Directed Polymers in Random Medium

Francis Comets

Université Paris-Diderot, France

•

Systèmes ouverts et hors équilibre, February 21, 2008

Purpose.

Describe random paths which are not only weighted according to their lengths, but also according to random impurities which are met on the way

Motivations:

- Model for polymers: (i) irregular chains (ii) without self-intersections (iii) interacting with the environment
- random growth (KPZ class), . . .
- non-zero temperature version of oriented percolation (last passage)
- lacktriangle Directed: our polymer leaves in dimension d+1, and stretches in the first direction
 - ---- environment regenerates at each step, allows for martingales
- Discrete or continuous models

The model.

Medium: independent i.d. real r.v. $\eta(t,x),\,t\in\{1,2,\ldots\},x\in\mathbb{Z}^d$ "impurities" $\eta\sim Q$; $d\geq 1$: transverse dim. Assume $\forall\beta$

$$\exp \lambda(\beta) := Q[\exp \beta \eta(t, x)] < \infty$$

Path ω , P: simple random walk on \mathbb{Z}^d (nearest neighbours)

Energy of path ω in time n: $H_n(\omega) = \sum_{t=1}^n \eta(t, \omega_t)$

Polymer measure = probability measure μ_n on path space

$$d\mu_n(\omega) = \frac{\exp(\beta H_n(\omega))}{Z_n} dP(\omega)$$

with
$$\beta \in \mathbb{R}_+$$
, and $Z_n = P[\exp(\beta H_n(\omega))]$.

The polymer ω is:

• attracted to locations (t,x) with $\eta(t,x)>0$

(rewards)

• repelled by those with $\eta(t,x) < 0$

(penalties, obstacles)

more and more as $\beta \nearrow (\beta \ge 0)$.

 $\beta = 0$: Simple Random Walk $\beta = +\infty$: last passage, oriented percolation

Some Guidelines:

- $\mathbb{Z}_+ \times \mathbb{Z}^d$ replaced by the tree: branching process
- related, but more distant models:
 - RW in soft obstacles: Sznitman; Antal'95, Wüthrich'98
 - heteropolymers near interface $H_n = \sum_{t \leq n} (\eta(t) + h) \operatorname{sign}(\omega_t)$

d=1 Bolthausen, den Hollander, Biskup, Bodineau, Giacomin...

Outline.

Questions: for typical medium η , what is the polymer behavior under μ_n ? (n large)

- 1. Expand $\ln Z_n \sim np$; $\operatorname{Var} \ln Z_n \asymp n^{2\chi}$; $p, \chi(d, \beta, Q) = ?$
- 2. Order of displacement: $\mu^n(|\omega_n|) \approx n^{\xi}$ Diffusivity or super-diffusivity ($\xi = \text{or} > 1/2$)?
- 3. scaling identity between exponents (conjecture) $\chi = 2\xi 1$

Questions: for typical medium η , what is the polymer behavior under μ_n ? (n large)

1. Expand
$$\ln Z_n \sim np$$
 ; $\operatorname{Var} \ln Z_n \asymp n^{2\chi}$; $p, \chi(d, \beta, Q) = ?$

- 2. Order of displacement: $\mu^n(|\omega_n|) \approx n^{\xi}$ Diffusivity or super-diffusivity ($\xi = \text{or} > 1/2$)?
- 3. scaling identity between exponents (conjecture)

$$\chi = 2\xi - 1$$

Intuitive picture:

But if the disorder is strong enough, typical paths should be pinned down to favourable clouds (localization), which are at a distance (superdiffusivity); these clouds being small, thermodynamic quantities mostly depend on a few r.v. (large fluctuations)

What does "strong disorder" mean?

A continuous model.

 η : Poisson field in $\mathbb{R}^+ \times \mathbb{R}^d$, with intensity dtdx

P : Wiener measure on \mathbb{R}^d

 $\overline{V_t}$: "tube"around the \emph{graph} of the Brownian path ω ,

$$V_t = V_t(\omega) = \{(s, x) ; s \in (0, t], x \in U(\omega_s)\},\$$

with $U(x) \subset \mathbb{R}^d$ the closed ball with volume 1 and center x.

Polymer measure

$$\mu_t(d\omega) = \frac{\exp(\beta\eta(V_t))}{Z_t} P(d\omega),$$

C-Yoshida'03

point-to-point partition function

$$Z_t(x) = P[e^{\beta H_t} : \omega_t = x], \quad h_t(x) = \ln Z_t(x)$$

satisfies "formally" to a KPZ equation

$$dh_t(y) = \frac{1}{2} \left(\Delta h_t(y) + |\nabla h_t(y)|^2 \right) dt + \beta \eta (dt \times U(y))$$

Phenomenological equation for growth models

Plan

- 1. Thermodynamics of disordered systems
- 2. Z_n as a martingale
- 3. $\ln Z_n$ as a super-martingale
- 4. Strong disorder and localization
- 5. Continuous model

1-Thermodynamics of Disordered Systems.

$$\lim_{n \to \infty} \frac{1}{n} Q[\ln Z_n] \stackrel{\text{sub-addit.}}{=:} p(\beta) \quad \text{"quenched pressure"}$$

$$\stackrel{\text{concent.}}{=} \lim_{n \to \infty} \frac{1}{n} \ln Z_n \qquad Q - a.s$$

Standard concentration inequality (if $Q[e^{\delta \eta(t,x)^2}] < \infty$):

$$Q\left[\frac{1}{n}|\ln Z_n - Q[\ln Z_n]| \ge \varepsilon\right] \le e^{-Cn\varepsilon^2}$$
 hence $\chi \le 1/2$

Jensen's inequality $Q[\ln Z_n] \leq \ln Q[Z_n] = n\lambda$, hence $p \leq \lambda$.

Proposition 1: function $\beta \mapsto \lambda(\beta) - p(\beta)$ is non-decreasing on \mathbb{R}_+

Corollary: $\exists \beta_c^p \in [0,\infty]$ such that: $p(\beta) < \lambda(\beta) \iff \beta > \beta_c^p$

1-Thermodynamics of Disordered Systems.

Is
$$\beta_c^p := \inf\{\beta \ge 0; p(\beta) < \lambda(\beta)\}$$
 finite?

Adapting an argument for the tree case (eg, Kahane-Peyrière '76):

$$(KP)$$
 $\beta \lambda'(\beta) - \lambda(\beta) > \ln 2d \implies p(\beta) < \lambda(\beta)$

Note: If the law of $\eta(t,x)$ has no mass at its maximum, condition (KP) holds for β large enough

$$\beta$$
 0 β_c^p ∞ |
| ------ | ------- |
| $p = \lambda$ | $p < \lambda$ |
| ----- |

2- W_n as a Martingale.

$$W_n := Z_n e^{-n\lambda}$$

positive martingale w.r.t. $\mathcal{G}_n=\sigma\{\eta(t,x); 1\leq t\leq n, x\in\mathbb{Z}^d\}$ [Bolthausen'89].

$$W_n \xrightarrow{\text{a.s.}} W_{\infty}$$
, as $n \to \infty$

with $\{W_{\infty}=0\}$ tail event: By Kolmogorov's 0-1 law,

$$\begin{cases} \text{ either } W_{\infty} > 0 \text{ a.s.} \\ \text{or } W_{\infty} = 0 \text{ a.s.} \end{cases}$$

$$W_n \xrightarrow{\text{a.s.}} W_{\infty}$$
, $\begin{cases} \text{either } W_{\infty} > 0 \text{ a.s.} & \text{Weak Disorder} \\ \text{or } W_{\infty} = 0 \text{ a.s.} & \text{Strong Disorder} \end{cases}$

$$W_n \xrightarrow{\text{a.s.}} W_{\infty}$$
, $\begin{cases} \text{either } W_{\infty} > 0 \text{ a.s.} & \text{Weak Disorder} \\ \text{or } W_{\infty} = 0 \text{ a.s.} & \text{Strong Disorder} \end{cases}$

As in Prop. 1, monotonicity: for $\beta \leq \beta'$,

(SD) at
$$\beta \Rightarrow$$
 (SD) at β'

---- Another phase diagram, with critical point

$$\beta_c = \inf\{\beta \ge 0; (SD) \text{ at } \beta\} \dots$$

$$W_n \xrightarrow{\text{a.s.}} W_{\infty}$$
, $\begin{cases} \text{either } W_{\infty} > 0 \text{ a.s.} & \text{Weak Disorder} \\ \text{or } W_{\infty} = 0 \text{ a.s.} & \text{Strong Disorder} \end{cases}$

As in Prop. 1, monotonicity: for $\beta \leq \beta'$,

(SD) at
$$\beta \Rightarrow$$
 (SD) at β'

---- Another phase diagram, with critical point

$$\beta_c = \inf\{\beta \ge 0; (SD) \text{ at } \beta\} \dots$$

... still of interest:

(WD)
$$\iff Q \ln Z_n \sim n\lambda, \chi = 0 \Longrightarrow p = \lambda, \chi = 0 \text{ in Question } 1-$$

Clearly $\beta_c \leq \beta_c^p$. Is it =?

Condition (L2): with Escape = $\{\omega_n \neq 0 \ \forall n \geq 1\}$

$$\lambda(2\beta) - 2\lambda(\beta) < -\ln P(\text{Escape})$$

Condition (L2): with $Escape = \{\omega_n \neq 0 \ \forall n \geq 1\}$

$$\lambda(2\beta) - 2\lambda(\beta) < -\ln P(\text{Escape})$$

• (L2) holds when $d \geq 3$ provided β is small (for arbitrary Q)...

Condition (L2): with $Escape = \{\omega_n \neq 0 \ \forall n \geq 1\}$

$$\lambda(2\beta) - 2\lambda(\beta) < -\ln P(\text{Escape})$$

- (L2) holds when $d \ge 3$ provided β is small (for arbitrary Q)...
- ... but not necessarily:

In dimension $d \geq 3$, if $\eta \sim \text{Bernoulli}(p)$ with p > P(Escape), then (L2) holds for all $\beta \geq 0$.

---- Reminiscent of percolating regime.

Theorem 2 Assume condition (L2): Then,

- 1. (WD) holds
- 2. Diffusivity holds: central limit theorem for Q-a.e. η , invariance principle, local limit theorem

3.
$$\mu_n(H_n) - n\lambda'(\beta) \xrightarrow{a.s.} \frac{d}{d\beta} W_{\infty}/W_{\infty}$$

Bolthausen' $89^{(1,2)}$, Imbrie-Spencer' $88^{(2)}$, Albeverio-Zhou' $96^{(2)}$, Sinaï' $95^{(2)}$, C-Yoshida' $04^{(3)}$, Birkner' $04^{(1)}$,...

$$lacktriangleright (\mathsf{KP}) \Rightarrow W_n = O(e^{-n\delta}) \text{ a.s.}$$

$$(\mathsf{KP})\Rightarrow W_n=O(e^{-n\delta}) \text{ a.s.}$$

 Small dimension, $\forall \beta \neq 0$:

$$W_n \begin{cases} = 0(e^{-\delta n^{1/3}}), & d = 1\\ \to 0, & d = 2 \end{cases}$$

Estimate fractional moments $Q[W_t^{\theta}], \theta \in (0,1)$ with a "differential" inequality

Phase diagram, when η has no mass at the top of his support

$$eta = 0$$
 $eta_c = \infty$ | $d \ge 3$ | (WD) | (SD) | $d = 1, 2$ | (SD) | (SD) | $d = 1, 2$ | (SD) |

3- $\ln W_n$ as a super-martingale.

Take two $replicas \ \omega, \widetilde{\omega}$ (=independent polymers in the same environment η), and define

$$I_n = \mu_{n-1}^{\otimes 2} [\omega_n = \widetilde{\omega}_n],$$

similar to the replica overlap in Derrida-Spohn'88

3- $\ln W_n$ as a super-martingale.

Take two replicas $\omega, \widetilde{\omega}$ (=independent polymers in the same environment η), and define

$$I_n = \mu_{n-1}^{\otimes 2} [\omega_n = \widetilde{\omega}_n],$$

similar to the replica overlap in Derrida-Spohn'88

Theorem 3 For all $\beta \neq 0$

- criterium (WD) versus (SD): $W_{\infty} = 0 \iff \sum_{n>1} I_n = \infty$
- Then, $-\ln W_n \asymp \sum_{t \le n} I_t$

Notation:
$$f \asymp g$$
 iff $\left(\liminf_{t \to \infty} \frac{f(t)}{g(t)} > 0, \limsup_{t \to \infty} \frac{f(t)}{g(t)} < \infty \right)$ Carmona-Hu'02, C-Shiga-Yoshida'03 Quantitative statement!

Carmona-Hu'02, C-Shiga-Yoshida'03

Directed Polymers – p. 16/2

Doob's decomposition of supermartingale $\ln W_n = -A_n + M_n$

Write $\frac{W_n}{W_{n-1}}=1+U_n$ with $U_n=\mu_{n-1}[e^{\beta\eta(n,\omega_n)-\lambda}-1]$ conditionnally centered

$$A_{n} - A_{n-1} = -Q[\ln W_{n} - \ln W_{n-1} | \mathcal{F}_{n-1}] = -Q[\ln(1 + U_{n}) | \mathcal{F}_{n-1}]$$

$$\approx -Q[U_{n}^{2} | \mathcal{F}_{n-1}]$$

$$= -\mu_{n-1}^{\otimes 2} Q \left[(e^{\beta \eta(n,\omega_{n}) - \lambda} - 1) (e^{\beta \eta(n,\tilde{\omega}_{n}) - \lambda} - 1) | \mathcal{F}_{n-1} \right]$$

$$\approx -\mu_{n-1}^{\otimes 2} [\omega_{n} = \tilde{\omega}_{n}] = -I_{n}$$

Finally,

$$A_n \asymp \sum_{t \le n} I_t , \quad \langle M \rangle_n = O(\sum_{t \le n} I_t)$$

Theorem 3 follows from martingale Convergence Th. and L.L.N.

3- $\ln W_n$ as a super-martingale.

In the region (WD), we have $\chi = 0$ by definition

Question: is $\xi = 1/2$ everywhere there ?

In the region (WD), we have $\chi = 0$ by definition

Question: is $\xi = 1/2$ everywhere there ?

Theorem 4 (weak invariance principle) Assume (WD). $\forall F$ bounded continuous on the path space,

$$\lim_{n} \mu_{n} \left[F\left(\frac{\omega_{nt}}{\sqrt{n}}\right) \right] = \mathbf{E}F(B)$$

in Q-probability.

B.M. with diffusion matrix $\frac{1}{d}Id$.

Important step: the measure μ_n converges weakly to a Markov chain (time-inhomogeneous, depending on η) C.-Yoshida'06

4- (SD) and Localization.

 $I_n = \sum_x \mu_{n-1}^{\otimes 2} (\omega_n = x)^2 \in (0,1]$ is all the closer to 1 as μ_{n-1} is localized:

$$\max_{x \in \mathbb{Z}^d} \mu_{n-1} [\omega_n = x]^2 \le I_n \le \max_{x \in \mathbb{Z}^d} \mu_{n-1} [\omega_n = x]$$

The maximizing x is the favourite "location" for ω_n of the polymer at time n (under μ_{n-1}); large maximum value means strong localization

4- (SD) and Localization.

 $I_n = \sum_x \mu_{n-1}^{\otimes 2} (\omega_n = x)^2 \in (0,1]$ is all the closer to 1 as μ_{n-1} is localized:

$$\max_{x \in \mathbb{Z}^d} \mu_{n-1} [\omega_n = x]^2 \le I_n \le \max_{x \in \mathbb{Z}^d} \mu_{n-1} [\omega_n = x]$$

The maximizing x is the favourite "location" for ω_n of the polymer at time n (under μ_{n-1}); large maximum value means strong localization

Theorem 5: localization transition

$$ightharpoonup p < \lambda \iff \operatorname{Cesaro-lim}_{n \to \infty} I_n > 0 \quad Q - \text{a.s.}$$

$$\blacktriangleleft$$
 (KP) or d=1 $\implies p < \lambda$

$$d=2 \implies \limsup_n I_n \ge C$$
 a.s.

• (L2)
$$\implies I_n = O_Q(n^{-c})$$
 (c = d/2?)

..., Vargas'07, C.-Vargas'07

5- Exponents and Deviations.

Exponents (rough definitions) Under μ_t with t large,

$$|\omega_t| \sim t^{\xi(d)}$$
, $\ln Z_t - Q[\ln Z_t] \sim t^{\chi(d)}$

Conjectures: universal exponents (for low temperature),

$$\chi(1) = 1/3, \ \xi(1) = 2/3, \quad \chi(d) = 2\xi(d) - 1.$$

5- Exponents and Deviations.

Exponents (rough definitions) Under μ_t with t large,

$$|\omega_t| \sim t^{\xi(d)}$$
, $\ln Z_t - Q[\ln Z_t] \sim t^{\chi(d)}$

Conjectures: universal exponents (for low temperature),

$$\chi(1) = 1/3, \ \xi(1) = 2/3, \quad \chi(d) = 2\xi(d) - 1.$$

Theorem 4 (Brownian model) Fix $\xi_0 > \frac{1+\chi(d)}{2}$. Then, the law of $t^{-\xi_0}\omega_t$ under μ_t satisfies an almost-sure large deviation principle with rate $I(x) = |x|^2/2$ and speed $t^{2\xi_0-1}$. In particular, for a.e. environment,

$$\mu_t(|\omega_t| \ge at^{\xi_0}) = \exp\{-t^{2\xi_0 - 1}(a^2/2 + o(1))\}$$

as $t \to \infty$ for all $a \ge 0$.

5- Exponents and deviations.

Corollary:

$$\xi(d) \le \frac{1 + \chi(d)}{2} \;,$$

and since $\chi(d) \leq 1/2$, this implies

$$\xi(d) \le 3/4$$

Piza'97, Newman-Piza'97, Wuthrich'98, Petermann'00, Mejane'04, Carmona-Hu'04

Proposition: $\chi(1) \ge 1/8$ (in favor of superdiffusivity)

of Theorem 4:

Fix
$$t \geq 0$$
, define $\Theta_t : s \mapsto (s \wedge t)\theta$.

By Girsanov's formula, $\overline{\omega} = \omega - \Theta_t$ is a Brownian motion under

$$\overline{P}(d\omega) = \exp(\theta \cdot \omega_t - t|\theta|^2/2)P(d\omega)$$
. So,

$$P[e^{\beta\eta(V_t(\omega))}e^{\theta\cdot\omega_t - t|\theta|^2/2}] = e^{def.} \overline{P}[e^{\beta\eta(V_t(\overline{\omega} + \Theta_t))}]$$

$$= Girs. P[e^{\beta\eta(V_t(\omega + \Theta_t))}]$$

$$= P[e^{\beta\eta(T_\theta V_t(\omega))}]$$

$$= Z_t \circ T_{-\theta}(\eta)$$

$$= e^{law} Z_t(\eta).$$

Here, $T_{\theta}:(s,x)\mapsto(s,x+s\theta)$.

5- Exponents and Deviations.

Now,

$$\ln \mu_t [e^{t^{\xi_0 - 1}\theta \cdot \omega_t}] = t^{2\xi_0 - 1} |\theta|^2 / 2 + \ln Z_t \circ T^1_{-\theta t^{\xi_0 - 1}} - \ln Z_t$$
$$= t^{2\xi_0 - 1} |\theta|^2 / 2 + \mathcal{O}(t^{\chi(d)})$$

(same expectation + def. of fluctuation exponent). Now conclude by Gartner-Ellis.

so much is left!.

- Phase diagram: $\beta_c = \beta_c^p$ or not?
- d=1: is $p<\lambda$ for $\beta\neq 0$?
- relations between exponents
- closer relation to percolation, "random geodesics" of Newman et al.
- d=1 exact exponents and limit laws Baik-Deift-Johansson'99, Johansson'00, Prahofer-Spohn'01 $\beta=+\infty, d=1, \eta\sim$ exponential or geometric
- Universality