Stochastic models for excitable systems

Nils Berglund

MAPMO, Orléans (CNRS, UMR 6628)

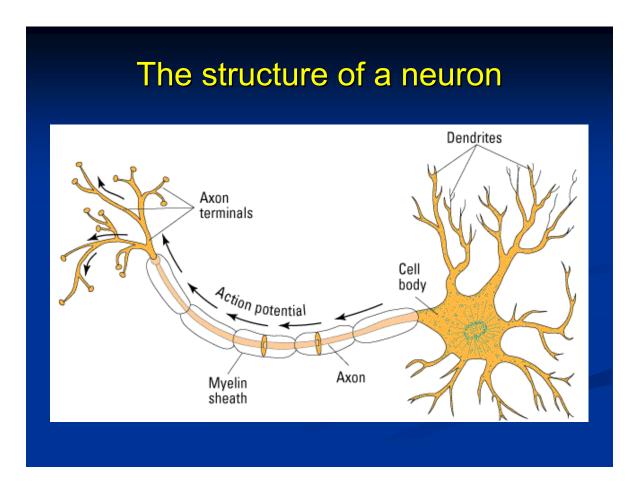
http://www.univ-orleans.fr/mapmo/membres/berglund/

Collaborators: Barbara Gentz, Universität Bielefeld

Damien Landon, MAPMO-Orléans Simona Mancini, MAPMO-Orléans

Deterministic and Stochastic Modeling in Computational Neuroscience and Other Biological Topics CRM, Barcelona, May 2009

Excitable systems



- ▷ Single neuron communicates by generating action potential
- ▷ Excitable: small change in parameters yields spike generation

ODE models for action potential generation

- Hodgkin-Huxley model (1952)
- Fitzhugh–Nagumo model (1962)

$$\frac{C}{g}\dot{v} = v - v^3 + w$$
$$\tau \dot{w} = \alpha - \beta v - \gamma w$$

Morris-Lecar model (1982)

$$C\dot{v} = -g_{\text{Ca}}m^*(v)(v - v_{\text{Ca}}) - g_{\text{K}}w(v - v_{\text{K}}) - g_{\text{L}}(v - v_{\text{L}})$$

$$\tau_w(v)\dot{w} = -(w - w^*(v))$$

$$m^*(v) = \frac{1 + \tanh((v - v_1)/v_2)}{2}, \ \tau_w(v) = \frac{\tau}{\cosh((v - v_3)/v_4)},$$

$$w^*(v) = \frac{1 + \tanh((v - v_3)/v_4)}{2}$$

For $C/g \ll \tau$: slow-fast systems of the form

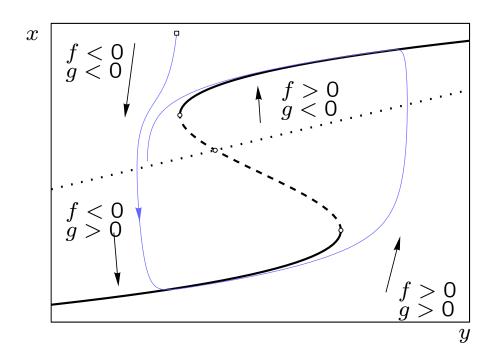
Deterministic slow-fast systems

$$\varepsilon \dot{x} = f(x, y)$$
 x : fast variable

$$\dot{y} = g(x, y)$$
 y: slow variable

 $\varepsilon \ll 1$: Singular perturbation theory

Qualitative analysis: nullclines f = 0 and g = 0

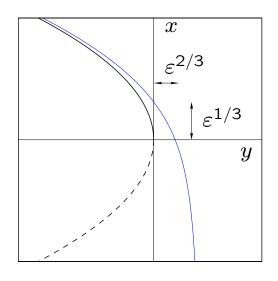


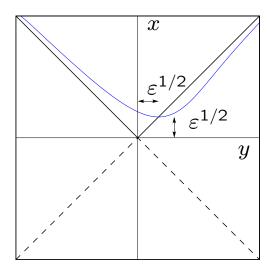
Quantitative results

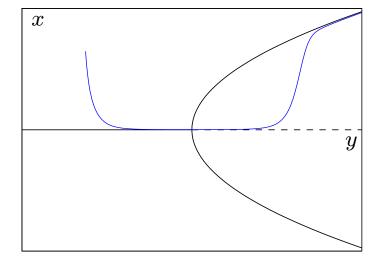
Stable slow manifold: f = 0, $\partial_x f < 0$

Tikhonov (1952) / Fenichel (1979): Orbits converge to ε -neighbourhood of stable slow manifold

Dynamic bifurcations: f = 0, $\partial_x f = 0 \Rightarrow$ local analysis







Pitchfork

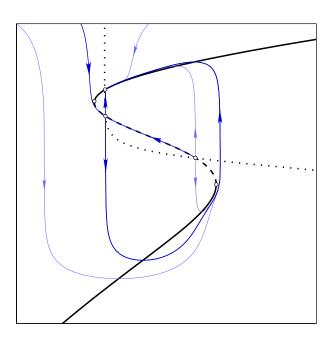
Saddle-node

Transcritical

 $f(x,y) = -x^2 - y + \dots$ $f(x,y) = -x^2 + y^2 + \dots$ $f(x,y) = yx - x^3 + \dots$

Excitability of type I

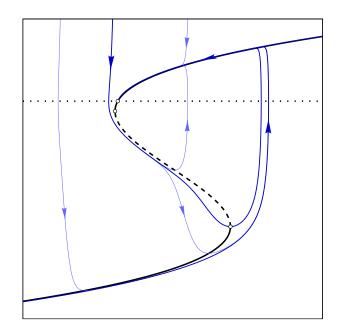
- \triangleright Stable equilibrium point at intersection of f=0 and g=0
- ▷ Close to a saddle—node-to-invariant-circle bifurcation
- ▶ Period diverges at bifurcation point

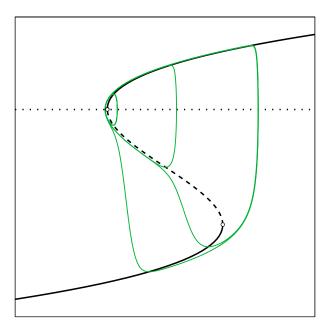


Excitability of type II

- \triangleright Stable equilibrium point at intersection of f=0 and g=0

- ▶ Period converges at bifurcation point





Adding noise

$$dx_t = \frac{1}{\varepsilon} f(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$
$$dy_t = g(x_t, y_t) dt + \sigma' dW'_t$$

 W_t, W_t' : Brownian motions (independent) $\Rightarrow \dot{W}_t, \dot{W}_t'$: white noises

Different mathematical methods:

- ▷ PDEs ⇒ evolution of probability density, exit from domain

▷...

Noise and partial differential equations

$$dx_t = f(x_t) dt + \sigma dW_t \qquad x \in \mathbb{R}^n$$

Generator: $L\varphi = f \cdot \nabla \varphi + \frac{1}{2}\sigma^2 \Delta \varphi$

Adjoint: $L^*\varphi = \nabla \cdot (f\varphi) + \frac{1}{2}\sigma^2 \Delta \varphi$

Kolmogorov forward or Fokker-Planck equation: $\partial_t \mu = L^* \mu$

where $\mu(x,t)$ = probability density of x_t

Noise and partial differential equations

$$dx_t = f(x_t) dt + \sigma dW_t \qquad x \in \mathbb{R}^n$$

Generator: $L\varphi = f \cdot \nabla \varphi + \frac{1}{2}\sigma^2 \Delta \varphi$

Adjoint: $L^*\varphi = \nabla \cdot (f\varphi) + \frac{1}{2}\sigma^2 \Delta \varphi$

Kolmogorov forward or Fokker-Planck equation: $\partial_t \mu = L^* \mu$ where $\mu(x,t)=$ probability density of x_t

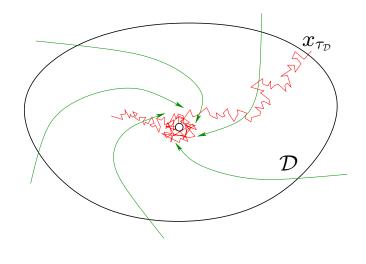
Exit problem:

Given $\mathcal{D} \subset \mathbb{R}^n$, characterise

$$\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$$

Fact: $u(x) = \mathbb{E}^x \{ \tau_{\mathcal{D}} \}$ satisfies

$$\begin{cases} Lu(x) = -1 & x \in \mathcal{D} \\ u(x) = 0 & x \in \partial \mathcal{D} \end{cases}$$



Similar boundary value problems give distribution of exit time and exit location

Noise and large deviations

$$dx_t = f(x_t) dt + \sigma dW_t \qquad x \in \mathbb{R}^n$$

Large deviation principle: Probability of sample path x_t being close to given curve $\varphi: [0,T] \to \mathbb{R}^n$ behaves like $\mathrm{e}^{-I(\varphi)/\sigma^2}$

Rate function: (or action functional or cost functional)

$$I_{[0,T]}(\varphi) = \frac{1}{2} \int_0^T ||\dot{\varphi}_t - f(\varphi_t)||^2 dt$$

Noise and large deviations

$$dx_t = f(x_t) dt + \sigma dW_t \qquad x \in \mathbb{R}^n$$

Large deviation principle: Probability of sample path x_t being close to given curve $\varphi: [0,T] \to \mathbb{R}^n$ behaves like $\mathrm{e}^{-I(\varphi)/\sigma^2}$

Rate function: (or action functional or cost functional)

$$I_{[0,T]}(\varphi) = \frac{1}{2} \int_0^T ||\dot{\varphi}_t - f(\varphi_t)||^2 dt$$

Application to exit problem: (Wentzell, Freidlin 1969) Assume \mathcal{D} contains unique equilibrium point x^*

- $\triangleright \text{ Cost to reach } y \in \partial \mathcal{D} \colon \overline{V}(y) = \inf_{T>0} \inf \{ I_{[0,T]}(\varphi) \colon \varphi_0 = x^*, \varphi_T = y \}$
- \triangleright Gradient case: $f(x) = -\nabla V(x) \Rightarrow \overline{V}(y) = 2(V(y) V(x^*))$
- \triangleright Mean first-exit time: $\mathbb{E}[\tau_{\mathcal{D}}] \sim \exp\left\{\frac{1}{\sigma^2}\inf_{y \in \partial \mathcal{D}} \overline{V}(y)\right\}$

Noise and stochastic analysis

$$dx_t = f(x_t) dt + \sigma(x) dW_t \qquad x \in \mathbb{R}^n$$

Integral form for solution:

$$x_t = x_0 + \int_0^t f(x_s) ds + \int_0^t \sigma(x_s) dW_s$$

where the second integral is the Itô integral

Noise and stochastic analysis

$$dx_t = f(x_t) dt + \sigma(x) dW_t \qquad x \in \mathbb{R}^n$$

Integral form for solution:

$$x_t = x_0 + \int_0^t f(x_s) ds + \int_0^t \sigma(x_s) dW_s$$

where the second integral is the Itô integral

Application to the exit problem:

The Itô integral is a martingale \Rightarrow its maximum can be controlled in terms of variance at endpoint (Doob) :

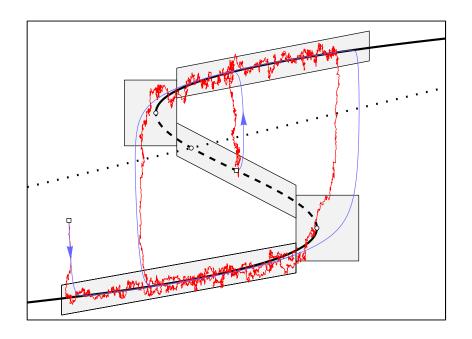
$$\mathbb{P}\bigg\{\sup_{t\in[0,T]}\left|\int_0^t\sigma(x_s)\,\mathrm{d}W_s\right|\geqslant\delta\bigg\}\leqslant\frac{1}{\delta^2}\mathbb{E}\bigg[\bigg(\int_0^T\sigma(x_s)\,\mathrm{d}W_s\bigg)^2\bigg]$$

Itô isometry:

$$\mathbb{E}\left[\left(\int_0^T \sigma(x_s) \, \mathrm{d}W_s\right)^2\right] = \int_0^T \mathbb{E}[\sigma(x_s)^2] \, \mathrm{d}s$$

Application to slow-fast systems

$$dx_t = \frac{1}{\varepsilon} f(x_t, y_t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$
$$dy_t = g(x_t, y_t) dt + \sigma' dW_t'$$



Use different methods

- \triangleright Near stable slow manifold $(f = 0, \partial_x f < 0)$
- \triangleright Near bifurcation points $(f = 0, \partial_x f = 0)$
- \triangleright Far from slow manifold $(f \neq 0)$

Near stable slow manifold

$$dx_t = \frac{1}{\varepsilon} f(x_t, t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Slow-fast system with $y_t = t$

If \exists stable slow manif: $f(x^*(t), t) = 0$,

$$a^*(t) = \partial_x f(x^*(t), t) \leqslant -a_0$$

then \exists adiabatic solution: $\bar{x}(t,\varepsilon) = x^*(t) + \mathcal{O}(\varepsilon)$ of $\varepsilon \dot{x} = f(x,t)$

Near stable slow manifold

$$dx_t = \frac{1}{\varepsilon} f(x_t, t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Slow-fast system with $y_t = t$

If \exists stable slow manif: $f(x^*(t), t) = 0$,

$$a^*(t) = \partial_x f(x^*(t), t) \leqslant -a_0$$

then \exists adiabatic solution: $\bar{x}(t,\varepsilon) = x^*(t) + \mathcal{O}(\varepsilon)$ of $\varepsilon \dot{x} = f(x,t)$

Observation: Let $\bar{a}(t,\varepsilon) = \partial_x f(\bar{x}(t,\varepsilon),t) = a^*(t) + \mathcal{O}(\varepsilon)$

Consider linearised equation at $\bar{x}(t,\varepsilon)$:

$$d\xi_t = \frac{1}{\varepsilon} \bar{a}(t,\varepsilon) \xi_t dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

 ξ_t : gaussian process with variance $\sigma^2 v(t)$, s.t. $\varepsilon \dot{v} = 2\bar{a}(t,\varepsilon)v + 1$

Asymptotically, $v(t) \simeq v^{\star}(t) = 1/2|\bar{a}(t,\varepsilon)|$

 $\mathcal{B}(h)$: strip of width $\simeq h\sqrt{v^{\star}(t,\varepsilon)}$ around $\bar{x}(t,\varepsilon)$

Near stable slow manifold

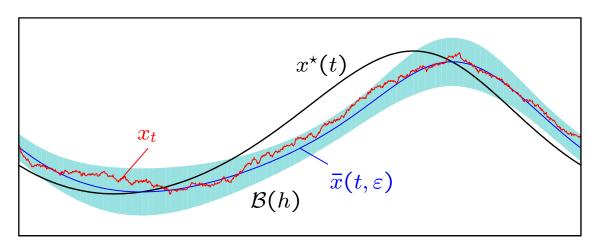
$$dx_t = \frac{1}{\varepsilon} f(x_t, t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Theorem: [B. & Gentz, PTRF 2002]

 $C(t,\varepsilon)e^{-\kappa_-h^2/2\sigma^2} \leqslant \mathbb{P}\Big\{\text{leaving }\mathcal{B}(h) \text{ before time } t\Big\} \leqslant C(t,\varepsilon)e^{-\kappa_+h^2/2\sigma^2}$

$$\kappa_{\pm} = 1 \mp \mathcal{O}(h)$$

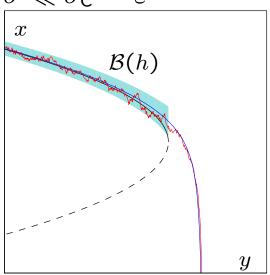
$$C(t,\varepsilon) = \sqrt{\frac{21}{\pi \varepsilon}} \left| \int_0^t \bar{a}(s,\varepsilon) \, \mathrm{d}s \right| \frac{h}{\sigma} \left[1 + \text{error of order } \mathrm{e}^{-h^2/\sigma^2} \, t/\varepsilon \right]$$

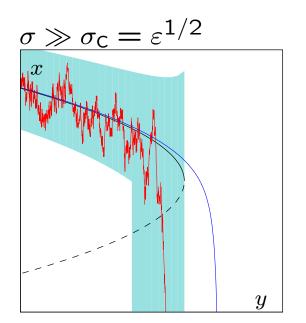


Saddle-node bifurcation

e.g.
$$f(x,y) = -y - x^2$$

$$\sigma \ll \sigma_{\rm C} = \varepsilon^{1/2}$$





Deterministic case $\sigma=0$: Solutions stay at distance $\varepsilon^{1/3}$ above bifurcation point until time $\varepsilon^{2/3}$ after bifurcation.

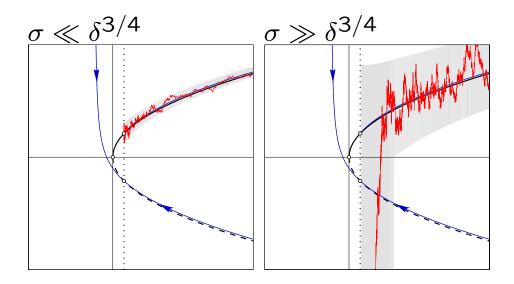
Theorem: [B. & Gentz, Nonlinearity 2002]

- 1. If $\sigma \ll \sigma_{\rm C}$: Paths likely to stay in $\mathcal{B}(h)$ until time $\varepsilon^{2/3}$ after bifurcation, maximal spreading $\sigma/\varepsilon^{1/6}$.
- 2. If $\sigma \gg \sigma_{\rm C}$: Transition typically for $t \asymp -\sigma^{4/3}$ transition probability $\geqslant 1 {\rm e}^{-c\sigma^2/\varepsilon|\log\sigma|}$

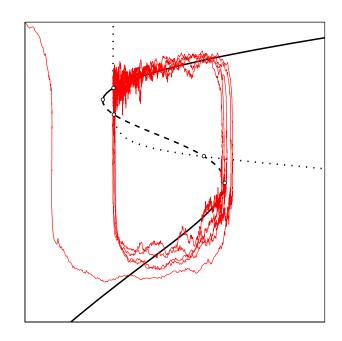
Excitability of type I

Near bifurcation point:

$$dx_t = \frac{1}{\varepsilon} (y_t - x_t^2) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$
$$dy_t = (\delta - y_t) dt$$

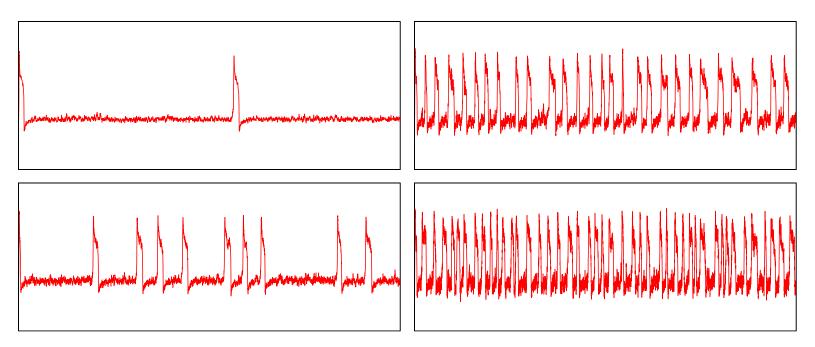


Global behaviour:



Excitability of type I

Time series of $-x_t$:



- $> \sigma \ll \delta^{3/4}$: rare spikes, times between spikes \sim exponentially distributed, mean waiting time of order $e^{\delta^{3/2}/\sigma^2}$
 - ⇒ Poisson point process
- $ho \sigma \gg \delta^{3/4}$: frequent spikes, more regularly spaced, waiting time of order $|\log \sigma|$

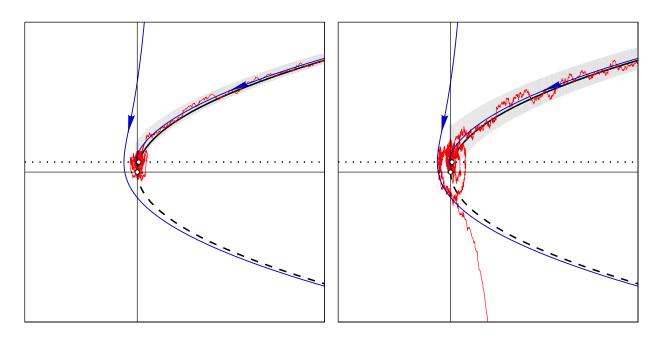
Excitability of type II

Near bifurcation point:

$$dx_t = \frac{1}{\varepsilon} (y_t - x_t^2) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$
$$dy_t = (\delta - x_t) dt$$

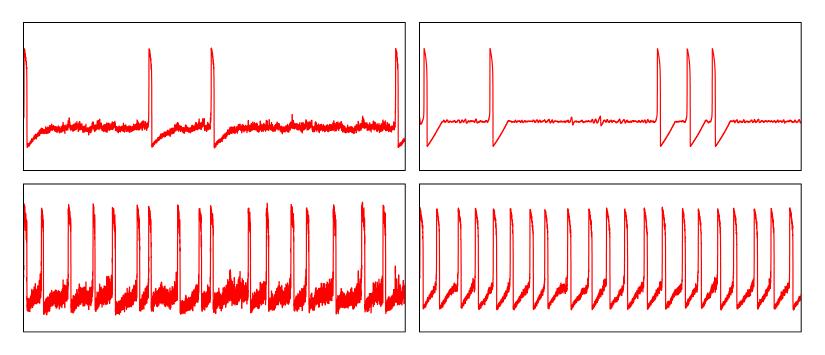
 $> \delta > \sqrt{\varepsilon}$: equilibrium (δ, δ^2) is a node Similar behaviour as before, crossover at $\sigma \sim \delta^{3/2}$

 $\triangleright \delta < \sqrt{\varepsilon}$: equilibrium (δ, δ^2) is a focus. Two-dimensional problem



Excitability of type II

Time series of $-x_t$:



Muratov and Vanden Eijnden (2007):

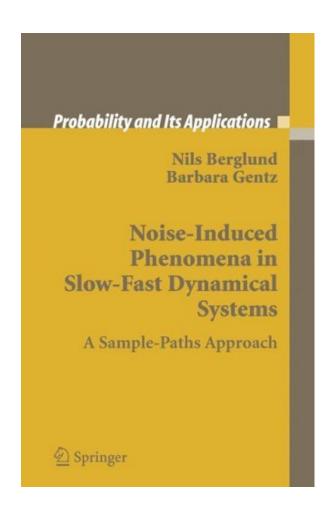
 $\triangleright \sigma \ll \delta \varepsilon^{1/4}$: rare spikes

 $\delta \varepsilon^{1/4} \ll \sigma \ll (\delta \varepsilon)^{1/2}$: rare sequences of spikes

 $\triangleright \sigma \gg (\delta \varepsilon)^{1/2}$: more frequent and regularly spaced spikes

References

- N. B. & B. Gentz, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields 122, 341–388 (2002)
- _____, A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab. **12**, 1419-1470 (2002)
- _____, The effect of additive noise on dynamical hysteresis, Nonlinearity **15**, 605–632 (2002)
- _____, Noise-Induced Phenomena in Slow-Fast Dynamical Systems. A Sample-Paths Approach. Springer, Probability and its Applications, 276+xvi pages (2005)
- ______, Stochastic dynamic bifurcations and excitability, in C. Laing and G. Lord, (Eds.) Stochastic Methods in Neuroscience, Oxford University Press (to appear in July 2009)



http://www.univ-orleans.fr/mapmo/membres/berglund/barcelona09.pdf

Conference Stochastic Models in Neuroscience

CIRM, Marseille-Luminy, France 18-22 January 2010 Supported by ANR MANDy

Scientific Committee:

- J. Carrillo (Barcelona), A. Detexhe (Paris),
- B. Gentz (Bielefeld), W. Gerstner (Lausanne),
- G. Giacomin (Paris), N. Parga (Madrid),
- B. Perthame (Paris), D. Talay (Nice)

Organising Committee:

- M. Thieullen (Paris 6), N. Berglund (Orléans),
- S. Mancini (Orléans)

http://www.fdpoisson.org/colloques/neurostoch neurostoch@listes.univ-orleans.fr

