < h_0 \inf_{s \leqslant t} |\bar{a}(s)|^{3/2}$$

$$ho$$
 $\sigma < \sigma_{\rm c} = arepsilon^{1/2}$: result applies \forall t , $\mathbb{P}\{{\sf leaving}~\mathcal{B}(h)\} = \mathcal{O}({\sf e}^{-\kappa\sigma_{\rm c}^2/\sigma^2})$

$$\sigma > \sigma_c = \varepsilon^{1/2}$$
: result applies up to $t \approx -\sigma^{4/3}$

What happens for $\sigma > \sigma_{\rm c}$ and $t > -\sigma^{4/3}$?

General principle: partition $t_0 = s_0 < s_1 < s_2 < \cdots < s_n = t$ of $[t_0, t]$

Lemma Let $P_k = \mathbb{P}\{\text{making no transition during } (s_{k-1}, s_k]\}$. Then

$$\mathbb{P}\{\text{making no transition during }[t_0,t]\}\leqslant\prod_{k=1}^{\infty}P_k$$

Choose partition s.t. each $P_k \leqslant q < 1 \Rightarrow \mathbb{P}\{\text{no transition}\} \leqslant e^{-n \log q}$

What happens for $\sigma > \sigma_c$ and $t > -\sigma^{4/3}$?

General principle: partition $t_0 = s_0 < s_1 < s_2 < \cdots < s_n = t$ of $[t_0, t]$

Lemma Let $P_k = \mathbb{P}\{\text{making no transition during } (s_{k-1}, s_k]\}$. Then

$$\mathbb{P}\{\mathsf{making\ no\ transition\ during}\ [t_0,t]\}\leqslant\prod_{k=1}^{n}P_k$$

Choose partition s.t. each $P_k \leqslant q < 1 \Rightarrow \mathbb{P}\{\text{no transition}\} \leqslant e^{-n \log q}$

Fold bif.: Define partition such that

$$\int_{s_{k-1}}^{s_k} |\bar{a}(s)| \, \mathrm{d} s = c\varepsilon |\log \sigma| \quad \Rightarrow \quad P_k \leqslant \frac{2}{3}$$

Proof uses comparison with linearised equations

Thm [B & Gentz, Nonlinearity 2002]

Transition probability $\geqslant 1 - \mathrm{e}^{-\kappa\sigma^2/(\varepsilon|\log\sigma|)}$

What happens for $\sigma > \sigma_c$ and $t > -\sigma^{4/3}$?

General principle: partition $t_0 = s_0 < s_1 < s_2 < \cdots < s_n = t$ of $[t_0, t]$

Lemma Let $P_k = \mathbb{P}\{\text{making no transition during } (s_{k-1}, s_k]\}$. Then

$$\mathbb{P}ig\{ \mathsf{making} \ \mathsf{no} \ \mathsf{transition} \ \mathsf{during} \ [t_0,t] ig\} \leqslant \prod_{k=1}^{k} P_k$$

Choose partition s.t. each $P_k \leqslant q < 1 \Rightarrow \mathbb{P}\{\text{no transition}\} \leqslant e^{-n \log q}$

Avoided transcritical bif:
$$\varepsilon \dot{x} = t^2 + \delta - x^2$$

$$\int_{s_{k-1}}^{s_k} |\bar{a}(s)| \, \mathrm{d} s = c\varepsilon |\log \sigma| \quad \Rightarrow \quad P_k \leqslant \frac{2}{3}$$

Proof uses comparison with linearised equations

Thm [B & Gentz, Ann App Proba 2002]

Transition probability $\geqslant 1 - \mathrm{e}^{-\kappa\sigma^{4/3}/(\varepsilon|\log\sigma|)}$

Fold for one fast and two slow variables

Proposition [B, Gentz & Kuehn, JDDE 2015]: For $h = \mathcal{O}(\varepsilon^{2/3})$,

$$\begin{split} \mathbb{P} \Big\{ \| (y_{\tau_{\Sigma_5}}, z_{\tau_{\Sigma_5}}) - (y^*, z^*) \| > h \Big\} \\ & \leq C |\log \varepsilon| \left(\exp \Big\{ -\frac{\kappa h^2}{\sigma^2 \varepsilon + (\sigma')^2 \varepsilon^{1/3}} \Big\} + \exp \Big\{ -\frac{\kappa \varepsilon}{\sigma^2 + (\sigma')^2 \varepsilon} \Big\} \right) \end{split}$$

Pitchfork bifurcation

$$dx_t = \frac{1}{\varepsilon} [tx_t - x_t^3 + \dots] dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Deterministic: bifurcation delay $x_t \simeq x_0 e^{(t^2 - t_0^2)/2\varepsilon}$

Theorem [B & Gentz, PTRF 2002]

- Paths concentrated in $\mathcal{B}(h)$ up to time $\sqrt{\varepsilon}$ Typical spreading $\sigma \varepsilon^{-1/4}$
- \triangleright Paths likely to leave \mathcal{D} at time $\sqrt{\varepsilon |\log \sigma|}$
- \triangleright Paths likely to stay in $\mathcal{A}^{\tau}(h)$ after leaving \mathcal{D}

Stochastic FitzHugh-Nagumo equation

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$

$$dy_t = [a - x_t - by_t] dt + \sigma_2 dW_t^{(2)}$$

 $\triangleright W_t^{(1)}, W_t^{(2)}$: independent Wiener processes (white noise)

$$\quad \triangleright \ 0 < \sigma_1, \sigma_2 \ll 1, \ \sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$$

FitzHugh-Nagumo equation: Summary of results

$$\sigma_1 = \sigma_2 = \sigma$$
:
 $\mathbb{P}\{\mathsf{escape}\} \simeq \Phi\left(-\frac{(\pi\varepsilon)^{1/4}(\delta - \sigma^2/\varepsilon)}{\sigma}\right)$

see also

[Muratov & Vanden Eijnden '08]

Regime I: rare isolated spikes

Theorem [B & Landon, Nonlin. 12]: $\delta \ll \varepsilon^{1/2}$

 $\mathbb{P}\{\mathsf{escape}\}^{-1} \simeq \mathbb{E}[\# \; \mathsf{small} \; \mathsf{oscil}] \simeq \mathsf{e}^{\kappa(arepsilon^{1/4}\delta)^2/\sigma^2}$

Regime II: clusters of spikes

small oscillations: asympt geometric

 $\sigma = (\delta \varepsilon)^{1/2}$: Geom(1/2)

Regime III: repeated spikes

$$\mathbb{P}\{\bar{N}=1\}\simeq 1$$

Interspike interval \simeq constant

Folded-node singularity in dim 3: The Koper model

$$\varepsilon \, dx_t = [y_t - x_t^3 + 3x_t] \, dt \qquad + \sqrt{\varepsilon} \sigma F(x_t, y_t, z_t) \, dW_t$$

$$dy_t = [kx_t - 2(y_t + \lambda) + z_t] \, dt + \sigma' G_1(x_t, y_t, z_t) \, dW_t$$

$$dz_t = [\rho(\lambda + y_t - z_t)] \, dt \qquad + \sigma' G_2(x_t, y_t, z_t) \, dW_t$$

Folded-node singularity at P^* induces mixed-mode oscillations [Benoît, Lobry '82, Szmolyan, Wechselberger '01, ...]

Poincaré map $\Pi: \Sigma \to \Sigma$ is almost 1d due to contraction in x-direction

Size of fluctuations

 $\mu\ll 1$: eigenvalue ratio at folded node

- ···	Δ.	Δ.	Δ.
Transition	Δx	Δy	Δz
$\Sigma_2 o \Sigma_3$	$\sigma + \sigma'$		$\sigma\sqrt{\varepsilon} + \sigma'$
$\Sigma_3 o \Sigma_4$	$\sigma + \sigma'$		$\sigma\sqrt{\varepsilon} + \sigma'$
$\Sigma_4 o \Sigma_4'$	$\frac{\sigma}{\varepsilon^{1/6}} + \frac{\sigma'}{\varepsilon^{1/3}}$		$\sigma \sqrt{\varepsilon \log \varepsilon } + \sigma'$
$\Sigma_4' o \Sigma_5$		$\sigma\sqrt{\varepsilon} + \sigma'\varepsilon^{1/6}$	$\sigma\sqrt{\varepsilon} + \sigma'\varepsilon^{1/6}$
$\Sigma_5 ightarrow \Sigma_6$	$\sigma + \sigma'$		$\sigma\sqrt{\varepsilon} + \sigma'$
$\Sigma_6 ightarrow \Sigma_1$	$\sigma + \sigma'$		$\sigma\sqrt{\varepsilon} + \sigma'$
$\Sigma_1 o \Sigma_1'$		$(\sigma + \sigma')\varepsilon^{1/4}$	σ'
$\Sigma_1' o \Sigma_1''$ if $z = \mathcal{O}(\sqrt{\mu})$		$(\sigma+\sigma')(arepsilon/\mu)^{1/4}$	$\sigma'(arepsilon/\mu)^{1/4}$
$\Sigma_1^{\prime\prime} o \Sigma_2$		$(\sigma + \sigma')\varepsilon^{1/4}$	$\sigma' \varepsilon^{1/4}$

Main results

[B, Gentz, Kuehn, JDE 2012 & JDDE 2015]

Theorem 1: canard spacing

At z=0, $k^{\rm th}$ canard lies at distance $\sqrt{\varepsilon}\,{\rm e}^{-c(2k+1)^2\mu}$ from primary canard

Main results

[B, Gentz, Kuehn, JDE 2012 & JDDE 2015]

Theorem 1: canard spacing

At z=0, k^{th} canard lies at distance $\sqrt{\varepsilon} \, \mathrm{e}^{-c(2k+1)^2 \mu}$ from primary canard

Theorem 2: size of fluctuations

$$(\sigma + \sigma')(\varepsilon/\mu)^{1/4}$$
 up to $z = \sqrt{\varepsilon\mu}$
 $(\sigma + \sigma')(\varepsilon/\mu)^{1/4} e^{z^2/(\varepsilon\mu)}$ for $z \geqslant \sqrt{\varepsilon\mu}$

Theorem 3: early escape

 $P_0 \in \Sigma_1$ in sector with $k > 1/\sqrt{\mu} \Rightarrow$ first hitting of Σ_2 at P_2 s.t.

$$\mathbb{P}^{P_0}\{z_2 \geqslant z\} \leqslant C|\log(\sigma + \sigma')|^{\gamma} e^{-\kappa z^2/(\varepsilon\mu|\log(\sigma + \sigma')|)}$$

Main results

[B, Gentz, Kuehn, JDE 2012 & JDDE 2015]

Theorem 1: canard spacing

At z=0, k^{th} canard lies at distance $\sqrt{\varepsilon} \, \mathrm{e}^{-c(2k+1)^2 \mu}$ from primary canard

Theorem 2: size of fluctuations

$$(\sigma + \sigma')(\varepsilon/\mu)^{1/4}$$
 up to $z = \sqrt{\varepsilon\mu}$
 $(\sigma + \sigma')(\varepsilon/\mu)^{1/4} e^{z^2/(\varepsilon\mu)}$ for $z \geqslant \sqrt{\varepsilon\mu}$

Theorem 3: early escape

 $P_0 \in \Sigma_1$ in sector with $k > 1/\sqrt{\mu} \Rightarrow$ first hitting of Σ_2 at P_2 s.t.

$$\mathbb{P}^{P_0}\{z_2 \geqslant z\} \leqslant C|\log(\sigma + \sigma')|^{\gamma} e^{-\kappa z^2/(\varepsilon\mu|\log(\sigma + \sigma')|)}$$

- ho Saturation effect occurs at $k_{\rm c} \simeq \sqrt{|\log(\sigma + \sigma')|/\mu}$
- ▶ For $k > k_c$, behaviour indep. of k and $\Delta z \leq \mathcal{O}(\sqrt{\varepsilon \mu |\log(\sigma + \sigma')|})$

Poincaré map $z_n \mapsto z_{n+1}$

$$k = -10, \lambda = -7.6, \rho = 0.7, \varepsilon = 0.01, \sigma = \sigma' = 2 \cdot 10^{-3}$$

Summary/Outlook

Noise can cause threshold phenomena

- Below threshold small perturbation of deterministic dynamics
- Above threshold large transitions can occur

Well understood:

- ▶ Normally hyperbolic case
- ▶ Codimension-1 bifurcations (fold, (avoided) transcritical, pitchfork, Hopf)
- ▶ Higher codimension: case studies (folded node, cf. Kuehn)

In progress: theory of random Poincaré maps

Essentially still open:

- Other types of noise (except Ornstein–Uhlenbeck)
- ▶ Equations with delay
- ▶ Infinite dimensions, in particular with continuous spectrum

Further reading

General slow-fast systems

N. B. and Barbara Gentz, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191, 1–54 (2003)

______, Noise-induced phenomena in slow-fast dynamical systems, A sample-paths approach, Springer, Probability and its Applications (2006)

Applications to neuroscience

______, Stochastic dynamic bifurcations and excitability, in C. Laing and G. Lord, (Eds.), Stochastic methods in Neuroscience, p. 65-93, Oxford University Press (2009)

- N. B. and Damien Landon, *Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model*, Nonlinearity **25**, 2303–2335 (2012)
- N. B., Barbara Gentz and Christian Kuehn, *Hunting French Ducks in a Noisy Environment*, J. Differential Equations **252**, 4786–4841 (2012)
- _____, From random Poincaré maps to stochastic mixed-mode-oscillation patterns, J. Dynam. Differential Equations 27, 83–136 (2015)