SPA 2017

Contributed Session: Interacting particle systems

Metastability for interacting particles in double-well potentials and Allen–Cahn SPDEs

Nils Berglund

MAPMO, Université d'Orléans, France

Москва / Moscow, July 28 2017

Joint works with Giacomo Di Gesù (Vienna), Bastien Fernandez (Paris), Barbara Gentz (Bielefeld) and Hendrik Weber (Warwick)

Nils Berglund

nils.berglund@univ-orleans.fr

http://www.univ-orleans.fr/mapmo/membres/berglund/

Examples of particle systems

Example 1 [B, Fernandez, Gentz, Nonlinearity 2007]

- ▷ *N* particles on a circle $\mathbb{Z}/N\mathbb{Z}$
- Bistable local dynamics
- ▷ Ferromagnetic nearest neighbour coupling
- Independent noise on each site

$$dx_t^{i} = [x_t^{i} - (x_t^{i})^3] dt + \frac{\gamma}{2} [x_t^{i+1} - 2x_t^{i} + x_t^{i-1}] dt + \sqrt{2\varepsilon} dW_t^{i}$$

Examples of particle systems

Example 1 [B, Fernandez, Gentz, Nonlinearity 2007]

- ▷ *N* particles on a circle $\mathbb{Z}/N\mathbb{Z}$
- Bistable local dynamics
- Ferromagnetic nearest neighbour coupling
- Independent noise on each site

$$dx_{t}^{i} = [x_{t}^{i} - (x_{t}^{i})^{3}] dt + \frac{\gamma}{2} [x_{t}^{i+1} - 2x_{t}^{i} + x_{t}^{i-1}] dt + \sqrt{2\varepsilon} dW_{t}^{i}$$

Gradient system $dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$ potential $V(x) = \sum_i U(x^i) + \frac{\gamma}{4} \sum_i (x^{i+1} - x^i)^2$ $U(\xi) = \frac{1}{4}\xi^4 - \frac{1}{2}\xi^2$

Metastability for Allen-Cahn SPDEs

Examples of particle systems

Example 1 [B, Fernandez, Gentz, Nonlinearity 2007]

- ▷ *N* particles on a circle $\mathbb{Z}/N\mathbb{Z}$
- Bistable local dynamics
- ▷ Ferromagnetic nearest neighbour coupling
- Independent noise on each site

$$dx_t^{i} = [x_t^{i} - (x_t^{i})^3] dt + \frac{\gamma}{2} [x_t^{i+1} - 2x_t^{i} + x_t^{i-1}] dt + \sqrt{2\varepsilon} dW_t^{i}$$

Gradient system $dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$ potential $V(x) = \sum_i U(x^i) + \frac{\gamma}{4} \sum_i (x^{i+1} - x^i)^2$ $U(\xi) = \frac{1}{4}\xi^4 - \frac{1}{2}\xi^2$

Example 2 Replace circle by 2D torus $(\mathbb{Z}/N\mathbb{Z})^2$

Example 3 [B, Dutercq, J Stat Phys 2016]: Same $V + \text{constraint } \sum_i x^i = 0$

Metastability for Allen-Cahn SPDEs

Coarsening dynamics with noise

(Link to simulation)

General gradient systems with noise

 $\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$

 $V: \mathbb{R}^N \to \mathbb{R}$: confining potential, class \mathcal{C}^2

General gradient systems with noise

 $\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$

 $V: \mathbb{R}^N \to \mathbb{R}$: confining potential, class \mathcal{C}^2

- ▷ Stationary points: $\mathcal{X} = \{x: \nabla V(x) = 0\}$
- ▷ Local minima: $\mathcal{X}_0 = \{x \in \mathcal{X}: all \text{ ev of Hessian } \nabla^2 V(x) \text{ are } > 0\}$
- ▷ Saddles of Morse index 1: $\mathcal{X}_1 = \{x \in \mathcal{X} : \nabla^2 V(x) \text{ has } 1 \text{ negative ev } \}$

General gradient systems with noise

 $\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$

 $V: \mathbb{R}^N \to \mathbb{R}$: confining potential, class \mathcal{C}^2

- ▷ Stationary points: $\mathcal{X} = \{x: \nabla V(x) = 0\}$
- ▷ Local minima: $\mathcal{X}_0 = \{x \in \mathcal{X}: all \text{ ev of Hessian } \nabla^2 V(x) \text{ are } > 0\}$
- ▷ Saddles of Morse index 1: $\mathcal{X}_1 = \{x \in \mathcal{X} : \nabla^2 V(x) \text{ has } 1 \text{ negative ev } \}$

Dynamics ~ markovian jump process on $\mathcal{G} = (\mathcal{X}_0, \mathcal{E}), \mathcal{E} \subset \mathcal{X}_1$ [Фрейдлин & Вентцел' / Freidlin & Wentzell 1970], [Bovier et al 2004]

Metastability for Allen-Cahn SPDEs

July 28, 2017

Eyring–Kramers law

Definition: Communication height $H(x_i^*, x_j^*) = \inf_{\substack{\gamma:x_i^* \to x_j^* \\ t}} \sup_t V(\gamma_t) - V(x_i^*)$ $= V(z_{ij}^*) - V(x_i^*)$

Definition: Metastable hierarchy $x_1^* < x_2^* < \cdots < x_n^* \Leftrightarrow \exists \theta > 0: \forall k$ $H_k \coloneqq H(x_k^*, \{x_1^*, \dots, x_{k-1}^*\})$ $\leq \min_{i < k} H(x_i^*, \{x_1^*, \dots, x_{i-1}^*, x_{i+1}^*, \dots, x_k^*\}) - \theta$

Eyring–Kramers law

Definition: Communication height $H(x_i^*, x_j^*) = \inf_{\substack{\gamma:x_i^* \to x_j^* \\ t \to x_i^*}} \sup_t V(\gamma_t) - V(x_i^*)$ $= V(z_{ij}^*) - V(x_i^*)$

Definition: Metastable hierarchy $x_1^* < x_2^* < \cdots < x_n^* \Leftrightarrow \exists \theta > 0: \forall k$ $H_k := H(x_k^*, \{x_1^*, \dots, x_{k-1}^*\})$ $\leq \min_{i < k} H(x_i^*, \{x_1^*, \dots, x_{i-1}^*, x_{i+1}^*, \dots, x_k^*\}) - \theta$

Theorem: Eyring–Kramers law [Bovier,Eckhoff,Gayrard,Klein 2004] $\tau_k = \text{first-hitting time of nbh of } \{x_1^*, \dots, x_k^*\} \qquad \lambda_k = k^{\text{th}} \text{ ev of generator}$ $\mathbb{E}^{x_k^*}[\tau_{k-1}] = \frac{2\pi}{|\lambda_-(z_k^*)|} \sqrt{\frac{|\det \nabla^2 V(z_k^*)|}{\det \nabla^2 V(x_k^*)}} e^{H_k/\varepsilon} [1 + \mathcal{O}_{\varepsilon}(1)] \simeq |\lambda_k|^{-1}$

Metastability for Allen-Cahn SPDEs

Potential landscape for Example 1

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0: \mathcal{X} = \{-1, 0, 1\}^N, \mathcal{X}_0 = \{-1, 1\}^N, \mathcal{X}_1 = \{x \in \mathcal{X}: \text{one } x^i = 0\}$ $\mathcal{G} = \text{hypercube}$

Potential landscape for Example 1

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0: \mathcal{X} = \{-1, 0, 1\}^N, \mathcal{X}_0 = \{-1, 1\}^N, \mathcal{X}_1 = \{x \in \mathcal{X}: \text{one } x^i = 0\}$ $\mathcal{G} = \text{hypercube}$

Theorem [BFG, Nonlinearity 2007] No bifurcation for $0 \le \gamma \le \gamma^*(N)$ where $\gamma^*(N) > \frac{1}{4} \quad \forall N \ge 2$

 $V_{\gamma}(z_{\gamma}^{*}) = V_{0}(z_{0}^{*}) + \gamma(\# \text{ interfaces}) + \cdots$ Ising-like dynamics

Potential landscape for Example 1

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0: \mathcal{X} = \{-1, 0, 1\}^N, \mathcal{X}_0 = \{-1, 1\}^N, \mathcal{X}_1 = \{x \in \mathcal{X}: \text{one } x^i = 0\}$ $\mathcal{G} = \text{hypercube}$

Theorem [BFG, Nonlinearity 2007] No bifurcation for $0 \le \gamma \le \gamma^*(N)$ where $\gamma^*(N) > \frac{1}{4} \quad \forall N \ge 2$

 $V_{\gamma}(z_{\gamma}^{*}) = V_{0}(z_{0}^{*}) + \gamma(\# \text{ interfaces}) + \cdots$ Ising-like dynamics

Theorem [BFG, Nonlinearity 2007]

 $\gamma > \frac{1}{2\sin^2(\pi/N)} \asymp N^2 \Leftrightarrow \mathcal{X}_0 = \{\pm(1,\ldots,1)\}, \mathcal{X}_1 = \{0\} \Leftrightarrow \text{Synchronization}$

Limitations of the standard Eyring–Kramers law

▷ Question 1:

What happens when V is invariant under a group of symmetries? Representation theory of finite groups \rightarrow clustering of eigenvalues [B, Dutercq, JoTP 2015]

Limitations of the standard Eyring–Kramers law

▷ Question 1:

What happens when V is invariant under a group of symmetries? Representation theory of finite groups \rightarrow clustering of eigenvalues [B, Dutercq, JoTP 2015]

Question 2:

What happens when V has saddles with zero eigenvalues? (det $\nabla^2 V(z^*) = 0$ at bifurcations)

Eyring–Kramers law with $\varepsilon\text{-dependent}$ prefactor [B, Gentz, MPRF 2010]

Limitations of the standard Eyring–Kramers law

▷ Question 1:

What happens when V is invariant under a group of symmetries? Representation theory of finite groups \rightarrow clustering of eigenvalues [B, Dutercq, JoTP 2015]

Question 2:

What happens when V has saddles with zero eigenvalues? (det $\nabla^2 V(z^*) = 0$ at bifurcations)

Eyring–Kramers law with $\varepsilon\text{-dependent}$ prefactor [B, Gentz, MPRF 2010]

▷ Question 3:

What happens when $\gamma \sim N^2$ and $N \rightarrow \infty$ in Example 1? One expects convergence to Allen–Cahn SPDE

$$\partial_t u(t,x) = \frac{\gamma}{2N^2} \Delta u(t,x) + u(t,x) - u(t,x)^3 + \sqrt{2\varepsilon} \xi(t,x)$$

where ξ is space-time white noise

Is there an Eyring-Kramers law for such SPDEs?

Metastability for Allen-Cahn SPDEs

July 28, 2017

Deterministic Allen–Cahn PDE

[Chafee & Infante 74, Allen & Cahn 75]

$$\partial_t u(x,t) = \partial_{xx} u(x,t) + f(u(x,t))$$

- ▷ $x \in [0, L]$, L: bifurcation parameter
- $\triangleright u(x,t) \in \mathbb{R}$
- ▷ Either periodic or zero-flux Neumann boundary conditions
- ▷ In this talk: $f(u) = u u^3$ (results more general)

Deterministic Allen–Cahn PDE

[Chafee & Infante 74, Allen & Cahn 75]

$$\partial_t u(x,t) = \partial_{xx} u(x,t) + f(u(x,t))$$

- $\triangleright x \in [0, L]$, L: bifurcation parameter
- $\triangleright u(x,t) \in \mathbb{R}$
- ▷ Either periodic or zero-flux Neumann boundary conditions
- ▷ In this talk: $f(u) = u u^3$ (results more general)

Energy function: $V[u] = \int_0^L \left[\frac{1}{2}u'(x)^2 - \frac{1}{2}u(x)^2 + \frac{1}{4}u(x)^4\right] dx \quad \to \text{ min}$

Scaling limit of particle system of Example 1 with $\gamma = 2\frac{N^2}{L^2}$

Stationary solutions: $u_0''(x) = -u_0(x) + u_0(x)^3$ critical points of V Stability: Sturm–Liouville problem $\partial_t v_t(x) = v_t''(x) + [1 - 3u_0(x)^2]v_t(x)$

Stationary solutions

- $u_0''(x) = -f(u_0(x)) = -u_0(x) + u_0(x)^3$
 - $\triangleright u_{\pm}(x) \equiv \pm 1$
 - $\triangleright u_0(x) \equiv 0$
 - Nonconstant solutions satisfying b.c. (expressible in terms of Jacobi elliptic fcts)

Stationary solutions

- $u_0''(x) = -f(u_0(x)) = -u_0(x) + u_0(x)^3$
 - $\triangleright u_{\pm}(x) \equiv \pm 1$
 - $\triangleright u_0(x) \equiv 0$
 - Nonconstant solutions satisfying b.c. (expressible in terms of Jacobi elliptic fcts)

▷ Neumann b.c: 2k nonconstant solutions when $L > k\pi$

▷ Periodic b.c: *k* families when $L > 2k\pi$

Metastability for Allen-Cahn SPDEs

July 28, 2017

7/12

Eyring-Kramers law for 1D SPDEs: heuristics

$$\dot{u}_t(x) = \Delta u_t(x) + f(u_t(x)) + \sqrt{2\varepsilon} \xi(t,x) \qquad (\Delta \equiv \partial_{xx}, f(u) = u - u^3)$$

Initial condition: u_{in} near $u_{-} \equiv -1$ with eigenvalues $\nu_{k} = \left(\frac{\beta k \pi}{L}\right)^{2} + 2$ Target: $u_{+} \equiv 1$, $\tau_{+} = \inf\{t > 0 : ||u_{t} - u_{+}||_{L^{\infty}} < \rho\}$

Transition state: ($\beta = 1$ for Neumann b.c., $\beta = 2$ for periodic b.c.)

$$u_{\rm ts}(x) = \begin{cases} u_0(x) \equiv 0 & \text{if } L \leq \beta \pi \quad \text{with ev } \lambda_k = (\frac{\beta k \pi}{L})^2 - 1\\ u_1(x) \ \beta \text{-kink stationary sol.} & \text{if } L > \beta \pi \quad \text{with ev } \lambda'_k \end{cases}$$

Eyring–Kramers law for 1D SPDEs: heuristics

$$\dot{u}_t(x) = \Delta u_t(x) + f(u_t(x)) + \sqrt{2\varepsilon} \xi(t,x) \qquad (\Delta \equiv \partial_{xx}, f(u) = u - u^3)$$

Initial condition: u_{in} near $u_{-} \equiv -1$ with eigenvalues $\nu_{k} = \left(\frac{\beta k \pi}{L}\right)^{2} + 2$ Target: $u_{+} \equiv 1$, $\tau_{+} = \inf\{t > 0 : ||u_{t} - u_{+}||_{L^{\infty}} < \rho\}$

Transition state: ($\beta = 1$ for Neumann b.c., $\beta = 2$ for periodic b.c.)

$$u_{\rm ts}(x) = \begin{cases} u_0(x) \equiv 0 & \text{if } L \leq \beta \pi \quad \text{with ev } \lambda_k = (\frac{\beta k \pi}{L})^2 - 1\\ u_1(x) \ \beta - \text{kink stationary sol.} & \text{if } L > \beta \pi \quad \text{with ev } \lambda'_k \end{cases}$$

[Faris & Jona-Lasinio 82]: large-deviation principle \Rightarrow Arrhenius law: $\mathbb{E}^{u_{in}}[\tau_+] \simeq e^{(V[u_{ts}]-V[u_-])/\varepsilon}$

[Maier & Stein 01]: formal computation; for Neumann b.c. $\Rightarrow \mathbb{E}^{u_{\text{in}}}[\tau_+] \simeq 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k}} e^{(V[u_{\text{ts}}] - V[u_-])/\varepsilon}$

Metastability for Allen-Cahn SPDEs

Eyring-Kramers law for 1D SPDEs: main result

- Theorem: Neumann b.c. [B & Gentz, Elec J Proba 2013]
 - ▷ If $L < \pi c$ with c > 0, then

$$\mathbb{E}^{u_{\rm in}}[\tau_+] = 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0}} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} e^{(V[u_{\rm ts}] - V[u_-])/\varepsilon} \left[1 + \mathcal{O}(\varepsilon^{1/2} |\log \varepsilon|^{3/2})\right]$$

▷ If $L > \pi + c$, then same formula with extra factor $\frac{1}{2}$ (since 2 saddles) and λ'_k instead of λ_k

Eyring-Kramers law for 1D SPDEs: main result

- Theorem: Neumann b.c. [B & Gentz, Elec J Proba 2013]
 - ▷ If $L < \pi c$ with c > 0, then

$$\mathbb{E}^{u_{\rm in}}[\tau_+] = 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0}} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} e^{(V[u_{\rm ts}] - V[u_-])/\varepsilon} \left[1 + \mathcal{O}(\varepsilon^{1/2} |\log \varepsilon|^{3/2})\right]$$

▷ If $L > \pi + c$, then same formula with extra factor $\frac{1}{2}$ (since 2 saddles) and λ'_k instead of λ_k

 \triangleright Results also for *L* near π and periodic b.c.

Eyring–Kramers law for 1D SPDEs: main result

- Theorem: Neumann b.c. [B & Gentz, Elec J Proba 2013]
 - ▷ If $L < \pi c$ with c > 0, then

$$\mathbb{E}^{u_{\rm in}}[\tau_+] = 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0}} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} e^{(V[u_{\rm ts}] - V[u_-])/\varepsilon} \left[1 + \mathcal{O}(\varepsilon^{1/2} |\log \varepsilon|^{3/2})\right]$$

▷ If $L > \pi + c$, then same formula with extra factor $\frac{1}{2}$ (since 2 saddles) and λ'_k instead of λ_k

- \triangleright Results also for *L* near π and periodic b.c.
- ▷ Prefactor involves a Fredholm determinant:

 $\prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} = \det\left[(-\Delta_{\perp} - 1)(-\Delta_{\perp} + 2)^{-1}\right] = \det\left[1 - 3(-\Delta_{\perp} + 2)^{-1}\right]$ converges because $(-\Delta_{\perp} + 2)^{-1}$ is trace class (limit = $\frac{\sqrt{2}\sin(L)}{\sinh(\sqrt{2}L)}$)

Eyring–Kramers law for 1D SPDEs: main result

- Theorem: Neumann b.c. [B & Gentz, Elec J Proba 2013]
 - ▷ If $L < \pi c$ with c > 0, then

$$\mathbb{E}^{u_{\rm in}}[\tau_+] = 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k}} e^{(V[u_{\rm ts}] - V[u_-])/\varepsilon} \left[1 + \mathcal{O}(\varepsilon^{1/2} |\log \varepsilon|^{3/2})\right]$$

▷ If $L > \pi + c$, then same formula with extra factor $\frac{1}{2}$ (since 2 saddles) and λ'_k instead of λ_k

- \triangleright Results also for *L* near π and periodic b.c.
- ▷ Prefactor involves a Fredholm determinant:

 $\prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} = \det\left[(-\Delta_{\perp} - 1)(-\Delta_{\perp} + 2)^{-1}\right] = \det\left[1 - 3(-\Delta_{\perp} + 2)^{-1}\right]$ converges because $(-\Delta_{\perp} + 2)^{-1}$ is trace class (limit = $\frac{\sqrt{2}\sin(L)}{\sinh(\sqrt{2}L)}$) > Proof uses spectral Galerkin approx. and potential-theoretic formula $\mathbb{E}^{\nu_{A,B}}[\tau_B] = \frac{1}{\operatorname{cap}_A(B)} \int_{B^c} \mathbb{P}^y \{\tau_A < \tau_B\} e^{-V(y)/\varepsilon} dy$

Metastability for Allen-Cahn SPDEs

July 28, 2017

9/12

The two-dimensional case

(Link to simulation)

The two-dimensional case

- ▷ Large-deviation principle: [Hairer & Weber, Ann. Fac. Sc. Toulouse, 2015]
- ▷ Naive computation of prefactor fails $((-\Delta_{\perp} + 2)^{-1} \text{ is not trace class})$:

$$\log \det \left[1 - 3(-\Delta_{\perp} + 2)^{-1} \right] \simeq \sum_{k \in (\mathbb{N}_{0}^{2})^{*}} \log \left(1 - \frac{3L^{2}}{|k|^{2}\pi^{2}} \right)$$
$$\simeq -\sum_{k \in (\mathbb{N}_{0}^{2})^{*}} \frac{3L^{2}}{|k|^{2}\pi^{2}} \simeq -\frac{3L^{2}}{\pi^{2}} \int_{1}^{\infty} \frac{r \, \mathrm{d}r}{r^{2}} = -\infty$$

The two-dimensional case

- ▷ Large-deviation principle: [Hairer & Weber, Ann. Fac. Sc. Toulouse, 2015]
- ▷ Naive computation of prefactor fails $((-\Delta_{\perp} + 2)^{-1} \text{ is not trace class})$:

$$\log \det \left[1 - 3(-\Delta_{\perp} + 2)^{-1} \right] \simeq \sum_{k \in (\mathbb{N}_{0}^{2})^{*}} \log \left(1 - \frac{3L^{2}}{|k|^{2}\pi^{2}} \right)$$
$$\simeq -\sum_{k \in (\mathbb{N}_{0}^{2})^{*}} \frac{3L^{2}}{|k|^{2}\pi^{2}} \simeq -\frac{3L^{2}}{\pi^{2}} \int_{1}^{\infty} \frac{r \, \mathrm{d}r}{r^{2}} = -\infty$$

▷ In fact, the equation needs to be renormalised

Theorem: [Da Prato & Debussche 2003]

Let ξ^{δ} be a mollification on scale δ of white noise. Then

$$\partial_t u = \Delta u + \left[1 + 3\varepsilon C(\delta)\right]u - u^3 + \sqrt{2\varepsilon}\xi^{\delta}$$

with $C(\delta) = \text{Tr}((-P_{\delta^{-1}}\Delta_{\perp})^{-1}) \simeq \log(\delta^{-1})$ admits local solution cv as $\delta \to 0$

(Global version: [Mourrat & Weber 2015]) [Mourrat & Weber 2014]: Renormalised eq = scaling limit of Ising–Kac model

Main result in dimension 2

Theorem: [B, Di Gesù, Weber, Elec J Proba 2016]

For $L < 2\pi$, appropriate $A \ni u_-$, $B \ni u_+$, $\exists \mu_N$ probability measures on ∂A :

$$\begin{split} &\limsup_{N \to \infty} \mathbb{E}^{\mu_{N}} \left[\tau_{B} \right] \leq \frac{2\pi}{|\lambda_{0}|} \sqrt{\prod_{k \in \mathbb{Z}^{2}} \frac{|\lambda_{k}|}{\nu_{k}}} e^{\frac{\nu_{k} - \lambda_{k}}{|\lambda_{k}|}} e^{(V[u_{ts}] - V[u_{-}])/\varepsilon} \left[1 + c_{+} \sqrt{\varepsilon} \right] \\ &\lim_{N \to \infty} \inf \mathbb{E}^{\mu_{N}} \left[\tau_{B} \right] \geq \frac{2\pi}{|\lambda_{0}|} \sqrt{\prod_{k \in \mathbb{Z}^{2}} \frac{|\lambda_{k}|}{\nu_{k}}} e^{\frac{\nu_{k} - \lambda_{k}}{|\lambda_{k}|}} e^{(V[u_{ts}] - V[u_{-}])/\varepsilon} \left[1 - c_{-} \varepsilon \right] \end{split}$$

Main result in dimension 2

Theorem: [B, Di Gesù, Weber, Elec J Proba 2016]

For $L < 2\pi$, appropriate $A \ni u_-$, $B \ni u_+$, $\exists \mu_N$ probability measures on ∂A :

$$\begin{split} &\limsup_{N \to \infty} \mathbb{E}^{\mu_{N}} \left[\tau_{B} \right] \leq \frac{2\pi}{|\lambda_{0}|} \sqrt{\prod_{k \in \mathbb{Z}^{2}} \frac{|\lambda_{k}|}{\nu_{k}}} e^{\frac{\nu_{k} - \lambda_{k}}{|\lambda_{k}|}} e^{(V[u_{ts}] - V[u_{-}])/\varepsilon} \left[1 + c_{+} \sqrt{\varepsilon} \right] \\ &\lim_{N \to \infty} \inf \mathbb{E}^{\mu_{N}} \left[\tau_{B} \right] \geq \frac{2\pi}{|\lambda_{0}|} \sqrt{\prod_{k \in \mathbb{Z}^{2}} \frac{|\lambda_{k}|}{\nu_{k}}} e^{\frac{\nu_{k} - \lambda_{k}}{|\lambda_{k}|}} e^{(V[u_{ts}] - V[u_{-}])/\varepsilon} \left[1 - c_{-} \varepsilon \right] \end{split}$$

▷ Prefactor involves Carleman–Fredholm determinant: $det_2(Id + T) = det(Id + T)e^{-Tr T}$ Defined whenever T is only Hilbert–Schmidt

Main result in dimension 2

Theorem: [B, Di Gesù, Weber, Elec J Proba 2016]

For $L < 2\pi$, appropriate $A \ni u_-$, $B \ni u_+$, $\exists \mu_N$ probability measures on ∂A :

$$\begin{split} \limsup_{N \to \infty} \mathbb{E}^{\mu_{N}} \left[\tau_{B} \right] &\leq \frac{2\pi}{|\lambda_{0}|} \sqrt{\prod_{k \in \mathbb{Z}^{2}} \frac{|\lambda_{k}|}{\nu_{k}}} e^{\frac{\nu_{k} - \lambda_{k}}{|\lambda_{k}|}} e^{(V[u_{ts}] - V[u_{-}])/\varepsilon} \left[1 + c_{+} \sqrt{\varepsilon} \right] \\ \liminf_{N \to \infty} \mathbb{E}^{\mu_{N}} \left[\tau_{B} \right] &\geq \frac{2\pi}{|\lambda_{0}|} \sqrt{\prod_{k \in \mathbb{Z}^{2}} \frac{|\lambda_{k}|}{\nu_{k}}} e^{\frac{\nu_{k} - \lambda_{k}}{|\lambda_{k}|}} e^{(V[u_{ts}] - V[u_{-}])/\varepsilon} \left[1 - c_{-} \varepsilon \right] \end{split}$$

Prefactor involves Carleman–Fredholm determinant:

 $det_2(\mathrm{Id} + T) = det(\mathrm{Id} + T)e^{-\mathrm{Tr} T}$

Defined whenever T is only Hilbert-Schmidt

 Proof uses absolute continuity of e^{-V/ε} wrt Gaussian free field and Nelson argument for Wick powers: if X ∈ nth Wiener chaos then E[X^{2p}]^{1/2p} ≤ C_n(2p − 1)^{n/2}E[X²]^{1/2}

Metastability for Allen-Cahn SPDEs

Outlook

▷ Dim d = 3 (in progress): more difficult because 2 renormalisation constants needed, no Nelson argument ($e^{-V/\varepsilon}$ singular wrt GFF)

Outlook

▷ Dim d = 3 (in progress): more difficult because 2 renormalisation constants needed, no Nelson argument ($e^{-V/\varepsilon}$ singular wrt GFF)

References: Particle system: [1]; nonquadratic: [2,3]; SPDEs: [4,5]; symmetries: [6,7];

- N. B., Bastien Fernandez & Barbara Gentz, Metastability in interacting nonlinear stochastic differential equations I: From weak coupling to synchronisation & II: Large-N behaviour, Nonlinearity 20, 2551–2581; 2583–2614 (2007)
- 2. N.B. & Barbara Gentz, Anomalous behavior of the Kramers rate at bifurcations in classical field theories, J. Phys. A: Math. Theor. **42**, 052001 (2009)
- 3. _____, The Eyring–Kramers law for potentials with nonquadratic saddles, Markov Processes Relat. Fields **16**, 549–598 (2010)
- 4. _____, Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers' law and beyond, Electronic J. Probability 18, (24):1–58 (2013)
- N. B., Giacomo Di Gesù & Hendrik Weber, An Eyring–Kramers law for the stochastic Allen–Cahn equation in dimension two, Electronic J. Probability 22, (41):1–27 (2017)
- 6. N. B. & Sébastien Dutercq, *The Eyring–Kramers law for Markovian jump processes with symmetries*, J. Theoretical Probability, **29**, (4):1240–1279 (2016)
- 7. _____, Interface dynamics of a metastable mass-conserving spatially extended diffusion, J. Statist. Phys. **162**, 334–370 (2016)

Metastability for Allen-Cahn SPDEs

July 28, 2017

12/12