Séminaire de Probabilités et Théorie Ergodique, LMPT Tours

Distribution de spikes pour des modèles stochastiques de neurones et chaînes de Markov à espace continu

Nils Berglund

MAPMO, Université d'Orléans

Tours, 5 décembre 2014

Avec Barbara Gentz (Bielefeld), Christian Kuehn (Vienne) and Damien Landon (Dijon)

Nils Berglund

nils.berglund@univ-orleans.fr

http://www.univ-orleans.fr/mapmo/membres/berglund/

Neurons and action potentials

Action potential [Dickson 00]

 Neurons communicate via patterns of spikes in action potentials

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Neurons and action potentials

Action potential [Dickson 00]

- Neurons communicate via patterns of spikes in action potentials
- Question: effect of noise on interspike interval statistics?
- Poisson hypothesis: Exponential distribution
 - $\Rightarrow \mathsf{Markov} \ \mathsf{property}$

Conduction-based models for action potential

▷ Hodgkin–Huxley model (1952)

1

$$C\frac{dV}{dt} = -g_{\rm K}n^4(V - V_{\rm K}) - g_{\rm Na}m^3h(V - V_{\rm Na}) - g_{\rm L}(V - V_{\rm L}) + I$$

$$\frac{dn}{dt} = \alpha_n(V)(1 - n) - \beta_n(V)n$$

$$\frac{dm}{dt} = \alpha_m(V)(1 - m) - \beta_m(V)m$$

$$\frac{dh}{dt} = \alpha_h(V)(1 - h) - \beta_h(V)h$$

$$c_{\rm m} = V_{\rm Na} + V_{\rm K} + V_{\rm L}$$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

5 décembre 2014

Intracellula

v

Conduction-based models for action potential

▶ Hodgkin–Huxley model (1952)

$$C\frac{dV}{dt} = -g_{\rm K}n^4(V - V_{\rm K}) - g_{\rm Na}m^3h(V - V_{\rm Na}) - g_{\rm L}(V - V_{\rm L}) + I$$

$$\frac{dn}{dt} = \alpha_n(V)(1 - n) - \beta_n(V)n$$

$$\frac{dm}{dt} = \alpha_m(V)(1 - m) - \beta_m(V)m$$

$$\frac{dh}{dt} = \alpha_h(V)(1 - h) - \beta_h(V)h$$

$$c_{\rm m} = v_{\rm K} v_{\rm K} + v_{\rm L}$$

▷ FitzHugh–Nagumo model (1962)

$$\frac{C}{g}\frac{\mathrm{d}V}{\mathrm{d}t} = V - V^3 + w$$
$$\tau \frac{\mathrm{d}w}{\mathrm{d}t} = \alpha - \beta V - \gamma w$$

- ▷ Morris–Lecar model (1982) 2*d*, more realistic eq for $\frac{dV}{dt}$
- ▷ Koper model (1995) 3*d*, generalizes FitzHugh–Nagumo

Consider the FHN equations in the form

 $\varepsilon \dot{x} = x - x^3 + y$ $\dot{y} = a - x - by$

- $\triangleright x \propto$ membrane potential of neuron
- \triangleright *y* \propto proportion of open ion channels (recovery variable)
- $\triangleright \ \varepsilon \ll 1 \Rightarrow \mathsf{fast-slow} \ \mathsf{system}$
- b = 0 in the following for simplicity (but results more general)

Consider the FHN equations in the form

 $\varepsilon \dot{x} = x - x^3 + y$ $\dot{y} = a - x - by$

- $\triangleright x \propto$ membrane potential of neuron
- \triangleright *y* \propto proportion of open ion channels (recovery variable)
- $\triangleright \ \varepsilon \ll 1 \Rightarrow \mathsf{fast}\mathsf{-slow} \ \mathsf{system}$
- b = 0 in the following for simplicity (but results more general)

Stationary point $P = (a, a^3 - a)$ Linearisation has eigenvalues $\frac{-\delta \pm \sqrt{\delta^2 - \varepsilon}}{\varepsilon}$ where $\delta = \frac{3a^2 - 1}{2}$ $\triangleright \ \delta > 0$: stable node $(\delta > \sqrt{\varepsilon})$ or focus $(0 < \delta < \sqrt{\varepsilon})$ $\triangleright \ \delta = 0$: singular Hopf bifurcation [Erneux & Mandel '86] $\triangleright \ \delta < 0$: unstable focus $(-\sqrt{\varepsilon} < \delta < 0)$ or node $(\delta < -\sqrt{\varepsilon})$

 $\delta >$ 0:

- ▷ *P* is asymptotically stable
- ▷ the system is excitable
- ▷ one can define a separatrix

 $\delta < 0$:

P is unstable ∃ asympt. stable periodic orbit sensitive dependence on δ : canard (duck) phenomenon [Callot, Diener, Diener '78, Benoît '81, ...]

 $\delta >$ 0:

- ▷ *P* is asymptotically stable
- ▷ the system is excitable
- ▷ one can define a separatrix

$\delta < 0$:

P is unstable ∃ asympt. stable periodic orbit sensitive dependence on δ : canard (duck) phenomenon [Callot, Diener, Diener '78, Benoît '81, ...]

Stochastic FHN equation

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$
$$dy_t = [a - x_t - by_t] dt + \sigma_2 dW_t^{(2)}$$

 $\triangleright \text{ Again } b = 0 \text{ for simplicity in this talk}$

 $\triangleright W_t^{(1)}, W_t^{(2)}$: independent Wiener processes (white noise)

$$\triangleright$$
 0 < $\sigma_1, \sigma_2 \ll 1$, $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Mixed-mode oscillations (MMOs)

Random Poincaré map

 Y_0, Y_1, \ldots substochastic Markov chain describing process killed on ∂D Number of small oscillations:

$$N = \inf\{n \ge 1 \colon Y_n \not\in \Sigma\}$$

Law of N?

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Random Poincaré maps

In appropriate coordinates

$$\mathrm{d}\varphi_t = f(\varphi_t, x_t) \,\mathrm{d}t + \sigma F(\varphi_t, x_t) \,\mathrm{d}W_t$$

 $dx_t = g(\varphi_t, x_t) dt + \sigma G(\varphi_t, x_t) dW_t \qquad x \in E \subset \Sigma$

 $arphi \in \mathbb{R} \quad (ext{ or } \mathbb{R} \ / \mathbb{Z} \) \ x \in E \subset \Sigma$

- $\,\triangleright\,$ all functions periodic in φ (say period 1)
- $\triangleright \ f \geqslant c > 0 \text{ and } \sigma \text{ small} \Rightarrow \varphi_t \text{ likely to increase}$
- process may be killed when x leaves E

 X_0, X_1, \ldots form (substochastic) Markov chain

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Harmonic measure

 $\triangleright \tau$: first-exit time of $z_t = (\varphi_t, x_t)$ from $\mathcal{D} = (-M, 1) \times E$

- $\triangleright \ A \subset \partial \mathcal{D}: \ \mu_z(A) = \mathbb{P}^z\{z_\tau \in A\} \text{ harmonic measure (wrt generator } \mathcal{L})$
- ▷ [Ben Arous, Kusuoka, Stroock '84]: under hypoellipticity cond, μ_z admits (smooth) density h(z, y) wrt arclength on ∂D
- ▷ Remark: $\mathcal{L}_z h(z, y) = 0$ (kernel is harmonic)
- ▷ For $B \subset E$ Borel set

$$\mathbb{P}^{X_0}\{X_1\in B\}=K(X_0,B)\coloneqq\int_BK(X_0,\mathrm{d} y)$$

where K(x, dy) = h((0, x), (1, y)) dy =: k(x, y) dy

Fredholm theory

Consider integral operator K acting

▷ on
$$L^{\infty}$$
 via $f \mapsto (Kf)(x) = \int_{E} k(x, y)f(y) dy = \mathbb{E}^{x}[f(X_{1})]$
▷ on L^{1} via $m \mapsto (mK)(y) = \int_{E} m(x)k(x, y) dx = \mathbb{P}^{\mu}\{X_{1} \in dy\}$

Thm [Fredholm 1903]:

If $k \in L^2$, then K has eigenvalues λ_n of finite multiplicity Right/left eigenfunctions: $Kh_n = \lambda_n h_n$, $h_n^* K = \lambda_n h_n^*$, form complete ON basis

Thm [Perron, Frobenius, Jentzsch 1912, Krein–Rutman '50, Birkhoff '57]: Principal eigenvalue λ_0 is real, simple, $|\lambda_n| < \lambda_0 \ \forall n \ge 1$, $h_0, h_0^* > 0$

Spectral decomp: $k(x, y) = \lambda_0 h_0(x) h_0^*(y) + \lambda_1 h_1(x) h_1^*(y) + ...$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Fredholm theory

Consider integral operator K acting

▷ on
$$L^{\infty}$$
 via $f \mapsto (Kf)(x) = \int_{E} k(x, y)f(y) dy = \mathbb{E}^{x}[f(X_{1})]$
▷ on L^{1} via $m \mapsto (mK)(y) = \int_{E} m(x)k(x, y) dx = \mathbb{P}^{\mu}\{X_{1} \in dy\}$

Thm [Fredholm 1903]:

If $k \in L^2$, then K has eigenvalues λ_n of finite multiplicity Right/left eigenfunctions: $Kh_n = \lambda_n h_n$, $h_n^* K = \lambda_n h_n^*$, form complete ON basis

Thm [Perron, Frobenius, Jentzsch 1912, Krein–Rutman '50, Birkhoff '57]: Principal eigenvalue λ_0 is real, simple, $|\lambda_n| < \lambda_0 \ \forall n \ge 1$, $h_0, h_0^* > 0$

Spectral decomp: $k^{n}(x, y) = \lambda_{0}^{n} h_{0}(x) h_{0}^{*}(y) + \lambda_{1}^{n} h_{1}(x) h_{1}^{*}(y) + \dots$

 $\Rightarrow \mathbb{P}^{\times} \{ X_n \in dy | X_n \in E \} = \pi_0(dx) + \mathcal{O}((|\lambda_1|/\lambda_0)^n)$

where $\pi_0 = h_0^* / \int_E h_0^*$ is quasistationary distribution (QSD) [Yaglom '47, Bartlett '57, Vere-Jones '62, ...]

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Consequence for FitzHugh–Nagumo model

Theorem 1 [B & Landon, Nonlinearity 2012]

N is asymptotically geometric: $\lim_{n\to\infty} \mathbb{P}\{N = n+1 | N > n\} = 1 - \lambda_0$ where $\lambda_0 \in (0, 1)$ if $\sigma > 0$ is principal eigenvalue of the chain

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Consequence for FitzHugh–Nagumo model

Theorem 1 [B & Landon, Nonlinearity 2012]

N is asymptotically geometric: $\lim_{n\to\infty} \mathbb{P}\{N = n+1 | N > n\} = 1 - \lambda_0$ where $\lambda_0 \in (0, 1)$ if $\sigma > 0$ is principal eigenvalue of the chain

Proof:

▷ Existence of spectral gap follows from positivity condition [Birkhoff '57]

🍽 More

Histograms of distribution of N (1000 spikes)

Modèles stochastiques de neurones et chaînes de Markov à espace continu

5 décembre 2014

12/21(29)

Weak-noise regime

Theorem B & Landon , Nonlinearity 2012

Assume ε and $\delta/\sqrt{\varepsilon}$ sufficiently small There exists $\kappa > 0$ s.t. for $\sigma^2 \leq (\varepsilon^{1/4} \delta)^2 / \log(\sqrt{\varepsilon}/\delta)$

Principal eigenvalue:

$$1 - \lambda_0 \leqslant \exp\left\{-\kappa rac{(arepsilon^{1/4}\delta)^2}{\sigma^2}
ight\}$$

Expected number of small oscillations:

$$\mathbb{E}^{\mu_0}[N] \ge C(\mu_0) \exp\left\{\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

where $C(\mu_0)$ = probability of starting on Σ above separatrix

Proof:

▷ Construct $A \subset \Sigma$ such that K(x, A) exponentially close to 1 for all $x \in A$ ▷ $\lambda_0 \int_A h_0^*(y) \, \mathrm{d}y = \int_E h_0^*(x) K(x, A) \, \mathrm{d}x \ge \inf_{x \in A} K(x, A) \int_A h_0^*(y) \, \mathrm{d}y$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Dynamics near the separatrix

Change of variables:

- ▷ Translate to Hopf bif. point
- Scale space and time
- ▷ Straighten nullcline $\dot{x} = 0$

 \Rightarrow variables (ξ, z) where nullcline: $\{z = \frac{1}{2}\}$

$$d\xi_t = \left(\frac{1}{2} - z_t - \frac{\sqrt{\varepsilon}}{3}\xi_t^3\right) dt$$
$$dz_t = \left(\tilde{\mu} + 2\xi_t z_t + \frac{2\sqrt{\varepsilon}}{3}\xi_t^4\right) dt$$

where

$$\tilde{\mu} = \frac{\delta}{\sqrt{\varepsilon}}$$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Dynamics near the separatrix

Change of variables:

- ▷ Translate to Hopf bif. point
- Scale space and time
- ▷ Straighten nullcline $\dot{x} = 0$

 \Rightarrow variables (ξ, z) where nullcline: $\{z = \frac{1}{2}\}$

$$d\xi_t = \left(\frac{1}{2} - z_t - \frac{\sqrt{\varepsilon}}{3}\xi_t^3\right) dt + \tilde{\sigma}_1 dW_t^{(1)}$$

$$dz_t = \left(\tilde{\mu} + 2\xi_t z_t + \frac{2\sqrt{\varepsilon}}{3}\xi_t^4\right) dt - 2\tilde{\sigma}_1\xi_t dW_t^{(1)} + \tilde{\sigma}_2 dW_t^{(2)}$$

where

$$\widetilde{\mu} = \frac{\delta}{\sqrt{\varepsilon}} - \widetilde{\sigma}_1^2 \qquad \widetilde{\sigma}_1 = -\sqrt{3} \frac{\sigma_1}{\varepsilon^{3/4}} \qquad \widetilde{\sigma}_2 = \sqrt{3} \frac{\sigma_2}{\varepsilon^{3/4}}$$

Upward drift dominates if $\tilde{\mu}^2 \gg \tilde{\sigma}_1^2 + \tilde{\sigma}_2^2 \Rightarrow (\varepsilon^{1/4}\delta)^2 \gg \sigma_1^2 + \sigma_2^2$ Rotation around *P*: use that $2z e^{-2z-2\xi^2+1}$ is constant for $\tilde{\mu} = \varepsilon = 0$

From below to above threshold

Linear approximation:

$$dz_t^0 = \left(\tilde{\mu} + tz_t^0\right) dt - \tilde{\sigma}_1 t \, dW_t^{(1)} + \tilde{\sigma}_2 \, dW_t^{(2)}$$

$$\Rightarrow \quad \mathbb{P}\{\text{no small osc}\} \simeq \Phi\left(-\pi^{1/4} \frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_1^2 + \tilde{\sigma}_2^2}}\right) \qquad \Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, dy$$

From below to above threshold

Linear approximation:

$$dz_t^0 = \left(\tilde{\mu} + tz_t^0\right) dt - \tilde{\sigma}_1 t \, dW_t^{(1)} + \tilde{\sigma}_2 \, dW_t^{(2)}$$

$$\Rightarrow \quad \mathbb{P}\{\text{no small osc}\} \simeq \Phi\left(-\pi^{1/4} \frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_1^2 + \tilde{\sigma}_2^2}}\right) \qquad \Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, dy$$

*: $\mathbb{P}\{\text{no small osc}\}$ +: $1/\mathbb{E}[N]$ o: $1 - \lambda_0$ curve: $x \mapsto \Phi(\pi^{1/4}x)$

$$x = -rac{ ilde{\mu}}{\sqrt{ ilde{\sigma}_1^2 + ilde{\sigma}_2^2}} = -rac{arepsilon^{1/4} (\delta - \sigma_1^2 / arepsilon)}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Summary: Parameter regimes

Regime I: rare isolated spikes Theorem 2 applies ($\delta \ll \varepsilon^{1/2}$) Interspike interval \simeq exponential

Regime II: clusters of spikes # interspike osc asympt geometric $\sigma = (\delta \varepsilon)^{1/2}$: geom(1/2)

Regime III: repeated spikes $\mathbb{P}\{N=1\} \simeq 1$ Interspike interval \simeq constant

$$\begin{aligned} \sigma_1 &= \sigma_2: \\ \mathbb{P}\{\mathsf{N} = 1\} \simeq \Phi\Big(-\tfrac{(\pi\varepsilon)^{1/4}(\delta - \sigma^2/\varepsilon)}{\sigma}\Big) \end{aligned}$$

see also [Muratov & Vanden Eijnden '08]

The Koper model

$$\varepsilon \, dx_t = [y_t - x_t^3 + 3x_t] \, dt \qquad + \sqrt{\varepsilon} \sigma F(x_t, y_t, z_t) \, dW_t$$

$$dy_t = [kx_t - 2(y_t + \lambda) + z_t] \, dt + \sigma' G_1(x_t, y_t, z_t) \, dW_t$$

$$dz_t = [\rho(\lambda + y_t - z_t)] \, dt \qquad + \sigma' G_2(x_t, y_t, z_t) \, dW_t$$

Folded-node singularity at P^* induces mixed-mode oscillations [Benoît, Lobry '82, Szmolyan, Wechselberger '01, ...] Poincaré map $\Pi: \Sigma \to \Sigma$ is almost 1*d* due to contraction in *x*-direction

Modèles stochastiques de neurones et chaînes de Markov à espace continu

5 décembre 2014

17/21(29)

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Transition	Δx	Δy	Δz
$\Sigma_2 ightarrow \Sigma_3$	$\sigma + \sigma'$		$\sigma\sqrt{\varepsilon} + \sigma'$
$\Sigma_3 ightarrow \Sigma_4$	$\sigma + \sigma'$		$\sigma\sqrt{\varepsilon} + \sigma'$
$\Sigma_4 o \Sigma_4'$	$\frac{\sigma}{\varepsilon^{1/6}} + \frac{\sigma'}{\varepsilon^{1/3}}$		$\sigma \sqrt{\varepsilon {\log \varepsilon} } + \sigma'$
$\Sigma_4' ightarrow \Sigma_5$		$\sigma\sqrt{\varepsilon} + \sigma'\varepsilon^{1/6}$	$\sigma\sqrt{\varepsilon} + \sigma' \varepsilon^{1/6}$
$\Sigma_5 ightarrow \Sigma_6$	$\sigma + \sigma'$		$\sigma\sqrt{\varepsilon} + \sigma'$
$\Sigma_6 ightarrow \Sigma_1$	$\sigma + \sigma'$		$\sigma\sqrt{\varepsilon} + \sigma'$
$\Sigma_1 ightarrow \Sigma_1'$		$(\sigma + \sigma') \varepsilon^{1/4}$	σ'
$\Sigma_1' o \Sigma_1''$ if $z = \mathcal{O}(\sqrt{\mu})$		$(\sigma + \sigma')(arepsilon/\mu)^{1/4}$	$\sigma'(arepsilon/\mu)^{1/4}$
$\Sigma_1'' o \Sigma_2$		$(\sigma + \sigma') \varepsilon^{1/4}$	$\sigma' \varepsilon^{1/4}$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Main results

Main results

Theorem 3: early escape

$$\begin{split} &P_0 \in \Sigma_1 \text{ in sector with } k > 1/\sqrt{\mu} \Rightarrow \text{first hitting of } \Sigma_2 \text{ at } P_2 \text{ s.t.} \\ &\mathbb{P}^{P_0}\{z_2 \geqslant z\} \leqslant C |\log(\sigma + \sigma')|^{\gamma} \, \mathrm{e}^{-\kappa z^2/(\varepsilon \mu |\log(\sigma + \sigma')|)} \end{split}$$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Main results

Theorem 3: early escape

$$\begin{split} &P_0 \in \Sigma_1 \text{ in sector with } k > 1/\sqrt{\mu} \Rightarrow \text{first hitting of } \Sigma_2 \text{ at } P_2 \text{ s.t.} \\ &\mathbb{P}^{P_0}\{z_2 \geqslant z\} \leqslant C |\log(\sigma + \sigma')|^{\gamma} \, \mathrm{e}^{-\kappa z^2/(\varepsilon \mu |\log(\sigma + \sigma')|)} \end{split}$$

- ▷ Saturation effect occurs at $k_{\rm c} \simeq \sqrt{|\log(\sigma + \sigma')|/\mu}$
- ▷ For $k > k_c$, behaviour indep. of k and $\Delta z \leq O(\sqrt{\epsilon \mu |\log(\sigma + \sigma')|})$

Concluding remarks

- ▷ Noise can induce spikes that may have non-Poisson interval statistics
- Noise can increase the number of small-amplitude oscillations
- ▷ Important tools: random Poincaré maps and quasistationary distrib.
- Future work: more quantitative analysis of oscillation patterns, using singularly perturbed Markov chains and spectral theory More

References

- N.B., Damien Landon, Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model, Nonlinearity 25, 2303–2335 (2012)
- N.B., Barbara Gentz and Christian Kuehn, Hunting French Ducks in a Noisy Environment, J. Differential Equations 252, 4786–4841 (2012)
- _____, From random Poincaré maps to stochastic mixed-mode-oscillation patterns, preprint arXiv:1312.6353 (2013), to appear in J Dynam Diff Eq
- N.B. and Barbara Gentz, Stochastic dynamic bifurcations and excitability in C. Laing and G. Lord (Eds.), Stochastic methods in Neuroscience, p. 65-93, Oxford University Press (2009)
- On the noise-induced passage through an unstable periodic orbit II: General case, SIAM J Math Anal 46, 310–352 (2014)

Modèles stochastiques de neurones et chaînes de Markov à espace continu

5 décembre 2014

21/21(29)

How to estimate the spectral gap

Various approaches: coupling, Poincaré/log-Sobolev inequalities, Lyapunov functions, Laplace transform + Donsker–Varadhan, ...

Thm [Garett Birkhoff '57] Under uniform positivity condition

 $s(x)\nu(A) \leqslant K(x,A) \leqslant Ls(x)\nu(A) \qquad \forall x \in E, \forall A \subset E$

one has $|\lambda_1|/\lambda_0 \leqslant 1 - L^{-2}$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

How to estimate the spectral gap

Various approaches: coupling, Poincaré/log-Sobolev inequalities, Lyapunov functions, Laplace transform + Donsker–Varadhan, ...

Thm [Garett Birkhoff '57] Under uniform positivity condition

 $s(x)\nu(A) \leqslant K(x,A) \leqslant Ls(x)\nu(A) \qquad \forall x \in E, \forall A \subset E$

one has $|\lambda_1|/\lambda_0 \leqslant 1 - L^{-2}$

Localised version: assume $\exists A \subset E$ and $m : A \to \mathbb{R}^*_+$ such that

 $m(y) \leqslant k(x,y) \leqslant Lm(y) \quad \forall x, y \in A$ (1)

Then

$$|\lambda_1| \leq L - 1 + \mathcal{O}\left(\sup_{x \in E} \mathcal{K}(x, E \setminus A)\right) + \mathcal{O}\left(\sup_{x \in A} [1 - \mathcal{K}(x, E)]\right)$$

To prove the restricted positivity condition (1):

- ▷ Show that $|Y_n X_n|$ likely to decrease exp for $X_0, Y_0 \in A$
- ▷ Use Harnack inequalities once $|Y_n X_n| = O(\sigma^2)$

➡ Back

Estimating noise-induced fluctuations

Modèles stochastiques de neurones et chaînes de Markov à espace continu

5 décembre 2014

23/21(29)

Estimating noise-induced fluctuations

$$\begin{aligned} \mathsf{f}_t &= (\mathsf{x}_t, \mathsf{y}_t, \mathsf{z}_t) - (\mathsf{x}_t^{\mathsf{det}}, \mathsf{y}_t^{\mathsf{det}}, \mathsf{z}_t^{\mathsf{det}}) \\ & \mathsf{d}\zeta_t = \frac{1}{\varepsilon} \mathsf{A}(t)\zeta_t \,\mathsf{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \mathcal{F}(\zeta_t, t) \,\mathsf{d}W_t + \frac{1}{\varepsilon} \underbrace{\mathsf{b}(\zeta_t, t)}_{=\mathcal{O}(\|\zeta_t\|^2)} \,\mathsf{d}t \\ & \zeta_t = \frac{\sigma}{\sqrt{\varepsilon}} \int_0^t U(t, s) \mathcal{F}(\zeta_s, s) \,\mathsf{d}W_s + \frac{1}{\varepsilon} \int_0^t U(t, s) \mathsf{b}(\zeta_s, s) \,\mathsf{d}s \end{aligned}$$

where U(t,s) principal solution of $\varepsilon \dot{\zeta} = A(t)\zeta$.

Lemma (Bernstein-type estimate):

ζ

$$\mathbb{P}\left\{\sup_{0\leqslant s\leqslant t}\left\|\int_{0}^{s}\mathcal{G}(\zeta_{u},u)\,\mathrm{d}W_{u}\right\|>h\right\}\leqslant 2n\exp\left\{-\frac{h^{2}}{2V(t)}\right\}$$

where $\int_0 \mathcal{G}(\zeta_u, u) \mathcal{G}(\zeta_u, u)^T du \leq V(s)$ a.s. and n = 3 space dimension

Remark: more precise results using ODE for covariance matrix of

$$\zeta_t^0 = \frac{\sigma}{\sqrt{\varepsilon}} \int_0^t U(t,s) \mathcal{F}(0,s) \,\mathrm{d}W_s$$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

5 décembre 2014

24/21(29)

▶ Bacl

Example: analysis near the regular fold

Proposition: For
$$h_1 = \mathcal{O}(\varepsilon^{2/3})$$

$$\mathbb{P}\left\{ \| (y_{\tau_{\Sigma_5}}, z_{\tau_{\Sigma_5}}) - (y^*, z^*) \| > h_1 \right\}$$

$$\leq C \| \log \varepsilon \| \left(\exp\left\{ -\frac{\kappa h_1^2}{\sigma^2 \varepsilon + (\sigma')^2 \varepsilon^{1/3}} \right\} + \exp\left\{ -\frac{\kappa \varepsilon}{\sigma^2 + (\sigma')^2 \varepsilon} \right\} \right)$$

Useful if $\sigma, \sigma' \ll \sqrt{\varepsilon}$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Further ways to analyse random Poincaré maps

Theory of singularly perturbed Markov chains

 For coexisting stable periodic orbits: spectral-theoretic description of metastable transitions

5 décembre 2014

N Bac

Further ways to analyse random Poincaré maps

Theory of singularly perturbed Markov chains

For coexisting stable periodic orbits:
 spectral-theoretic description of metastable transitions

5 décembre 2014

→ More

Laplace transforms

 $\{X_n\}_{n \ge 0} : \text{ Markov chain on } E, \text{ cemetery state } \Delta, \text{ kernel } K$ Given $A \subset E, B \subset E \cup \{\Delta\}, A \cap B = \emptyset, x \in E \text{ and } u \in \mathbb{C}, \text{ define}$ $\tau_A = \inf\{n \ge 1: X_n \in A\} \qquad G^u_{A,B}(x) = \mathbb{E}^x[e^{u\tau_A} \mathbf{1}_{\{\tau_A < \tau_B\}}]$ $\sigma_A = \inf\{n \ge 0: X_n \in A\} \qquad H^u_{A,B}(x) = \mathbb{E}^x[e^{u\sigma_A} \mathbf{1}_{\{\sigma_A < \sigma_B\}}]$ $\triangleright \ G^u_{A,B}(x) \text{ is analytic for } |e^u| < [\sup_{x \in (A \cup B)^c} K(x, (A \cup B)^c)]^{-1}$ $\triangleright \ G^u_{A,B} = H^u_{A,B} \text{ in } (A \cup B)^c, H^u_{A,B} = 1 \text{ in } A \text{ and } H^u_{A,B} = 0 \text{ in } B$ Lemma: Feynman–Kac-type relation $KH^u_{A,B} = e^{-u} G^u_{A,B}$

🍽 Back

27/21(29)

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Laplace transforms

 $\{X_n\}_{n\geq 0}$: Markov chain on E, cemetery state Δ , kernel K Given $A \subset E$, $B \subset E \cup \{\Delta\}$, $A \cap B = \emptyset$, $x \in E$ and $u \in \mathbb{C}$, define $\tau_A = \inf\{n \ge 1 \colon X_n \in A\} \qquad \qquad G^u_{A B}(x) = \mathbb{E}^x [e^{u\tau_A} \mathbf{1}_{\{\tau_A \le \tau_B\}}]$ $\sigma_A = \inf\{n \ge 0 \colon X_n \in A\} \qquad \qquad H^u_{A,B}(x) = \mathbb{E}^x [e^{u\sigma_A} \mathbf{1}_{\{\sigma_A < \sigma_B\}}]$ $\triangleright \ \ G^u_{A,B}(x) \text{ is analytic for } |\mathsf{e}^u| < \left[\sup_{x \in (A \cup B)^c} K(x, (A \cup B)^c)\right]^{-1}$ $\triangleright G_{AB}^{u} = H_{AB}^{u}$ in $(A \cup B)^{c}$, $H_{AB}^{u} = 1$ in A and $H_{AB}^{u} = 0$ in B

Lemma: Feynman–Kac-type relation $KH^{u}_{AB} = e^{-u} G^{u}_{AB}$

Proof:

$$(\mathcal{K}\mathcal{H}^{u}_{A,B})(x) = \mathbb{E}^{x} \Big[\mathbb{E}^{X_{1}} \Big[e^{u\sigma_{A}} \mathbf{1}_{\{\sigma_{A} < \sigma_{B}\}} \Big] \Big]$$

$$= \mathbb{E}^{x} \Big[\mathbf{1}_{\{X_{1} \in A\}} \mathbb{E}^{X_{1}} \Big[e^{u\sigma_{A}} \mathbf{1}_{\{\sigma_{A} < \sigma_{B}\}} \Big] \Big] + \mathbb{E}^{x} \Big[\mathbf{1}_{\{X_{1} \in A^{c}\}} \mathbb{E}^{X_{1}} \Big[e^{u\sigma_{A}} \mathbf{1}_{\{\sigma_{A} < \sigma_{B}\}} \Big] \Big]$$

$$= \mathbb{E}^{x} \Big[\mathbf{1}_{\{1 = \tau_{A} < \tau_{B}\}} \Big] + \mathbb{E}^{x} \Big[e^{u(\tau_{A} - 1)} \mathbf{1}_{\{1 < \tau_{A} < \tau_{B}\}} \Big]$$

$$= \mathbb{E}^{x} \Big[e^{u(\tau_{A} - 1)} \mathbf{1}_{\{\tau_{A} < \tau_{B}\}} \Big] = e^{-u} \mathcal{G}^{u}_{A,B}(x)$$

$$\Rightarrow \text{ if } \mathcal{G}^{u} \quad \text{varies little in } \mathcal{A} \sqcup \mathcal{B} \text{ it is close to an eigenfunction} \qquad \text{* Back}$$

 \Rightarrow if G^{u}_{AB} varies little in $A \cup B$, it is close to an eigenfunction

Modèles stochastiques de neurones et chaînes de Markov à espace continu

5 décembre 2014

27/21(29)

Small eigenvalues: Heuristics

(inspired by [Bovier, Eckhoff, Gayrard, Klein '04])

- ▷ Stable periodic orbits in x_1, \ldots, x_N
- ▷ B_i small ball around x_i , $B = \bigcup_{i=1}^N B_i$
- ▷ Eigenvalue equation $(Kh)(x) = e^{-u} h(x)$
- $\triangleright \text{ Assume } h(x) \simeq h_i \text{ in } B_i$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Small eigenvalues: Heuristics

(inspired by [Bovier, Eckhoff, Gayrard, Klein '04])

- ▷ Stable periodic orbits in x_1, \ldots, x_N
- ▷ B_i small ball around x_i , $B = \bigcup_{i=1}^N B_i$
- ▷ Eigenvalue equation $(Kh)(x) = e^{-u} h(x)$
- ▷ Assume $h(x) \simeq h_i$ in B_i

Ansatz:
$$h(x) = \sum_{j=1}^{N} h_j H^u_{B_j, B \setminus B_j}(x) + r(x)$$

 $\triangleright x \in B_i$: $h(x) = h_i + r(x)$

▷ $x \in B^c$: eigenvalue equation is satisfied by h - r (Feynman–Kac) ▷ $x = x_i$: eigenvalue equation yields by Feynman–Kac

$$h_i = \sum_{j=1}^N h_j M_{ij}(u)$$
 $M_{ij}(u) = G^u_{B_j, B \setminus B_j}(x_i) = \mathbb{E}^{x_i} [e^{u\tau_B} \mathbf{1}_{\{\tau_B = \tau_{B_j}\}}]$

 $\Rightarrow \text{ condition det}(M - 1) = 0 \Rightarrow N \text{ eigenvalues exp close to } 1$ If $\mathbb{P}\{\tau_B > 1\} \ll 1$ then $M_{ij}(u) \simeq e^u \mathbb{P}^{x_i}\{\tau_B = \tau_{B_i}\} =: e^u P_{ij} \text{ and } Ph \simeq e^{-u} h$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

Bacl

Control of error term

The error term satisfies the boundary value problem

$$(Kr)(x) = e^{-u} r(x)$$
 $x \in B^{c}$
 $r(x) = h(x) - h_i$ $x \in B_i$

Lemma:

For u s.t. G_{B,E^c}^u exists, the unique solution of

$(K\psi)(x) = e^{-u}\psi(x)$	$x \in B^{c}$
$\psi(x) = \theta(x)$	$x \in B$

is given by $\psi(x) = \mathbb{E}^{x}[e^{u\tau_{B}} \theta(X_{\tau_{B}})]$

 $\Rightarrow r(x) = \mathbb{E}^{x}[e^{u\tau_{B}} \theta(X_{\tau_{B}})] \text{ where } \theta(x) = \sum_{j} [h(x) - h_{j}] \mathbb{1}_{\{x \in B_{j}\}}$ To show that $h(x) - h_{j}$ is small in B_{j} : use Harnack inequalities

Consequence: Reduction to an *N*-state process in the sense that

$$\mathbb{P}^{\times}\{X_n \in B_i\} = \sum_{j=1}^N \lambda_j^n h_j(x) h_j^*(B_i) + \mathcal{O}(|\lambda_{N+1}|^n)$$

Modèles stochastiques de neurones et chaînes de Markov à espace continu

5 décembre 2014

29/21(29)