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Deterministic Allen–Cahn PDE
[Chafee & Infante 74, Allen & Cahn 75]

∂tu =∆u + u − u3

▷ u = u(t, x) ∈ R, t ⩾ 0, x ∈ Td
L = (R/LZ)d , L > 0

Phase separation (d = 1: [Carr & Pego 89, Chen 04])

Remark: Φ4 model from QFT: ∂tu =∆u − u3
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Deterministic Allen–Cahn PDE

∂tu =∆u + u − u3

Energy function:

V [u] = ∫
Td
L

[1
2
∣∇u(x)∣2 − 1

2
u(x)2 + 1

4
u(x)4]dx ⇒ ∇vV [u] = −⟨∂tu, v⟩

Stationary solutions (d = 1):
u′′0 (x) = −u0(x) + u0(x)3 critical points of V

▷ u±(x) ≡ ±1
▷ u0(x) ≡ 0
▷ Nonconstant solutions if L > 2π

(expressible in terms of Jacobi elliptic fcts)
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Stability of stationary solutions
Linearisation at u0:
∂tvt(x) = (Lv)(x) ∶= v ′′t (x) + [1 − 3u0(x)2]vt(x)

Stability: Find eigenvalues of L Ð→ Sturm–Liouville problem

▷ u±(x) ≡ ±1: stable
▷ u0(x) ≡ 0: unstable
▷ Nonconstant solutions: unstable
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(= unstable directions)
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Stochastic Allen–Cahn PDE

∂tu =∆u + u − u3 +
√
2εξ

▷ ξ space-time white noise: centered, Gaussian,
E[ξ(t, x)ξ(s, y)] = δ(t − s)δ(x − y)

▷ ξ distribution, ⟨ξ,ϕ⟩ ∼ N (0, ∥ϕ∥2
L2), E[⟨ξ,ϕ1⟩⟨ξ,ϕ2⟩] = ⟨ϕ1, ϕ2⟩L2

Question: Speed of convergence to equilibrium measure?
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Reversible diffusion in a double-well

dxt = −∇V (xt)dt +
√
2εdWt

V ∶ Rd → R confining 2-well potential
▷ Generator:

L = ε∆ −∇V ⋅ ∇ = ε eV /ε∇ ⋅ e−V /ε∇
▷ Invariant probability: Gibbs measure
π(dx) = 1

Z e−V (x)/ε dx ⇒ L †π = 0

Luminy

Mont
Puget

Calanque de Sugiton
x

z

y

Col de Sugiton

▷ Reversible: ⟨f ,L g⟩π = ⟨L f ,g⟩π for ⟨f ,g⟩π = ∫
Rd

f (x)g(x)π(dx)

How to characterise convergence to equilibrium?
▷ Exponential ergodicity: ∣Ex[f (xt)] − ⟨π, f ⟩∣ ⩽ C(x , f ) e−βt

Possible via Lyapunov functions [Meyn & Tweedie], bad control of β

▷ Mean hitting time: Estimate Ex[τy ] where τy = inf{t > 0∶ xt ∈ Bε(y)}
▷ Spectral gap of L
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Mean first hitting time
▷ Arrhenius’ law (1889): Ex[τy ] ≃ e[V (z)−V (x)]/ε

Proved by [Freidlin, Wentzell, 1979] using large deviations

▷ Eyring–Kramers law (1935, 1940):
Eigenvalues of Hessian of V at minimum x : 0 < ν1 ⩽ ν2 ⩽ ⋅ ⋅ ⋅ ⩽ νd
Eigenvalues of Hessian of V at saddle z : λ1 < 0 < λ2 ⩽ ⋅ ⋅ ⋅ ⩽ λd

Ex[τy ] = 2π
√

λ2...λd
∣λ1∣ν1...νd

e[V (z)−V (x)]/ε[1 + Oε(1)]

Spectral gap of L = Ex[τy ]−1[1 + Oε(1)]

Proved by [Bovier, Eckhoff, Gayrard, Klein, 2004] using potential theory,
by [Helffer, Klein, Nier, 2004] using Witten Laplacian, . . .
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Potential-theoretic proof of Eyring–Kramers law

▷ wA(x) = Ex[τA] satisfies
⎧⎪⎪⎨⎪⎪⎩

(LwA)(x) = −1 x ∈ Ac

wA(x) = 0 x ∈ A

▷ hAB(x) = Px{τA < τB} satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(L hAB)(x) = 0 x ∈ (A ∪B)c

hAB(x) = 1 x ∈ A
hAB(x) = 0 x ∈ B

Theorem: A,B ⊂ Rd disjoint. ∃ proba measure νAB on ∂A s.t.

∫
∂A

Ex[τB]νAB(dx) = 1
cap(A,B) ∫Bc

e−V (y)/ε hAB(y)dy

Proof: wB(x) = −∫
Bc

GBc (x , y)dy hAB(y) = −∫
∂A

GBc (y , x)eAB(dx)

νAB(dx) ∶= 1
cap(A,B)

e−V (x)/ε eAB(dx) cap(A,B) ∶= ∫
∂A

e−V /ε eAB(dx)

cap(A,B)∫
∂A

wB(x)νAB(dx) = −∫
∂A
∫
Bc

GBc (x , y) e−V (x)/ε

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=GBc (y ,x) e−V (y)/ε

eAB(dx)dy
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Potential-theoretic proof of Eyring–Kramers law
Theorem: A,B ⊂ Rd disjoint. ∃ proba measure νAB on ∂A s.t.

∫
∂A

Ex[τB]νAB(dx) = 1
cap(A,B) ∫Bc

e−V (y)/ε hAB(y)dy

Apply to A,B neighbourhoods of x , y

▷ Laplace asymptotics: ∫
Bc

hA,B(y) e−V (y)/ε dy ≃
√

(2πε)d

ν1...νd
e−V (x)/ε

▷ Capacity: cap(A,B) = E (hAB)
▷ Dirichlet form: E (f ) = ⟨f ,−L f ⟩ = ε∫

Rd
e−V (x)/ε∣∇f (x)∣2 dx

Theorem: Dirichlet principle
Let HAB = {h ∶ Rd → [0,1]∶h∣A = 1,h∣B = 0}. Then

cap(A,B) = inf
h∈HAB

E (h) = E (hAB)

Appropriate test function yields cap(A,B) ≃ ε
√

∣λ1∣
2πε

√
(2πε)d−1
λ2...λd

e−V (z)/ε
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Stochastic Allen–Cahn PDE
∂tu =∆u + u − u3 +

√
2εξ x ∈ TL

▷ [Faris & Jona-Lasinio ’82]: existence/uniqueness of solution
▷ [Da Prato & Zabczyk ’90s]: invariant measure is Gibbs measure associated

with

V [u] = ∫
TL

[1
2
∣∇u(x)∣2 − 1

2
u(x)2 + 1

4
u(x)4]dx

▷ [Faris & Jona-Lasinio ’82]: Arrhenius law Eu−[τu+] ≃ e(V [utr]−V [u−])/ε

where utr transition state, utr = u0 if L < 2π

Question: is there an Eyring–Kramers law? With what prefactor?

Heuristics: V [u] = 1
2⟨u, (−∆ − 1)u⟩ +O(u4)

▷ Hessian of V at u0: −∆ − 1, eigenvalues λk = (2kπ
L )2 − 1

▷ Hessian of V at u−: −∆ + 2, eigenvalues νk = (2kπ
L )2 + 2

Formally, product of ratios of λk/νk converges [Maier & Stein ’01]
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Formal computation and Fredholm determinant
Formally (for L < 2π)

Eu−[τu+] = 2π
∣λ1∣

√
∣detHessV [u0]∣
detHessV [u−]

e(V [u0]−V [u−])/ε[1 + Oε(1)]

∆⊥ Laplacian acting on mean zero functions

det([−∆⊥ − 1][−∆⊥ + 2]−1) = det([−∆⊥ + 2 − 3][−∆⊥ + 2]−1)
= det(1l − 3[−∆⊥ + 2]−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Fredholm determinant

log det(1l − 3[−∆⊥ + 2]−1) = Tr log(1l − 3[−∆⊥ + 2]−1)
= −∑

n⩾1

3n
n Tr([−∆⊥ + 2]−n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≲[(2π

L
)2
+2]−n

<∞ (L < 2π)

General fact: det(1l +T ) <∞ if T is trace class
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Main result for d = 1
Theorem: [B & Gentz, Elec. J. Proba 2013]

▷ If L < 2π − c with c > 0, then

Eu−[τ+] = 2π
√
det(1l − 3[−∆ + 2]−1) e(V [u0]−V [u−])/ε[1 + Oε(1)]

▷ Similar explicit expressions for L > 2π − c and L ≃ 2π
(with different utr and slightly different ε-dependence due to 0 eigenvalue)

Remarks:
▷ Proof relies on spectral Galerkin approximation
▷ Error more precise than Oε(1)
▷ If utr ≠ u0, Fredholm determinant computed with techniques from

path integrals [Maier & Stein]

▷ Similar results for Neumann b.c.
▷ Similar results for other nonlinearities than −u3
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Allen–Cahn SPDE for d = 2
▷ Arrhenius law holds via large-deviation principle [Hairer & Weber, 2015]

▷ Naive computation of prefactor fails:

Tr log(1l − 3[−∆⊥ + 2]−1) ≃ ∑
k∈(Z2)∗

log(1 − 3L2

∣k ∣2π2 )

≃ − ∑
k∈(Z2)∗

3L2

∣k ∣2π2 ≃ −3L2

π2 ∫
∞

1

r dr
r2 = −∞

▷ In fact, the equation needs to be renormalised

Theorem: [Da Prato & Debussche 2003]

Let ξδ be a mollification on scale δ of white noise. Then

∂tu =∆u + [1 + 3εC(δ)]u − u3 +
√
2εξδ

with C(δ) ≃ log(δ−1) admits local solution converging as δ → 0

▷ C(δ) ∼ variance of mollified Gaussian free field (GFF)
▷ Naively, one could expect u± = ±

√
1 + 3εC(δ) but this is not the case
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Main result in dimension 2
▷ Use spectral Galerkin approximation with cut-off N instead of

mollification, L2CN = Tr(PN[−∆ + 2]−1) ∼ log(N)
▷ VN[u0] −VN[u−] = L2

4 + 3
2L

2εCN

▷ (Prefactor)2 = det(1l − 3PN[−∆⊥ + 2]−1)e3Tr(PN[−∆⊥+2]−1)

det2(1l −T ) = det(1l −T )eTrT Carleman–Fredholm determinant

Theorem: [B, Di Gesù, Weber, Elec. J. Proba 2017]

For L < 2π, appropriate A ∋ u−, B ∋ u+, ∃µN probability measures on ∂A:

lim sup
N→∞

EµN [τB] ⩽ 2π
√
det2(1l − 3[−∆ + 2]−1) e(V [u0]−V [u−])/ε[1 + c+

√
ε]

lim inf
N→∞

EµN [τB] ⩾ 2π
√
det2(1l − 3[−∆ + 2]−1) e(V [u0]−V [u−])/ε[1 − c−ε]

▷ [Tsatsoulis & Weber, PTRF 2018]: Same result for Eu−[τB]
▷ det2 defined whenever T is only Hilbert–Schmidt (true for d ⩽ 3)
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Thanks for your attention!
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