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Mixed-mode oscillations (MMOSs)
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Mixed-mode oscillations (MMOSs)
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> Deterministic models reproducing these oscillations exist
and have been abundantly studied

They often involve singular perturbation theory

> We want to understand the effect of noise
on oscillatory patterns

Noise may also induce oscillations not present in deterministic case

1-a



Part 1

Where noise creates MMOSs



Deterministic FitzHugh—Nagumo (FHN) equations
Consider the FHN equations in the form
£t =1 — + vy

Yy=a—<x

> x o« membrane potential of neuron
>y o< proportion of open ion channels (recovery variable)
>e K 1 = fast—slow system



Deterministic FitzHugh—Nagumo (FHN) equations
Consider the FHN equations in the form

8:i:::1:—a:3+y

Yy=a—<x

> x o« membrane potential of neuron
>y o< proportion of open ion channels (recovery variable)
>e K 1 = fast—slow system

Stationary point P = (a,a> — a)

3a°—1

: L. . 5482
Linearisation has eigenvalues ox 55 € where § = 5

> > 0: stable node (§ > /) or focus (0 < § < /)
>d = O: [Erneux & Mandel '86]
> 6 < 0: unstable focus (—+y/e < d < 0) or node (§ < —y/&)
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> P is asymptotically stable :
> the system is excitable
> one can define a separatrix
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Stochastic FHN equations

1 01 (1)
dzy = =[xy — o3 dt + —= dW
T = - [ — 27 + y] dt + eI

dyt = [a — 2¢] dt + op dW 2

> Wt(l), Wt(Q): independent Wiener processes
>0 <o1,00kK 1, 0= \/a%—l—ag




Stochastic FHN equations

1 01 (1)
dzy = =[xy — o3 dt + —= dW
T = - [ — 27 + y] dt + eI

dyt = [a — 2¢] dt + op dW 2

> Wt(l), Wt(Q): independent Wiener processes
>0 <o1,00kK 1, 0= \/a%—l—ag

e =0.1
60 = 0.02
o1 = oo = 0.03




Some previous work

> Numerical: Kosmidis & Pakdaman '03, ..., Borowski et al '11

> Moment methods: Tanabe & Pakdaman '01

> Approx. of Fokker—Planck equ: Lindner et al '99, Simpson & Kuske '11
> Large deviations: Muratov & Vanden Eijnden '05, Doss & Thieullen '09
> Sample paths near canards: Sowers '08
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Proposed “phase diagram’’ [Muratov & Vanden Eijnden '08]

A

? o= §3/?

£3/4 6
o= (6e)1/2
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Intermediate regime: mixed-mode oscillations (MMOSs)
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Precise analysis of sample paths




Precise analysis of sample paths

> Dynamics near stable branch, unstable branch T et B
and saddle—node bifurcation: already done in
[B & Gentz '05]




Precise analysis of sample paths

> Dynamics near stable branch, unstable branch "
and saddle—node bifurcation: already done in |
[B & Gentz '05]

> Dynamics near singular Hopf bifurcation: To do
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Small-amplitude oscillations (SAOSs)

Definition of random number of SAOs N:

nullcline y = 23 — x

separatrix

F, parametrised by R € [0, 1]



Small-amplitude oscillations (SAOSs)

Definition of random number of SAOs N:

nullcline y = 23 — x

separatrix

F, parametrised by R € [0, 1]
(Ro, Rq1,...,Ryn_1) substochastic Markov chain with kernel
K(Rg, A) =PRo{R, ¢ A}

Re F, ACF, = first-hitting time of F (after turning around P)
N = number of turns around P until leaving D



General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]

Principal eigenvalue: eigenvalue A\g of K of largest module. \g € R
Quasistationary distribution: prob. measure mg s.t. mgK = A\g7mg
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General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]

Principal eigenvalue: eigenvalue A\g of K of largest module. \g € R
Quasistationary distribution: prob. measure mg s.t. mgK = A\g7mg

Theorem 1: [B & Landon, 2011] Assume 01,0 > 0

>Ag <1

> K admits quasistationary distribution mg
> N is almost surely finite

> N is asymptotically geometric:

im P{N =n+ 1|N >n} =1 — Xg

n—aoeo

> E[rV] < oo for r < 1/)g, so all moments of N are finite

Proof uses Frobenius—Perron—Jentzsch—Krein—Rutman—Birkhoff theorem

and uniform positivity of K, which implies spectral gap

9-b



Histograms of distribution of SAO number N (1000 spikes)
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The weak-noise regime

Theorem 2: [B & Landon 2011]
Assume e and §/+/e sufficiently small
There exists k > 0 s.t. for o2 < (e1/46)2/109(\/2/6)
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The weak-noise regime

Theorem 2: [B & Landon 2011]
Assume e and §/+/e sufficiently small
There exists k > 0 s.t. for o2 < (e1/46)2/109(\/2/6)

> Principal eigenvalue:

(el/ ‘;5)2}

1 —Xp < exp{—n
o
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The weak-noise regime

Theorem 2: [B & Landon 2011]
Assume e and §/+/e sufficiently small
There exists k > 0 s.t. for o2 < (¢1/45)2/1og(\/2/6)

> Principal eigenvalue:

(el/ ‘;5)2}

1 —Xp < exp{—n
o

> Expected number of SAOS:

(51/45)2}

EV0[N] > C(uo) exp{n-"—

o
where C(ug) = probability of starting on F above separatrix

11-b



The weak-noise regime

Theorem 2: [B & Landon 2011]
Assume e and §/+/e sufficiently small
There exists k > 0 s.t. for o2 < (¢1/45)2/1og(\/2/6)

> Principal eigenvalue:

(51/45)2}

1 —Xp < exp{—m 5

o

> Expected number of SAOS:

(51/45)2}

EV0[N] > C(uo) exp{n-"—

o
where C(ug) = probability of starting on F above separatrix

Proof:

> Construct A C F such that K(x, A) exponentially close to 1 for all z € A
> Use two different sets of coordinates to approximate K:
Near separatrix, and during SAO
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Dynamics near the separatrix

Change of variables:

> Translate to Hopf bif. point
> Scale space and time

> Straighten nullcline z = 0

. . 1
= variables (&, z) where nullcline: {z = §}

dit = (%_Zt )dt-|—51 th(l)
dzy = (ﬂ + 282 ) dt — 251&; th(l) + 55 th(Q)
where
ﬁ=\%—5f =-V35E =3,



Dynamics near the separatrix

Change of variables:

> Translate to Hopf bif. point
> Scale space and time

> Straighten nulicline = 0 % O

. . 1
= variables (&, z) where nullcline: {z = §}

dit = (%_Zt )dt-|—51 th(l)
dzy = (ﬂ + 282 ) dt — 251&; th(l) + 55 th(Q)
where
ﬁ=\%—5f =-V35E =3,

Upward drift dominates if 2 > 57 + 53 = (e1/%6)2 > 02 + 05

Rotation around P: use that 2ze 2*=2¢+! js constant for i =e¢ =0



Transition from weak to strong noise
Linear approximation:

d=f = (fi+t20) dt — 10 dW Y + 55 W)

P{no SAO} ~ & ( —xl/4__ii o) = [ eV
= no ~d(— - D
t J ( " 5%4_55) g —oo V2T Y

13



Transition from weak to strong noise

Linear approximation:

=  P{no SAO} ~ CD(—W1/4
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Conclusions

Three regimes for § < \/e:
> o < e1/48: rare isolated spikes

>el/45 < o < £3/%: transition
geometric number of SAOs
o = (6e)1/2: geometric(1/2)

> o > 3/4: repeated spikes

o)

A

o = (6g)1/2

o = 53/2

.
[ =

51/4

£1/2
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Conclusions

Three regimes for § < \/e:
> o < e1/48: rare isolated spikes

interval ~ Exp(yEe(/40)2/0%y ¥4y

>el/45 < o < £3/%: transition
geometric number of SAOs
o = (6e)1/2: geometric(1/2)

o)

A

I

o = (6g)1/2

o= §3/2

.
[ =

A

51/4

> o > 3/4: repeated spikes

Outlook

> sharper bounds on \g (and mg)

> relation between P{no SAO}, 1/E[N] and 1 — \g
> consequences of postspike distribution ug #= mo
> interspike interval distribution ~ periodically modulated

exponential — how is it modulated?

£1/2



Part II

Where noise modifies or suppresses
MMOs



Folded node singularity

Normal form [Benoit, Lobry '82, Szmolyan, Wechselberger '01]:

ex =19y — 72
y=—(p+ 1z —=2 (4 higher-order terms)
K
z = —
2
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Folded node singularity

Normal form [Benoit, Lobry '82, Szmolyan, Wechselberger '01]:

ex =19y — 72
y=—(p+ 1z —=2 (4 higher-order terms)
e
2

05—

-0.5

0.5



Folded node singularity

T heorem [Benoit, Lobry '82, Szmolyan, Wechselberger '01]:
For 2k 4+ 1 < /fl < 2k + 3, the system admits k£ canard solutions

The ;" canard makes (25 + 1)/2 oscillations

11 - :
Sen T ®

I

ot £g £2 s

(a) ' 1213 ' \\

Mixed-mode oscillations
(MMOs)
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Effect of noise

1 o
day =~ (y: 22) dt + e aw
dyt = [~(p + 1)zt — 2¢] dt + Jth(z)

dz; = 2 dt
>

14
'

|

0.4} ‘ ‘

-0.1} \

-0.6 /
0

e Noise smears out small amplitude oscillations
e Early transitions modify the mixed-mode pattern
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Covariance tubes

Linearized stochastic equation around a canard (z§®t, ydet pdet)

dé; = A(t) G dt + o dW; A(t) = <—_(21:£;t) c13>

t
G=Ul)o+ 0/0 U(t,s) dWs (U(t,s) : principal solution of U = AU)
Gaussian process with covariance matrix

Cov(() = a2V (¢) V(t) = U(t)V(O)U(t)_l—I—/OtU(t, U (t,s)! ds

17



Covariance tubes

Linearized stochastic equation around a canard (z§®t, ydet pdet)

dé; = A(t) G dt + o dW; A(t) = <—_(21:£;t) é)

t
G=Ul)o+ 0/0 U(t,s) dWs (U(t,s) : principal solution of U = AU)
Gaussian process with covariance matrix

Cov(() = a2V (¢) V(t) = U(t)V(O)U(t)_l—I—/OtU(t, U (t,s)! ds

Covariance tube :
B(h) = {{(z,y) — @5 4", V() M (z,y) — (f%, yf*D]) < h?}

Theorem 3: [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with 2z <0) :

]P){TB(h) < t} < C(t) e_“h2/2‘72
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Small-amplitude oscillations and noise

One shows that for z =0

> The distance between the kt" and k + 15t canard
has order e—(2k+1)%u
> The section of B(h) is close to circular with radius u~1/%h

18
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One shows that for z =0

> The distance between the kt" and k + 15t canard
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Corollary: 06
Let
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Small-amplitude oscillations and noise

One shows that for z =0

> The distance between the kt" and k + 15t canard
has order e—(2k+1)%u

> The section of B(h) is close to circular with radius u~1/%h

Corollary: s
Let i ; Zoom
o) = pt/* em (A

Canards with 2’2"1 oscillations  ,;

become indistinguishable from
noisy fluctuations for o > o5 (1)
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Early transitions

Let D be neighbourhood of size \/z of a canard for z > O (unstable)

Theorem 4: [B, Gentz, Kuehn 2010]
Ik, C,v1,v2 > 0 such that for o|log o1 < p3/% probability of leaving

D after z; = z satisfies

P{2rp, > 2} < Cllog o[12 e #(z*=1)/ (kllog o)

Small for z > \/mlog o|/k
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Early transitions

Let D be neighbourhood of size /z
Theorem 4: [B, Gentz, Kuehn 201

of a canard for z > O (unstable)

O]

Ik, C,v1,v2 > 0 such that for o|log o1 < p3/% probability of leaving

D after z; = z satisfies

P{2rp > 2} < Cllog 0|12 e~/ (ullog )

Small for z > \/,u|log ol/k
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Further work

> Better understanding of distribution of noise-induced transitions

> Effect on mixed-mode pattern in conjunction with global return mechanism
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Further work

> Better understanding of distribution of noise-induced transitions

> Effect on mixed-mode pattern in conjunction with global return mechanism

(z, 2)-proj.
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Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with z; <0) :

P{TB(h) < t} < C(t) e_K“hQ/QU2

Sketch of proof :
> (Sub)martingale : {M;}i>0, E{M;|M;} = (=)M; fort >s >0

1
> Doob’s submartingale inequality : IP{ sup M; > L} < ZE[M;]

o<t<T
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Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with z; <0) :

2 2
P{TB(h) < t} < C(t) e_ﬁh /20
Sketch of proof :
> (Sub)martingale : {M;}i>0, E{M;|M;} = (=)M; fort >s >0

1
> Doob’s submartingale inequality : IP{ sup M, > L} < ZE[M;]

o<t<T

t
> Linear equation : (; = a/ U(t,s)dWs is no martingale

0
but can be approximated by martingale on small time intervals
> exp{v{(, V(t)"1¢)} approximated by submartingale

> Doob’s inequality yields bound on probability of leaving B(h) during small
time intervals. Then sum over all time intervals

22-2a



Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with z; <0) :

P{ra(ny <t} < C(t)e /27"

Sketch of proof :
> (Sub)martingale : {M;}i>0, E{M;|M;} = (=)M; fort >s >0

1
> Doob’s submartingale inequality : IP{ sup M, > L} < ZE[M;]

o<t<T

t
> Linear equation : (; = a/ U(t,s)dWs is no martingale

0
but can be approximated by martingale on small time intervals
> exp{v{(, V(t)"1¢)} approximated by submartingale

> Doob’s inequality yields bound on probability of leaving B(h) during small
time intervals. Then sum over all time intervals

> Nonlinear equation : d{; = A(t){ dt 4+ b((, t) dt + o dW;
t t
G = O'/ U(t,s)dW, —I—/ U(t,s)b(s,s)ds
0 0

Second integral can be treated as small perturbation for ¢ < 733
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Early transitions

Let D be neighbourhood of size \/z of a canard for z > O (unstable)

Theorem 4: [B, Gentz, Kuehn 2010]
Ik, C,v1,v2 > 0 such that for o|log o1 < p3/% probability of leaving
D after z; = z satisfies

P{2rp, > 2} < Cllog o[12 e #(z*=1)/ (kllog o)

Small for z > \/M\Iog o|/k

Sketch of proof :

> Escape from neighbourhood of size o|logol|/+/z :
compare with linearized equation on small time intervals + Markov property

> Escape from annulus ollogol|//z < ||¢]| < 2z :
use polar coordinates and averaging

> To combine the two regimes : use Laplace transforms
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