DNA Seminar, NTNU Trondheim

Metastable dynamics of stochastic Allen-Cahn PDEs on the torus

Nils Berglund

Institut Denis Poisson, Université d'Orléans, France

March 26, 2021 (Online)

Joint works with Giacomo Di Gesù (Pisa), Barbara Gentz (Bielefeld) and Hendrik Weber (Bath)

Nils Berglund nils.berglund@univ-orleans.fr https://www.idpoisson.fr/berglund/

Deterministic Allen–Cahn PDE

[Chafee & Infante 74, Allen & Cahn 75]

$$
\partial_t u = \Delta u + u - u^3
$$

 \triangleright $u = u(t, x) \in \mathbb{R}, t \geq 0, x \in \mathbb{T}_L^d = (\mathbb{R}/L\mathbb{Z})^d, L > 0$

Phase separation $(d = 1:$ [Carr & Pego 89, Chen 04])

Remark: Φ^4 model from QFT: $\partial_t u = \Delta u - u^3$

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 1/14

Deterministic Allen–Cahn PDE

$$
\partial_t u = \Delta u + u - u^3
$$

Energy function:

$$
V[u] = \int_{\mathbb{T}_L^d} \left[\frac{1}{2} |\nabla u(x)|^2 - \frac{1}{2} u(x)^2 + \frac{1}{4} u(x)^4 \right] dx \implies \nabla_v V[u] = -\langle \partial_t u, v \rangle
$$

Stationary solutions $(d = 1)$: $u_0''(x) = -u_0(x) + u_0(x)^3$ critical points of V \triangleright $u_{\pm}(x) \equiv \pm 1$ $\triangleright \ u_0(x) \equiv 0$ $H = \frac{1}{2}(u')^2 + \frac{1}{2}u^2 - \frac{1}{4}u^4$ u ′

 \triangleright Nonconstant solutions if $L > 2\pi$ (expressible in terms of Jacobi elliptic fcts)

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 2/14

Stability of stationary solutions

Linearisation at u_0 :

 $\partial_t v_t(x) = (\mathcal{L}v)(x) \coloneqq v_t''(x) + [1 - 3u_0(x)^2]v_t(x)$

Stability: Find eigenvalues of $\mathcal{L} \longrightarrow$ Sturm–Liouville problem

- \triangleright $u_{+}(x) \equiv \pm 1$: stable
- \triangleright *u*₀(*x*) ≡ 0: unstable
- ▷ Nonconstant solutions: unstable

Stochastic Allen–Cahn PDE

$$
\partial_t u = \Delta u + u - u^3 + \sqrt{2\varepsilon}\xi
$$

- \triangleright ξ space-time white noise: centered, Gaussian, $\mathbb{E}[\xi(t,x)\xi(s,y)] = \delta(t-s)\delta(x-y)$
- $\rho \in \mathcal{E}$ distribution, $\langle \xi, \varphi \rangle \sim \mathcal{N}(0, ||\varphi||_{L^2}^2)$, $\mathbb{E}[\langle \xi, \varphi_1 \rangle \langle \xi, \varphi_2 \rangle] = \langle \varphi_1, \varphi_2 \rangle_{L^2}$

Question: Speed of convergence to equilibrium measure?

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 4/14

Reversible diffusion in a double-well

$$
dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t
$$

- $V: \mathbb{R}^d \to \mathbb{R}$ confining 2-well potential
- ▷ Generator: $L = \varepsilon \Delta - \nabla V \cdot \nabla = \varepsilon e^{V/\varepsilon} \nabla \cdot e^{-V/\varepsilon} \nabla$
- ▷ Invariant probability: Gibbs measure $\pi(\mathsf{d}x) = \frac{1}{z}$ $\frac{1}{Z}e^{-V(x)/\varepsilon}dx \implies \mathscr{L}^{\dagger}\pi = 0$

$$
\triangleright \text{ Reverseible: } \langle f, \mathcal{L}g \rangle_{\pi} = \langle \mathcal{L}f, g \rangle_{\pi} \text{ for } \langle f, g \rangle_{\pi} = \int_{\mathbb{R}^d} f(x)g(x)\pi(\mathrm{d}x)
$$

How to characterise convergence to equilibrium?

- \triangleright Exponential ergodicity: $\left| \mathbb{E}^{\times}[f(x_t)] \langle \pi, f \rangle \right| \leq C(x, f) e^{-\beta t}$
Possible six languages functions M₁ a π ii had son Possible via Lyapunov functions [Meyn & Tweedie], bad control of β
- ▷ Mean hitting time: Estimate $\mathbb{E}^{\times}[\tau_y]$ where $\tau_y = \inf\{t > 0 : x_t \in \mathcal{B}_{\varepsilon}(y)\}$
- \triangleright Spectral gap of $\mathscr L$

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 5/14

Mean first hitting time

▷ Arrhenius' law (1889): $\mathbb{E}^{\times}[\tau_y] \simeq e^{[V(z)-V(x)]/\varepsilon}$

Proved by [Freidlin, Wentzell, 1979] using large deviations

▷ Eyring–Kramers law (1935, 1940): Eigenvalues of Hessian of V at minimum x: $0 < \nu_1 \leq \nu_2 \leq \cdots \leq \nu_d$ Eigenvalues of Hessian of V at saddle z: $\lambda_1 < 0 < \lambda_2 \leq \cdots \leq \lambda_d$

$$
\mathbb{E}^{\times} \big[\tau_y \big] = 2 \pi \sqrt{\tfrac{\lambda_2 ... \lambda_d}{|\lambda_1| \nu_1 ... \nu_d}} \, \mathsf{e}^{[V(z) - V(x)]/\varepsilon} \big[1 + \mathcal{O}_{\varepsilon}(1) \big]
$$

Spectral gap of $\mathscr{L} = \mathbb{E}^{\times}[\tau_{\mathsf{y}}]^{-1} \big[1 + \mathcal{O}_{\varepsilon}(1)\big]$

Proved by [Bovier, Eckhoff, Gayrard, Klein, 2004] using potential theory, by [Helffer, Klein, Nier, 2004] using Witten Laplacian, . . .

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 6/14

Potential-theoretic proof of Eyring–Kramers law

$$
\triangleright w_A(x) = \mathbb{E}^x[\tau_A] \quad \text{satisfies} \quad \begin{cases} (\mathcal{L}w_A)(x) = -1 & x \in A^c \\ w_A(x) = 0 & x \in A \end{cases}
$$

$$
\triangleright h_{AB}(x) = \mathbb{P}^x \{ \tau_A < \tau_B \} \quad \text{satisfies} \quad \begin{cases} (\mathcal{L}h_{AB})(x) = 0 & x \in (A \cup B)^c \\ h_{AB}(x) = 1 & x \in A \\ h_{AB}(x) = 0 & x \in B \end{cases}
$$

Theorem: $A, B \subset \mathbb{R}^d$ disjoint. ∃ proba measure ν_{AB} on ∂A s.t. $J_{\partial A}$ $\mathbb{E}^{\times}[\tau_B]\nu_{AB}(\mathsf{d}x) = \frac{1}{\mathsf{cap}(\mathcal{A})}$ $\frac{1}{\text{cap}(A,B)} \int_{B^c} e^{-V(y)/\varepsilon} h_{AB}(y) dy$

Proof: $w_B(x) = -\int_{B^c} G_{B^c}(x, y) dy$ $h_{AB}(y) = -\int_{\partial A} G_{B^c}(y, x) e_{AB}(dx)$ $\nu_{AB}(\mathrm{d}x) \coloneqq \frac{1}{\mathrm{cap}(x)}$ $\frac{1}{\text{cap}(A,B)} e^{-V(x)/\varepsilon} e_{AB}(\text{d}x)$ $\text{cap}(A,B) \coloneqq \int_{\partial A} e^{-V/\varepsilon} e_{AB}(\text{d}x)$ $\mathsf{cap}(A, B) \int_{\partial A} w_B(x) \nu_{AB}(\mathrm{d}x) = -\int_{\partial A} \int_{B^c} \frac{G_{B^c}(x, y) e^{-V(x)/\varepsilon}}{\varepsilon} e_{AB}(\mathrm{d}x) \, \mathrm{d}y$ $\overline{=G_{B}c(y,x)}e^{-V(y)/\epsilon}$ [Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 7/14

Potential-theoretic proof of Eyring–Kramers law **Theorem:** $A, B \subset \mathbb{R}^d$ disjoint. ∃ proba measure ν_{AB} on ∂A s.t. $J_{\partial A}$ $\mathbb{E}^{\times}[\tau_B]\nu_{AB}(\mathsf{d}x) = \frac{1}{\mathsf{cap}(\mathcal{A})}$ $\frac{1}{\text{cap}(A,B)} \int_{B^c} e^{-V(y)/\varepsilon} h_{AB}(y) dy$

Apply to A, B neighbourhoods of x, y

- **▷** Laplace **asymptotics**: $\int_{B^c} h_{A,B}(y) e^{-V(y)/\epsilon} dy$ ≃ $\sqrt{(2\pi\varepsilon)^d}$ $\frac{(2\pi\varepsilon)^d}{\nu_1...\nu_d}$ e^{-V(x)}/ ε
- \triangleright Capacity: cap $(A, B) = \mathscr{E}(h_{AB})$
- **▷** Dirichlet form: $\mathscr{E}(f) = \langle f, -\mathscr{L}f \rangle = \varepsilon \int_{\mathbb{R}^d} e^{-V(x)/\varepsilon} |\nabla f(x)|^2 dx$

Theorem: Dirichlet principle Let $\mathscr{H}_{AB} = \{h : \mathbb{R}^d \to [0,1] : h|_A = 1, h|_B = 0\}$. Then $cap(A, B) = \inf_{h \in \mathcal{H}_{AB}} \mathcal{E}(h) = \mathcal{E}(h_{AB})$

Appropriate test function yields $\mathsf{cap}(A,B) \simeq \varepsilon$ $\sqrt{\frac{|\lambda_1|}{2\pi \varepsilon}}\sqrt{\frac{(2\pi\varepsilon)^{d-1}}{\lambda_2...\lambda_d}}$ $\frac{2\pi\varepsilon)^{a-1}}{\lambda_2...\lambda_d}$ e^{-V(z)}/ ε

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 8/14

Stochastic Allen–Cahn PDE

$$
\partial_t u = \Delta u + u - u^3 + \sqrt{2\varepsilon} \xi \qquad x \in \mathbb{T}_L
$$

- ▷ [Faris & Jona-Lasinio '82]: existence/uniqueness of solution
- ▷ [Da Prato & Zabczyk '90s]: invariant measure is Gibbs measure associated with

$$
V[u] = \int_{\mathbb{T}_L} \left[\frac{1}{2} |\nabla u(x)|^2 - \frac{1}{2} u(x)^2 + \frac{1}{4} u(x)^4 \right] dx
$$

 \triangleright [Faris & Jona-Lasinio '82]: Arrhenius law $\mathbb{E}^{u_-}[\tau_{u_+}] \simeq e^{(\sqrt{u_{\text{tr}}}-\sqrt{u_-})/\varepsilon}$ where u_{tr} transition state, $u_{tr} = u_0$ if $L < 2\pi$

Question: is there an Eyring–Kramers law? With what prefactor?

Heuristics: $V[u] = \frac{1}{2}$ $\frac{1}{2}\langle u, (-\Delta - 1)u \rangle + \mathcal{O}(u^4)$

▷ Hessian of *V* at *u*₀: $-\Delta - 1$, eigenvalues $\lambda_k = \left(\frac{2k\pi}{L}\right)^{k}$ $(\frac{k\pi}{L})^2 - 1$

▷ Hessian of *V* at *u*₋: $-\Delta + 2$, eigenvalues $ν_k = \left(\frac{2k\pi}{L}\right)$ $\frac{k\pi}{L})^2 + 2$

Formally, product of ratios of λ_k/ν_k converges [Maier & Stein '01]

Formal computation and Fredholm determinant Formally (for $L < 2\pi$) √

$$
\mathbb{E}^{u_-}\big[\tau_{u_+}\big] = \frac{2\pi}{|\lambda_1|} \sqrt{\frac{|\det \text{Hess }V[u_0]|}{\det \text{Hess }V[u_-]}} \, e^{(V[u_0] - V[u_-])/\varepsilon} \big[1 + \mathcal{O}_{\varepsilon}(1)\big]
$$

∆[⊥] Laplacian acting on mean zero functions

$$
\det((-\Delta_{\perp}-1)[-\Delta_{\perp}+2]^{-1}) = \det((-\Delta_{\perp}+2-3)[-\Delta_{\perp}+2]^{-1})
$$

=
$$
\underbrace{\det(1-3[-\Delta_{\perp}+2]^{-1})}
$$

Fredholm determinant

$$
\log \det \left(1 - 3[-\Delta_{\perp} + 2]^{-1}\right) = \text{Tr}\log\left(1 - 3[-\Delta_{\perp} + 2]^{-1}\right)
$$

= $-\sum_{n\geq 1} \frac{3^n}{n} \frac{\text{Tr}\left(\left[-\Delta_{\perp} + 2\right]^{-n}\right)}{\left[\left(\frac{2\pi}{L}\right)^2 + 2\right]^{-n}} < \infty \quad (L < 2\pi)$

General fact: $det(1 + T) < \infty$ if T is trace class

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 10/14

Main result for $d = 1$

Theorem: [B & Gentz, Elec. J. Proba 2013]

 \triangleright If $L < 2\pi - c$ with $c > 0$, then

 $\mathbb{E}^{u_-}[\tau_+] = 2\pi \sqrt{\det(\mathbb{1} - 3[-\Delta + 2]^{-1})} \, \mathrm{e}^{(V[u_0] - V[u_-])/\varepsilon} [1 + \mathcal{O}_{\varepsilon}(1)]$

\triangleright Similar explicit expressions for $L > 2π - c$ and $L \approx 2π$ (with different u_{tr} and slightly different ε -dependence due to 0 eigenvalue)

Remarks:

- ▷ Proof relies on spectral Galerkin approximation
- \triangleright Error more precise than $\mathcal{O}_{\varepsilon}(1)$
- \triangleright If $u_{\text{tr}} \neq u_0$, Fredholm determinant computed with techniques from path integrals [Maier & Stein]
- ▷ Similar results for Neumann b.c.
- ▷ Similar results for other nonlinearities than $-u^3$

Allen–Cahn SPDE for $d = 2$

- ▷ Arrhenius law holds via large-deviation principle [Hairer & Weber, 2015]
- ▷ Naive computation of prefactor fails:

Tr log(11-3[-
$$
\Delta_{\perp}
$$
 + 2]⁻¹) $\simeq \sum_{k \in (\mathbb{Z}^2)^*} log\left(1 - \frac{3L^2}{|k|^2 \pi^2}\right)$

$$
\simeq - \sum_{k \in (\mathbb{Z}^2)^*} \frac{3L^2}{|k|^2 \pi^2} \simeq -\frac{3L^2}{\pi^2} \int_1^\infty \frac{r dr}{r^2} = -\infty
$$

 \triangleright In fact, the equation needs to be renormalised

Theorem: [Da Prato & Debussche 2003] Let ξ^{δ} be a mollification on scale δ of white noise. Then

$$
\partial_t u = \Delta u + \left[1 + 3\varepsilon C(\delta)\right]u - u^3 + \sqrt{2\varepsilon}\xi^\delta
$$

with $C(\delta) \simeq \log(\delta^{-1})$ admits local solution converging as $\delta \to 0$

 \triangleright C(δ) ~ variance of mollified Gaussian free field (GFF) \triangleright Naively, one could expect $u_{\pm} = \pm \sqrt{1 + 3\varepsilon C(\delta)}$ but this is not the case

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 12/14

Main result in dimension 2

 \triangleright Use spectral Galerkin approximation with cut-off N instead of mollification, $L^2 C_N = \text{Tr}(P_N[-\Delta + 2]^{-1}) \sim \log(N)$

$$
\triangleright \ \ V_{N}[u_{0}] - V_{N}[u_{-}] = \frac{L^{2}}{4} + \frac{3}{2}L^{2}\varepsilon C_{N}
$$

⊵ (Prefactor)² = det(1-3P_N[-Δ_⊥ + 2]⁻¹)e^{3Tr(P}N[-Δ_⊥+2]⁻¹) $\det_2(1-T) = \det(1-T) e^{Tr T}$ Carleman–Fredholm determinant

Theorem: [B, Di Gesù, Weber, Elec. J. Proba 2017] For $L < 2\pi$, appropriate $A \ni u_-, B \ni u_+, \exists \mu_N$ probability measures on ∂A : $\limsup_{N\to\infty} \mathbb{E}^{\mu_N} \big[\tau_B \big] \leq 2\pi \sqrt{\det_2 \big(1 - 3[-\Delta + 2]^{-1} \big)} \, e^{(V[u_0] - V[u_-])/\varepsilon} \big[1 + c_+ \sqrt{\varepsilon} \big]$ $N\rightarrow\infty$ $\liminf_{N\to\infty} \mathbb{E}^{\mu_N} [\tau_B] \geq 2\pi \sqrt{\det_2(1-3[-\Delta+2]^{-1})} e^{(V[u_0]-V[u_-])/\varepsilon} [1-c_-\varepsilon]$ N→∞

- **▷** [Tsatsoulis & Weber, PTRF 2018]: **Same result for** $\mathbb{E}^{u_-}[\tau_B]$
- \triangleright det₂ defined whenever T is only Hilbert–Schmidt (true for $d \leq 3$)

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 13/14

References

- ▷ N. B. & Barbara Gentz, Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers' law and beyond, [Electronic J. Probability](http://dx.doi.org/10.1214/EJP.v18-1802) 18[, \(24\):1–58 \(2013\)](http://dx.doi.org/10.1214/EJP.v18-1802)
- ▷ N. B., Giacomo Di Gesù & Hendrik Weber, An Eyring–Kramers law for the stochastic Allen–Cahn equation in dimension two, [Electronic J.](http://dx.doi.org/10.1007/s10884-014-9419-5) Probability 22[, 1–27 \(2017\)](http://dx.doi.org/10.1007/s10884-014-9419-5)
- ▷ N. B., An introduction to singular stochastic PDEs: Allen–Cahn equations, metastability and regularity structures, Lecture notes, Sarajevo Stochastic Analysis Winter School, January 2019 [hal-02004985](https://hal.archives-ouvertes.fr/hal-02004985)
- ▷ N. B., Metastability of Stochastic Partial Differential Equations and Fredholm Determinants, [EMS Newsletter 117,](https://dx.doi.org/10.4171/NEWS/117/3) 6-14, EMS, 2020

Thanks for your attention!

[Metastable dynamics of stochastic Allen-Cahn PDEs on the torus](#page-0-0) March 26, 2021 14/14