Online probability seminar, Seoul (Online)

Metastable dynamics of one-dimensional Allen–Cahn-type equations

Nils Berglund

Institut Denis Poisson, University of Orléans, France

DENIS POISSON

19 July 2023

Joint works with Bastien Fernandez (Paris) and Barbara Gentz (Bielefeld)

Project PERIS-TOCH

Nils Berglund

nils.berglund@univ-orleans.fr

https://www.idpoisson.fr/berglund/

1. Reversible SDEs: The potential-theoretic approach to metastability

A particle system

[B, Fernandez, Gentz, Nonlinearity 2007]

- ▷ *N* particles on a circle $\mathbb{Z}/N\mathbb{Z}$
- Bistable local dynamics
- ▷ Ferromagnetic nearest neighbour coupling
- Independent noise on each site

$$dx_t^{i} = [x_t^{i} - (x_t^{i})^3] dt + \frac{\gamma}{2} [x_t^{i+1} - 2x_t^{i} + x_t^{i-1}] dt + \sqrt{2\varepsilon} dW_t^{i}$$

A particle system

[B, Fernandez, Gentz, Nonlinearity 2007]

- ▷ *N* particles on a circle $\mathbb{Z}/N\mathbb{Z}$
- \triangleright Bistable local dynamics
- Ferromagnetic nearest neighbour coupling \triangleright
- Independent noise on each site \triangleright

$$dx_t^i = [x_t^i - (x_t^i)^3] dt + \frac{\gamma}{2} [x_t^{i+1} - 2x_t^i + x_t^{i-1}] dt + \sqrt{2\varepsilon} dW_t^i$$

Gradient system
$$dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$$

potential
$$V(x) = \sum_i U(x^i) + \frac{\gamma}{4} \sum_i (x^{i+1} - x^i)^2 \qquad U(\xi) = \frac{1}{4}\xi^4 - \frac{1}{2}\xi^2$$

p

Coarsening dynamics with noise

(Link to simulation)

Reversible diffusion in a double-well

 $dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$ $V : \mathbb{R}^d \to \mathbb{R} \text{ confining potential}$ $\tau_y^x = \inf\{t > 0: x_t \in \mathcal{B}_{\varepsilon}(y)\}$ first-hitting time of small ball $\mathcal{B}_{\varepsilon}(y)$, when starting in x

Reversible diffusion in a double-well

 $\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$

 $V : \mathbb{R}^{d} \to \mathbb{R} \text{ confining potential}$ $\tau_{y}^{x} = \inf\{t > 0: x_{t} \in \mathcal{B}_{\varepsilon}(y)\}$ first-hitting time of small ball $\mathcal{B}_{\varepsilon}(y)$, when starting in x

Arrhenius' law (1889): $\mathbb{E}[\tau_y^x] \simeq e^{[V(z)-V(x)]/\varepsilon}$

Eyring-Kramers law (1935, 1940):

Eigenvalues of Hessian of V at minimum x: $0 < \nu_1 \leq \nu_2 \leq \cdots \leq \nu_d$ Eigenvalues of Hessian of V at saddle z: $\lambda_1 < 0 < \lambda_2 \leq \cdots \leq \lambda_d$

$$\mathbb{E}[\tau_y^x] = 2\pi \sqrt{\frac{\lambda_2 \dots \lambda_d}{|\lambda_1|\nu_1 \dots \nu_d}} e^{[V(z) - V(x)]/\varepsilon} [1 + \mathcal{O}_{\varepsilon}(1)]$$

Metastable dynamics of 1d Allen-Cahn SPDEs

Reversible diffusion in a double-well

 $\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$

 $V : \mathbb{R}^{d} \to \mathbb{R} \text{ confining potential}$ $\tau_{y}^{x} = \inf\{t > 0: x_{t} \in \mathcal{B}_{\varepsilon}(y)\}$ first-hitting time of small ball $\mathcal{B}_{\varepsilon}(y)$, when starting in x

Arrhenius' law (1889): $\mathbb{E}[\tau_y^x] \simeq e^{[V(z)-V(x)]/\varepsilon}$

Eyring-Kramers law (1935, 1940):

Eigenvalues of Hessian of V at minimum x: $0 < \nu_1 \leq \nu_2 \leq \cdots \leq \nu_d$ Eigenvalues of Hessian of V at saddle z: $\lambda_1 < 0 < \lambda_2 \leq \cdots \leq \lambda_d$

$$\mathbb{E}[\tau_y^x] = 2\pi \sqrt{\frac{\lambda_2 \dots \lambda_d}{|\lambda_1|\nu_1 \dots \nu_d}} e^{[V(z) - V(x)]/\varepsilon} [1 + \mathcal{O}_{\varepsilon}(1)]$$

Arrhenius' law: proved by [Freidlin, Wentzell, 1979] using large deviations Eyring–Kramers law: [Bovier, Eckhoff, Gayrard, Klein, 2004] using potential theory, [Helffer, Klein, Nier, 2004] using Witten Laplacian, ...

Metastable dynamics of 1d Allen-Cahn SPDEs

19 July 2023

Potential-theoretic proof

 $\mathrm{d}x_t = -\nabla V(x_t)\,\mathrm{d}t + \sqrt{2\varepsilon}\,\mathrm{d}W_t$

 $\triangleright \text{ Generator: } \mathcal{L} = \varepsilon \Delta - \nabla V \cdot \nabla = \varepsilon e^{V/\varepsilon} \nabla \cdot e^{-V/\varepsilon} \nabla$

▷ Invariant probability: $\pi(dx) = \frac{1}{Z} e^{-V(x)/\varepsilon} dx \implies \mathcal{L}^{\dagger} \pi = 0$

Potential-theoretic proof

 $\mathrm{d}x_t = -\nabla V(x_t) \,\mathrm{d}t + \sqrt{2\varepsilon} \,\mathrm{d}W_t$

 $\triangleright \quad \text{Generator:} \quad \mathcal{L} = \varepsilon \Delta - \nabla V \cdot \nabla = \varepsilon \, \mathrm{e}^{V/\varepsilon} \, \nabla \cdot \mathrm{e}^{-V/\varepsilon} \, \nabla$

- ▷ Invariant probability: $\pi(dx) = \frac{1}{Z} e^{-V(x)/\varepsilon} dx \implies \mathcal{L}^{\dagger} \pi = 0$
- $\triangleright \text{ Reversible: } \langle f, \mathcal{L}g \rangle = \langle \mathcal{L}f, g \rangle \text{ for } \langle f, g \rangle = \int_{\mathbb{R}^d} e^{-V(x)/\varepsilon} f(x)g(x) dx$
- $\triangleright \text{ Dirichlet form: } \mathcal{E}(f) = \langle f, -\mathcal{L}f \rangle = \varepsilon \int_{\mathbb{R}^d} e^{-V(x)/\varepsilon} |\nabla f(x)|^2 dx \\ \mathcal{E}(f, g) = \langle f, -\mathcal{L}g \rangle$

Expected hitting time

Expected hitting time:

 $w_{\mathcal{A}}(x) = \mathbb{E}^{x}[\tau_{\mathcal{A}}] \text{ satisfies } \begin{cases} (\mathcal{L}w_{\mathcal{A}})(x) = -1 & x \in \mathcal{A}^{c} \\ w_{\mathcal{A}}(x) = 0 & x \in \mathcal{A} \end{cases}$

Expected hitting time

▷ Expected hitting time:

$$w_A(x) = \mathbb{E}^x[\tau_A]$$
 satisfies

 $\begin{cases} (\mathcal{L}w_A)(x) = -1 & x \in A^c \\ w_A(x) = 0 & x \in A \end{cases}$

▷ Green function:

$$\begin{cases} (\mathcal{L}G_A)(x) = \delta(x-y) & x \in A^c \\ G_A(x,y) = 0 & x \in A \end{cases}$$

$$\Rightarrow \qquad w_A(x) = -\int_{A^c} G_A(x,y)(\mathrm{d} y)$$

Committor

Committor:

$$h_{AB}(x) = \mathbb{P}^{x} \{ \tau_{A} < \tau_{B} \} \text{ satisfies } \begin{cases} (\mathcal{L}h_{AB})(x) = 0 & x \in (A \cup B)^{c} \\ h_{AB}(x) = 1 & x \in A \\ h_{AB}(x) = 0 & x \in B \end{cases}$$

▷ Equilibrium measure: $e_{AB}(dx) = (-\mathcal{L}h_{AB})(dx)$ measure on $x \in \partial A$

$$\Rightarrow \qquad h_{AB}(x) = -\int_A G_B(x, y) e_{AB}(dy)$$

Capacity

Capacity: $cap(A, B) = \int_{\partial A} e^{-V(x)/\varepsilon} e_{AB}(dx)$ $\Rightarrow \nu_{AB}(dx) = \frac{1}{cap(A,B)} e^{-V(x)/\varepsilon} e_{AB}(dx)$ is a probability measure on ∂A

Capacity

Capacity: $cap(A, B) = \int_{\partial A} e^{-V(x)/\varepsilon} e_{AB}(dx)$ $\Rightarrow \nu_{AB}(dx) = \frac{1}{cap(A,B)} e^{-V(x)/\varepsilon} e_{AB}(dx)$ is a probability measure on ∂A **Theorem ("Magic" formula)**:

$$\mathbb{E}^{\nu_{AB}}[\tau_B] \coloneqq \int_{\partial A} \mathbb{E}^{x}[\tau_B] \nu_{AB}(\mathrm{d}x) = \frac{1}{\operatorname{cap}(A,B)} \int_{B^c} \mathrm{e}^{-V(x)/\varepsilon} h_{AB}(x) \,\mathrm{d}x$$

Dirichlet principle

Theorem: Dirichlet principle

Let $\mathcal{H}_{AB} = \{h : \mathbb{R}^d \to [0, 1] : h|_A = 1, h|_B = 0\}$. Then

$$\operatorname{cap}(A,B) = \inf_{h \in \mathcal{H}_{AB}} \mathcal{E}(h) = \mathcal{E}(h_{AB})$$

Thomson principle

Theorem: Thomson principle [Landim, Mariani, Seo 2018] Let $\mathcal{U}_{AB} = \{f: \nabla \cdot f|_{(A \cup B)^c} = 0, \int_{\partial A} f(x) \cdot n_A(x)\sigma(dx) = 1\}$. Then $\operatorname{cap}(A, B) = \sup_{f \in \mathcal{U}_{AB}} \frac{1}{\mathcal{D}(f)} = \frac{1}{\mathcal{D}(f_{AB})} \qquad \mathcal{D}(f) = \frac{1}{\varepsilon} \int e^{V(x)/\varepsilon} |f(x)|^2 dx$

Proof of Eyring–Kramers law

 $\mathrm{d} x_t = -\nabla V(x_t) \,\mathrm{d} t + \sqrt{2\varepsilon} \,\mathrm{d} W_t$

 \triangleright *A*, *B* small balls around *x*, *y*

Potential landscape for the particle system

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0: \mathcal{X} = \{-1, 0, 1\}^N, \mathcal{X}_0 = \{-1, 1\}^N, \mathcal{X}_1 = \{x \in \mathcal{X}: \text{one } x^i = 0\}$

Potential landscape for the particle system

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0: \mathcal{X} = \{-1, 0, 1\}^N, \mathcal{X}_0 = \{-1, 1\}^N, \mathcal{X}_1 = \{x \in \mathcal{X}: \text{one } x^i = 0\}$

Theorem [BFG, Nonlinearity 2007] No bifurcation for $0 \le \gamma \le \gamma^*(N)$ where $\gamma^*(N) > \frac{1}{4} \quad \forall N \ge 2$

 $V_{\gamma}(z_{\gamma}^{*}) = V_{0}(z_{0}^{*}) + \gamma(\# \text{ interfaces}) + \cdots$ Ising-like dynamics

Potential landscape for the particle system

$$V(x) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} U(x^{i}) + \frac{\gamma}{4} \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (x^{i+1} - x^{i})^{2} \qquad U(\xi) = \frac{1}{4}\xi^{4} - \frac{1}{2}\xi^{2}$$

 $\gamma = 0: \mathcal{X} = \{-1, 0, 1\}^N, \mathcal{X}_0 = \{-1, 1\}^N, \mathcal{X}_1 = \{x \in \mathcal{X}: \text{one } x^i = 0\}$

Theorem [BFG, Nonlinearity 2007] No bifurcation for $0 \le \gamma \le \gamma^*(N)$ where $\gamma^*(N) > \frac{1}{4} \quad \forall N \ge 2$

 $V_{\gamma}(z_{\gamma}^{*}) = V_{0}(z_{0}^{*}) + \gamma(\# \text{ interfaces}) + \cdots$ Ising-like dynamics

Theorem [BFG, Nonlinearity 2007]

$$\gamma > \frac{1}{2\sin^2(\pi/N)} \Leftrightarrow \mathcal{X}_0 = \{\pm(1,\ldots,1)\}, \mathcal{X}_1 = \{0\} \Leftrightarrow \text{Synchronization}$$

2. The stochastic Allen–Cahn PDE on the 1d torus

Deterministic Allen–Cahn PDE

[Chafee & Infante 74, Allen & Cahn 75]

 $\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))$

- $\triangleright x \in [0, L]$, L: bifurcation parameter
- $\triangleright u(t,x) \in \mathbb{R}$
- ▷ Either periodic or zero-flux Neumann boundary conditions
- ▷ In this talk: $f(u) = u u^3$ (results more general)

Deterministic Allen–Cahn PDE

[Chafee & Infante 74, Allen & Cahn 75]

 $\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))$

- $\triangleright x \in [0, L]$, L: bifurcation parameter
- $\triangleright u(t,x) \in \mathbb{R}$
- ▷ Either periodic or zero-flux Neumann boundary conditions
- ▷ In this talk: $f(u) = u u^3$ (results more general)

Energy function:

$$V[u] = \int_0^L \left[\frac{1}{2}u'(x)^2 - \frac{1}{2}u(x)^2 + \frac{1}{4}u(x)^4\right] dx \quad \to \quad \min$$

Scaling limit of particle system with $\gamma = 2\frac{N^2}{L^2}$

Deterministic Allen–Cahn PDE

[Chafee & Infante 74, Allen & Cahn 75]

 $\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))$

- ▷ $x \in [0, L]$, L: bifurcation parameter
- $\triangleright u(t,x) \in \mathbb{R}$
- Either periodic or zero-flux Neumann boundary conditions
- ▷ In this talk: $f(u) = u u^3$ (results more general)

Energy function:

$$V[u] = \int_0^L \left[\frac{1}{2}u'(x)^2 - \frac{1}{2}u(x)^2 + \frac{1}{4}u(x)^4\right] dx \quad \to \quad \min$$

Scaling limit of particle system with $\gamma = 2\frac{N^2}{L^2}$

Stationary solutions: $u_0''(x) = -u_0(x) + u_0(x)^3$ critical points of V Stability: Sturm–Liouville problem $\partial_t v_t(x) = v_t''(x) + [1 - 3u_0(x)^2]v_t(x)$

Stationary solutions

- $u_0''(x) = -f(u_0(x)) = -u_0(x) + u_0(x)^3$
 - $\triangleright u_{\pm}(x) \equiv \pm 1$
 - $\triangleright u_0(x) \equiv 0$
 - Nonconstant solutions satisfying b.c. (expressible in terms of Jacobi elliptic fcts)

Stationary solutions

$$u_0''(x) = -f(u_0(x)) = -u_0(x) + u_0(x)^3$$

- $\triangleright u_{\pm}(x) \equiv \pm 1$
- $\triangleright u_0(x) \equiv 0$
- Nonconstant solutions satisfying b.c. (expressible in terms of Jacobi elliptic fcts)

▷ Neumann b.c: 2k nonconstant solutions when $L > k\pi$

▷ Periodic b.c: *k* families when $L > 2k\pi$

Eyring–Kramers law for 1D SPDEs: heuristics

 $\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x)) + \sqrt{2\varepsilon} \xi(t,x) \qquad (f(u) = u - u^3)$

Eyring-Kramers law for 1D SPDEs: heuristics

 $\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x)) + \sqrt{2\varepsilon} \xi(t,x) \qquad (f(u) = u - u^3)$

Initial condition: u_{in} near $u_{-} \equiv -1$ with eigenvalues $\nu_{k} = (\frac{\beta k \pi}{L})^{2} + 2$ Target: $u_{+} \equiv 1$, $\tau_{+} = \inf\{t > 0 : ||u_{t} - u_{+}||_{L^{\infty}} < \rho\}$

Transition state: ($\beta = 1$ for Neumann b.c., $\beta = 2$ for periodic b.c.)

$$u_{\rm ts}(x) = \begin{cases} u_0(x) \equiv 0 & \text{if } L \leq \beta \pi \quad \text{with ev } \lambda_k = (\frac{\beta k \pi}{L})^2 - 1 \\ u_1(x) \ \beta \text{-kink stationary sol.} & \text{if } L > \beta \pi \quad \text{with ev } \lambda'_k \end{cases}$$

Eyring–Kramers law for 1D SPDEs: heuristics

 $\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x)) + \sqrt{2\varepsilon} \xi(t,x) \qquad (f(u) = u - u^3)$

Initial condition: u_{in} near $u_{-} \equiv -1$ with eigenvalues $\nu_{k} = (\frac{\beta k \pi}{L})^{2} + 2$ Target: $u_{+} \equiv 1$, $\tau_{+} = \inf\{t > 0 : ||u_{t} - u_{+}||_{L^{\infty}} < \rho\}$

Transition state: ($\beta = 1$ for Neumann b.c., $\beta = 2$ for periodic b.c.)

$$u_{\rm ts}(x) = \begin{cases} u_0(x) \equiv 0 & \text{if } L \leq \beta \pi \quad \text{with ev } \lambda_k = (\frac{\beta k \pi}{L})^2 - 1 \\ u_1(x) \ \beta \text{-kink stationary sol.} & \text{if } L > \beta \pi \quad \text{with ev } \lambda'_k \end{cases}$$

[Faris & Jona-Lasinio 82]: large-deviation principle \Rightarrow Arrhenius law: $\mathbb{E}^{u_{in}}[\tau_+] \simeq e^{(V[u_{ts}]-V[u_-])/\varepsilon}$

[Maier & Stein 01]: formal computation; for Neumann b.c. $\Rightarrow \mathbb{E}^{u_{\text{in}}}[\tau_+] \simeq 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k}} e^{(V[u_{\text{ts}}] - V[u_-])/\varepsilon}$

Eyring-Kramers law for 1D SPDEs: heuristics

Metastable dynamics of 1d Allen-Cahn SPDEs

Eyring–Kramers law for 1D SPDEs: main result

Theorem: Neumann b.c. [B & Gentz, 2013]

▷ If $L < \pi - c$ with c > 0, then

$$\mathbb{E}^{u_{\text{in}}}[\tau_+] = 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0}} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} e^{(V[u_{\text{ts}}] - V[u_-])/\varepsilon} \left[1 + \underbrace{\mathcal{O}(\varepsilon^{1/2}|\log\varepsilon|^{3/2})}_{\text{error not optimal}}\right]$$

▷ If $L > \pi + c$, then same formula with extra factor $\frac{1}{2}$ (since 2 saddles) and λ'_k instead of λ_k

Eyring–Kramers law for 1D SPDEs: main result

Theorem: Neumann b.c. [B & Gentz, 2013]

▷ If $L < \pi - c$ with c > 0, then

$$\mathbb{E}^{u_{\text{in}}}[\tau_+] = 2\pi \sqrt{\frac{1}{|\lambda_0|\nu_0}} \prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} e^{(V[u_{\text{ts}}] - V[u_-])/\varepsilon} \left[1 + \underbrace{\mathcal{O}(\varepsilon^{1/2}|\log\varepsilon|^{3/2})}_{\text{error not optimal}}\right]$$

▷ If $L > \pi + c$, then same formula with extra factor $\frac{1}{2}$ (since 2 saddles) and λ'_k instead of λ_k

- \triangleright Results also for *L* near π and periodic b.c.
- ▷ Prefactor involves a Fredholm determinant:

 Δ_{\perp} Laplacian acting on mean zero functions

$$\begin{split} &\prod_{k=1}^{\infty} \frac{\lambda_k}{\nu_k} = \det \left[(-\Delta_{\perp} - 1)(-\Delta_{\perp} + 2)^{-1} \right] = \det \left[\mathbf{1} - 3(-\Delta_{\perp} + 2)^{-1} \right] \\ &\text{converges because log det} = \operatorname{Tr} \log \text{ and } (-\Delta_{\perp} + 2)^{-1} \text{ is trace class} \\ &\left(\operatorname{limit} = \frac{\sqrt{2} \sin(L)}{\sinh(\sqrt{2}L)} \right) \end{split}$$

Metastable dynamics of 1d Allen-Cahn SPDEs

▷ Spectral Galerkin approximation: $u(t,x) = \sum_{|k| \leq N} z_k(t)e_k(x)$ (Fourier)

▷ Spectral Galerkin approximation: $u(t,x) = \sum_{|k| \le N} z_k(t)e_k(x)$ (Fourier) ▷ Change of variables $u(x) = u_0 + \sqrt{\varepsilon}u_{\perp}(x)$ where $\int_0^L u_{\perp}(x) dx = 0$

$$\Rightarrow \frac{1}{\varepsilon} V [u_0 + \sqrt{\varepsilon} u_{\perp}] = \frac{1}{\varepsilon} \left(\underbrace{\frac{1}{4} u_0^4 - \frac{1}{2} u_0^2}_{-1} \right) + Q_{u_0} [u_{\perp}] + \sqrt{\varepsilon} R_{u_0} [u_{\perp}]$$

where

$$V_0(u_0)$$

$$\begin{cases} Q_{u_0}[u_{\perp}] = \frac{1}{2} \int_0^L \left[u_{\perp}'(x)^2 - (1 - 3u_0^2)u_{\perp}(x)^2 \right] dx = \frac{1}{2} \langle u_{\perp}, [-\Delta - (1 - 3u_0^2)]u_{\perp} \rangle \\ R_{u_0}[u_{\perp}] = u_0 \int_0^L u_{\perp}(x)^3 dx + \sqrt{\varepsilon} \int_0^L u_{\perp}(x)^4 dx \qquad \text{(remainder)} \end{cases}$$

▷ Spectral Galerkin approximation: $u(t,x) = \sum_{|k| \le N} z_k(t)e_k(x)$ (Fourier) ▷ Change of variables $u(x) = u_0 + \sqrt{\varepsilon}u_{\perp}(x)$ where $\int_0^L u_{\perp}(x) dx = 0$

$$\Rightarrow \frac{1}{\varepsilon} V [u_0 + \sqrt{\varepsilon} u_{\perp}] = \frac{1}{\varepsilon} \left(\underbrace{\frac{1}{4} u_0^4 - \frac{1}{2} u_0^2}_{-1} \right) + Q_{u_0} [u_{\perp}] + \sqrt{\varepsilon} R_{u_0} [u_{\perp}]$$

where

$$V_0(u_0)$$

$$\begin{cases} Q_{u_0}[u_{\perp}] = \frac{1}{2} \int_0^L [u_{\perp}'(x)^2 - (1 - 3u_0^2)u_{\perp}(x)^2] dx = \frac{1}{2} \langle u_{\perp}, [-\Delta - (1 - 3u_0^2)]u_{\perp} \rangle \\ R_{u_0}[u_{\perp}] = u_0 \int_0^L u_{\perp}(x)^3 dx + \sqrt{\varepsilon} \int_0^L u_{\perp}(x)^4 dx \qquad \text{(remainder)} \end{cases}$$

Dirichlet principle with $h = h(u_0)$ s.t. $h'(u_0) = -\frac{1}{c} e^{V_0(u_0)/\varepsilon}$, $c \simeq \sqrt{\frac{2\pi\varepsilon}{|\lambda_0|}}$ \triangleright

$$\operatorname{cap}(A,B) \leq \mathcal{E}(h) = \frac{\varepsilon^{1+\frac{N}{2}}}{c^2} \int_{-1}^{1} e^{V_0(u_0)/\varepsilon} \underbrace{\int e^{-Q_{u_0}[u_{\perp}]} e^{-\sqrt{\varepsilon}R_{u_0}[u_{\perp}]} du_{\perp}}_{=\sqrt{\frac{(2\pi)N}{\det[-\Delta_{\perp}-(1-3u_{0}^{2})]}}} \mathbb{E}^{\gamma}[e^{-\sqrt{\varepsilon}R_{u_0}}]$$

▷ Thomson principle with divergence-free unit flow $f = K^{-1} e^{-Q_0[u_\perp]} e_{u_0}$ Normalisation $K = \varepsilon^{\frac{N}{2}} \int e^{-Q_0[u_\perp]} du_\perp = \sqrt{\frac{(2\pi\varepsilon)^N}{\det[-\Delta_\perp - 1]}}$

▷ Thomson principle with divergence-free unit flow $f = K^{-1} e^{-Q_0[u_\perp]} e_{u_0}$ Normalisation $K = \varepsilon^{\frac{N}{2}} \int e^{-Q_0[u_\perp]} du_\perp = \sqrt{\frac{(2\pi\varepsilon)^N}{\det[-\Delta_\perp - 1]}}$ $\operatorname{cap}(A, B)^{-1} \leq \mathcal{D}(h) = \frac{1}{\varepsilon K^2} \int_{-1}^{1} e^{V_0(u_0)/\varepsilon} \int e^{-Q_0} e^{Q_{u_0} - Q_0 - \sqrt{\varepsilon}R_{u_0}} du_\perp du_0$ $= K \mathbb{E}^{\gamma} [e^{Q_{u_0} - Q_0 - \sqrt{\varepsilon}R_{u_0}}]$ ▷ Conclusion: $\operatorname{cap}(A, B) = \varepsilon \sqrt{\frac{|\lambda_0|}{2\pi\varepsilon}} \sqrt{\frac{(2\pi\varepsilon)^N}{\det[-\Delta_\perp - 1]}} [1 + \mathcal{O}(\varepsilon)]$

▷ Thomson principle with divergence-free unit flow $f = K^{-1} e^{-Q_0[u_\perp]} e_{u_0}$ Normalisation $K = \varepsilon^{\frac{N}{2}} \int e^{-Q_0[u_\perp]} du_\perp = \sqrt{\frac{(2\pi\varepsilon)^N}{\det[-\Delta_\perp -1]}}$ $\operatorname{cap}(A, B)^{-1} \leq \mathcal{D}(h) = \frac{1}{\varepsilon K^2} \int_{-1}^{1} e^{V_0(u_0)/\varepsilon} \int e^{-Q_0} e^{Q_{u_0} - Q_0 - \sqrt{\varepsilon}R_{u_0}} du_\perp du_0$ $= K \mathbb{E}^{\gamma} [e^{Q_{u_0} - Q_0 - \sqrt{\varepsilon}R_{u_0}}]$ ▷ Conclusion: $\operatorname{cap}(A, B) = \varepsilon \sqrt{\frac{|\lambda_0|}{2\pi\varepsilon}} \sqrt{\frac{(2\pi\varepsilon)^N}{\det[-\Delta_\perp -1]}} [1 + \mathcal{O}(\varepsilon)]$

Other elements of the proof:

- \triangleright A priori bounds on h_{AB} : large deviations (or symmetry argument)
- ▷ Convergence of hitting times as $N \to \infty$: a priori estimate for $\mathbb{E}[\tau_B^2]$
- \triangleright Coupling argument for start in u_{in} [Martinelli, Olivieri & Scoppola]
- ▷ Bifurcation at $L = \beta \pi$

References

- N. B., Bastien Fernandez and Barbara Gentz, Metastability in interacting nonlinear stochastic differential equations I: From weak coupling to synchronisation, Nonlinearity 20, 2551–2581 (2007)
- Metastability in interacting nonlinear stochastic differential equations II: Large-N behaviour, 2583–2614 (2007)
- N. B. and Barbara Gentz, The Eyring–Kramers law for potentials with nonquadratic saddles, Markov Processes Relat. Fields 16, 549–598 (2010)
- _____, Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers' law and beyond, Electronic J. Probability 18, (24):1–58 (2013)

Thanks for your attention!

Slides available at https://www.idpoisson.fr/berglund/Seoul23a.pdf