Metastability

in a chain of coupled nonlinear diffusions

Nils Berglund

Centre de Physique Théorique - CNRS Marseille Luminy http://berglund.univ-tln.fr

Joint work with: Bastien Fernandez, CPT, Marseille Barbara Gentz, University of Bielefeld

Berliner Kolloquium Wahrscheinlichkeitstheorie, Berlin, 18 April 2007 Metastability in physics

Examples:

- Supercooled liquid
- Supersaturated gas
- Wrongly magnetised ferromagnet

Metastability in physics

Examples:

- Supercooled liquid
- Supersaturated gas
- Wrongly magnetised ferromagnet

Near first-order phase transition

Nucleation implies crossing energy barrier

Metastability in stochastic lattice models

 \triangleright Lattice: $\land \subset \subset \mathbb{Z}^d$

- ▷ Configuration space: $\mathcal{X} = S^{\Lambda}$, S finite set (e.g. $\{-1,1\}$)
- \triangleright Hamiltonian: $H : \mathcal{X} \to \mathbb{R}$ (e.g. Ising or lattice gas)
- ▷ Gibbs measure: $\mu_{\beta}(x) = e^{-\beta H(x)} / Z_{\beta}$
- > Dynamics: Markov chain with invariant measure μ_{β} (e.g. Metropolis: Glauber or Kawasaki)

Metastability in stochastic lattice models

 \triangleright Lattice: $\land \subset \subset \mathbb{Z}^d$

- ▷ Configuration space: $\mathcal{X} = S^{\wedge}$, S finite set (e.g. {-1,1})
- \triangleright Hamiltonian: $H : \mathcal{X} \to \mathbb{R}$ (e.g. Ising or lattice gas)
- ▷ Gibbs measure: $\mu_{\beta}(x) = e^{-\beta H(x)} / Z_{\beta}$
- > Dynamics: Markov chain with invariant measure μ_{β} (e.g. Metropolis: Glauber or Kawasaki)

Results (for $\beta \gg 1$) on

- Transition time between + and or empty and full configuration
- Transition path
- Shape of critical droplet

- Frank den Hollander, Metastability under stochastic dynamics, Stochastic Process. Appl. 114 (2004), 1–26.
- Enzo Olivieri and Maria Eulália Vares, Large deviations and metastability, Cambridge University Press, Cambridge, 2005.

 $dx^{\sigma}(t) = -\nabla V(x^{\sigma}(t)) dt + \sigma dB(t)$ $\triangleright V : \mathbb{R}^{d} \to \mathbb{R} : \text{ potential, growing at infinity}$ $\triangleright dB(t) : d - dim \text{ Brownian motion on } (\Omega, \mathcal{F}, \mathbb{P})$

Invariant measure:

$$\mu_{\sigma}(x) = \frac{\mathrm{e}^{-2V(x)/\sigma^2}}{Z_{\sigma}}$$

$$dx^{\sigma}(t) = -\nabla V(x^{\sigma}(t)) dt + \sigma dB(t)$$

$$\triangleright V : \mathbb{R}^{d} \to \mathbb{R} : \text{ potential, growing at infinity}$$

$$\triangleright dB(t) : d\text{-dim Brownian motion on } (\Omega, \mathcal{F}, \mathbb{P})$$

Invariant measure:

Mont

$$dx^{\sigma}(t) = -\nabla V(x^{\sigma}(t)) dt + \sigma dB(t)$$

$$\triangleright V : \mathbb{R}^{d} \to \mathbb{R} : \text{ potential, growing at infinity}$$

$$\triangleright dB(t) : d\text{-dim Brownian motion on } (\Omega, \mathcal{F}, \mathbb{P})$$

Invariant measure:

 τ : transition time between potential wells (first-hitting time)

- Large deviations (Wentzell & Freidlin): $\lim_{\sigma \to 0} \sigma^2 \log(\mathbb{E}\{\tau\})$
- Analytic (Miclo, Mathieu, Kolokoltsov): spectrum of generator

Mont

• Variational (Bovier *el al*): spectrum and distribution of τ

▷ Stationary pts: $S = \{x : \nabla V(x) = 0\}$ ▷ Saddles of index k: $S_k = \{x \in S : \text{Hess } V(x) \text{ has } k \text{ ev } < 0\}$ ▷ Graph $\mathcal{G} = (S_0, \mathcal{E}), x \leftrightarrow y \text{ if } x, y \in \text{unst. manif. of } s \in S_1$ ▷ $x_t \sim \text{markovian jump process on } \mathcal{G}$

▷ Stationary pts: $S = \{x : \nabla V(x) = 0\}$ ▷ Saddles of index k: $S_k = \{x \in S : \text{Hess } V(x) \text{ has } k \text{ ev } < 0\}$ ▷ Graph $\mathcal{G} = (S_0, \mathcal{E}), x \leftrightarrow y \text{ if } x, y \in \text{unst. manif. of } s \in S_1$ ▷ $x_t \sim \text{markovian jump process on } \mathcal{G}$

Rot	Rhätische Bahn
Grün	ganzjährig offen
Blau	Wintersperre

Nr.	Pass	Land	Passhöhe (m.ü.M.)
1	Flüela	CH	2383
2	Albula	CH	2312
3	Julier	CH	2284
4	Maloja	CH	1815
5	Splügen	I - CH	2115
6	Reschen	A - I	1507
7	Ofen	CH	2149
8	Umbrail	CH - I	2502
9	Stilfserjoch	1	2757
10	Foscagno	1	2291
11	Bernina	CH - I	2323
12	Fla. di Livigno	1	2315

 \bullet Lattice: $\Lambda = \mathbb{Z} \, / N \mathbb{Z}$, $N \geqslant 2$

- Lattice: $\Lambda = \mathbb{Z} / N\mathbb{Z}$, $N \geqslant 2$
- $i \in \Lambda \mapsto x_i \in \mathbb{R}$, configuration space $\mathcal{X} = \mathbb{R}^{\Lambda}$

$dx_i(t) =$

• Lattice:
$$\Lambda = \mathbb{Z} / N\mathbb{Z}$$
, $N \geqslant 2$

- $i \in \Lambda \mapsto x_i \in \mathbb{R}$, configuration space $\mathcal{X} = \mathbb{R}^{\Lambda}$
- Local bistable potential $U(x) = \frac{1}{4}x^4 \frac{1}{2}x^2$

$$dx_i(t) = f(x_i(t)) dt$$
$$f(x) = -U'(x) = x - x^3$$

- Lattice: $\Lambda = \mathbb{Z} \, / N \mathbb{Z}$, $N \geqslant 2$
- $i \in \Lambda \mapsto x_i \in \mathbb{R}$, configuration space $\mathcal{X} = \mathbb{R}^{\Lambda}$
- Local bistable potential $U(x) = \frac{1}{4}x^4 \frac{1}{2}x^2$
- \bullet Coupling between sites: discretised Laplacian, intensity γ

$$dx_i(t) = f(x_i(t)) dt + \frac{\gamma}{2} \left[x_{i+1}(t) - 2x_i(t) + x_{i-1}(t) \right] dt$$

$$f(x) = -U'(x) = x - x^3$$

- Lattice: $\Lambda = \mathbb{Z} \, / N \mathbb{Z}$, $N \geqslant 2$
- $i \in \Lambda \mapsto x_i \in \mathbb{R}$, configuration space $\mathcal{X} = \mathbb{R}^{\Lambda}$
- Local bistable potential $U(x) = \frac{1}{4}x^4 \frac{1}{2}x^2$
- \bullet Coupling between sites: discretised Laplacian, intensity γ
- Independent white noise on each site

$$dx_i(t) = f(x_i(t)) dt + \frac{\gamma}{2} \left[x_{i+1}(t) - 2x_i(t) + x_{i-1}(t) \right] dt + \sqrt{N}\sigma dB_i(t)$$

$$f(x) = -U'(x) = x - x^3$$

- Lattice: $\Lambda = \mathbb{Z} \, / N \mathbb{Z}$, $N \geqslant 2$
- $i \in \Lambda \mapsto x_i \in \mathbb{R}$, configuration space $\mathcal{X} = \mathbb{R}^{\Lambda}$
- Local bistable potential $U(x) = \frac{1}{4}x^4 \frac{1}{2}x^2$
- ullet Coupling between sites: discretised Laplacian, intensity γ
- Independent white noise on each site

$$dx_i(t) = f(x_i(t)) dt + \frac{\gamma}{2} \left[x_{i+1}(t) - 2x_i(t) + x_{i-1}(t) \right] dt + \sqrt{N}\sigma dB_i(t)$$

$$f(x) = -U'(x) = x - x^3$$

Interacting diffusions (Dawson, Gärtner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; Méléard; Kondratiev, Röckner, Carmona, Xu ...)

- Lattice: $\Lambda = \mathbb{Z} \, / N \mathbb{Z}$, $N \geqslant 2$
- $i \in \Lambda \mapsto x_i \in \mathbb{R}$, configuration space $\mathcal{X} = \mathbb{R}^{\Lambda}$
- Local bistable potential $U(x) = \frac{1}{4}x^4 \frac{1}{2}x^2$
- ullet Coupling between sites: discretised Laplacian, intensity γ
- Independent white noise on each site

$$dx_i(t) = f(x_i(t)) dt + \frac{\gamma}{2} \left[x_{i+1}(t) - 2x_i(t) + x_{i-1}(t) \right] dt + \sqrt{N}\sigma dB_i(t)$$

$$f(x) = -U'(x) = x - x^3$$

Interacting diffusions (Dawson, Gärtner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; Méléard; Kondratiev, Röckner, Carmona, Xu ...)

Gradient System: $dx^{\sigma}(t) = -\nabla V_{\gamma}(x^{\sigma}(t)) dt + \sqrt{N\sigma} dB(t)$

Potential:
$$V_{\gamma}(x) = \sum_{i \in \Lambda} U(x_i) + \frac{\gamma}{4} \sum_{i \in \Lambda} (x_{i+1} - x_i)^2$$

Weak coupling

▷ $\gamma = 0$: $S = \{-1, 0, 1\}^{\Lambda}$, $S_0 = \{-1, 1\}^{\Lambda}$, G = hypercube.

Weak coupling

▷ $\gamma = 0$: $S = \{-1, 0, 1\}^{\Lambda}$, $S_0 = \{-1, 1\}^{\Lambda}$, G = hypercube.

Theorem: $\forall N, \exists \gamma^*(N) > 0$ s.t. points of each $S_k(\gamma)$ continuous in γ for $0 \leq \gamma < \gamma^*(N)$

 $\frac{1}{4} \leqslant \inf_{N \geqslant 2} \gamma^{\star}(N) \leqslant \gamma^{\star}(3) = \frac{1}{3} \left(\sqrt{3} + 2\sqrt{3} - \sqrt{3} \right) = 0.2701 \dots$

Weak coupling

 2γ 0 -

▷
$$\gamma = 0$$
: $S = \{-1, 0, 1\}^{\Lambda}$, $S_0 = \{-1, 1\}^{\Lambda}$, $\mathcal{G} = \text{hypercube.}$
Theorem: $\forall N, \exists \gamma^*(N) > 0$ s.t. points of each $S_k(\gamma)$ continuous in
 γ for $0 \leq \gamma < \gamma^*(N)$
 $\frac{1}{4} \leq \inf_{N \geq 2} \gamma^*(N) \leq \gamma^*(3) = \frac{1}{3} (\sqrt{3 + 2\sqrt{3}} - \sqrt{3}) = 0.2701...$
▷ $0 < \gamma \ll 1$:
 $V_{\gamma}(x^*(\gamma)) = V_0(x^*(0)) + \frac{\gamma}{4} \sum_{i \in \Lambda} (x_{i+1}^*(0) - x_i^*(0))^2 + \mathcal{O}(\gamma^2)$
 $\downarrow 1 + \frac{3}{4} + \frac{3}{2\gamma} \qquad (1,1,1,...,1)$
 $\downarrow V + \frac{N}{4}$
 $\downarrow 1 + \frac{3}{2\gamma} \qquad (1,1,1,...,1)$
 $\downarrow V + \frac{N}{4}$
 $\downarrow V + \frac{N}{4}$

Remarks: •
$$I^{\pm} = \pm (1, 1, \dots 1) \in S_0 \forall \gamma$$

• $O = (0, 0, \dots 0) \in S \forall \gamma$

Remarks: •
$$I^{\pm} = \pm (1, 1, ..., 1) \in S_0 \forall \gamma$$

• $O = (0, 0, ..., 0) \in S \forall \gamma$
Let $\gamma_1 = \frac{1}{1 - \cos(2\pi/N)} \left(= \frac{N^2}{2\pi^2} \left[1 - \mathcal{O}(N^{-2}) \right] \right)$
Theorem:

•
$$\mathcal{S} = \{I^-, I^+, O\} \Leftrightarrow \gamma \ge \gamma_1$$

•
$$S_1 = \{O\} \Leftrightarrow \gamma > \gamma_1$$

Remarks: •
$$I^{\pm} = \pm (1, 1, \dots, 1) \in S_0 \forall \gamma$$

• $O = (0, 0, \dots, 0) \in S \forall \gamma$
Let $\gamma_1 = \frac{1}{1 - \cos(2\pi/N)} \left(= \frac{N^2}{2\pi^2} \left[1 - \mathcal{O}(N^{-2}) \right] \right)$
Theorem:

•
$$S = \{I^-, I^+, O\} \Leftrightarrow \gamma \ge \gamma_1$$

• $S_1 = \{O\} \Leftrightarrow \gamma > \gamma_1$

Proof:

$$\dot{x} = Ax - F(x), \quad A = \begin{pmatrix} 1 - \gamma \ \gamma/2 & \gamma/2 \\ \gamma/2 & \ddots & \ddots \\ \gamma/2 & \gamma/2 \ 1 - \gamma \end{pmatrix}, \quad F_i(x) = x_i^3$$
Lyapunov function:
$$W(x) = \frac{1}{2} \sum_{i \in \Lambda} (x_i - x_{i+1})^2 = \frac{1}{2} ||x - Rx||^2$$

$$Rx = (x_2, \dots, x_N, x_1)$$

$$\frac{dW(x)}{dt} = \langle x - Rx, \frac{d}{dt} (x - Rx) \rangle \leqslant \langle x - Rx, A(x - Rx) \rangle \leqslant (1 - \frac{\gamma}{\gamma_1}) ||x - Rx||^2$$

Remark: $V(O) - V(I^-) = V(O) - V(I^+) = N/4$ Corollary: $\forall N, \forall \gamma > \gamma_1(N), \forall 0 < r < R \leq \frac{1}{2}, \forall x_0 \in \mathcal{B}(I^-, r)$: • Let $\tau_+ = \tau^{\text{hit}}(\mathcal{B}(I^+, r))$. Then $\forall \delta > 0$,

 $\lim_{\sigma \to 0} \mathbb{P}^{x_0} \left\{ e^{(1/2 - \delta)/\sigma^2} \leqslant \tau_+ \leqslant e^{(1/2 + \delta)/\sigma^2} \right\} = 1$ $\lim_{\sigma \to 0} \sigma^2 \log \mathbb{E}^{x_0} \{\tau_+\} = \frac{1}{2}$

• Let
$$\tau_O = \tau^{\text{hit}}(\mathcal{B}(O, r))$$
,
and $\tau_- = \inf\{t > \tau^{\text{exit}}(\mathcal{B}(I^-, R)) \colon x_t \in \mathcal{B}(I^-, r)\}$. Then
$$\lim_{\sigma \to 0} \mathbb{P}^{x_0} \{\tau_O < \tau_+ \mid \tau_+ < \tau_-\} = 1$$

Symmetry groups

Potential V_{γ} invariant by

•
$$R(x_1,\ldots,x_N) = (x_2,\ldots,x_N,x_1)$$

•
$$S(x_1,\ldots,x_N) = (x_N,x_{N-1},\ldots,x_1)$$

•
$$C(x_1,\ldots,x_N) = -(x_1,\ldots,x_N)$$

 $\Rightarrow V_{\gamma}$ invariant by group $G = D_N \times \mathbb{Z}_2$ generated by R, S, C

Symmetry groups

Potential V_{γ} invariant by

•
$$R(x_1,\ldots,x_N) = (x_2,\ldots,x_N,x_1)$$

•
$$S(x_1, ..., x_N) = (x_N, x_{N-1}, ..., x_1)$$

•
$$C(x_1,\ldots,x_N) = -(x_1,\ldots,x_N)$$

 $\Rightarrow V_{\gamma}$ invariant by group $G = D_N \times \mathbb{Z}_2$ generated by R, S, CG acts as group of transformations on \mathcal{X} , \mathcal{S} , $\mathcal{S}_k \forall k$

- Orbit of $x \in \mathcal{X}$: $O_x = \{gx \colon g \in G\}$
- Isotropy group of $x \in \mathcal{X}$: $C_x = \{g \in G : gx = x\} \triangleleft G$
- Fixed-point space of $H \triangleleft G$: Fix $(H) = \{x \in \mathcal{X} : hx = x \forall h \in H\}$

Properties:

$$|C_x||O_x| = |G|$$

$$C_{gx} = gC_x g^{-1}$$

$$Fix(gHg^{-1}) = g Fix(H)$$

z^{\star}	$O_{z^{\star}}$	$C_{z^{\star}}$	$Fix(C_{z^{\star}})$
(0,0)	$\{(0,0)\}$	G	$\{(0,0)\}$
(1,1)	$\{(1,1),(-1,-1)\}$	$D_2 = \{id, S\}$	$\{(x,x)\}_{x\in\mathbb{R}} = \mathcal{D}$
(1, -1)	$\{(1,-1),(-1,1)\}$	$\{id, CS\}$	$\{(x,-x)\}_{x\in\mathbb{R}}$
(1,0)	$\{\pm(1,0),\pm(0,1)\}$	{id}	$\left\{ \{(x,y)\}_{x,y\in\mathbb{R}} = \mathcal{X} \right\}$

z^{\star}	$O_{z^{\star}}$	$C_{z^{\star}}$	$Fix(C_{z^{\star}})$
(0,0)	$\{(0,0)\}$	G	$\{(0,0)\}$
(1,1)	$\{(1,1),(-1,-1)\}$	$D_2 = \{id, S\}$	$\{(x,x)\}_{x\in\mathbb{R}}=\mathcal{D}$
(1, -1)	$\{(1,-1),(-1,1)\}$	$\{id, CS\}$	$\{(x,-x)\}_{x\in\mathbb{R}}$
(1,0)	$\{\pm(1,0),\pm(0,1)\}$	{id}	$\left\{(x,y)\right\}_{x,y\in\mathbb{R}}=\mathcal{X}$

Desynchronisation

Theorem: \forall even N, $\exists \delta(N) > 0$ s.t. for $\gamma_1 - \delta(N) < \gamma < \gamma_1$, |S| = 2N + 3, and can be decomposed as

$$S_{0} = O_{I^{+}} = \{I^{+}, I^{-}\}$$

$$S_{1} = O_{A} = \{A, RA, \dots, R^{N-1}A\}$$

$$S_{2} = O_{B} = \{B, RB, \dots, R^{N-1}B\}$$

$$S_{3} = O_{O} = \{O\}$$

with

$$A_j(\gamma) = \frac{2}{\sqrt{3}} \sqrt{1 - \frac{\gamma}{\gamma_1}} \sin\left(\frac{2\pi}{N}\left(j - \frac{1}{2}\right)\right) + \mathcal{O}\left(1 - \frac{\gamma}{\gamma_1}\right)$$
$$\frac{V_{\gamma}(A)}{N} = -\frac{1}{6} \left(1 - \frac{\gamma}{\gamma_1}\right)^2 + \mathcal{O}\left((1 - \frac{\gamma}{\gamma_1})^3\right)$$

Desynchronisation

Theorem: \forall even N, $\exists \delta(N) > 0$ s.t. for $\gamma_1 - \delta(N) < \gamma < \gamma_1$, |S| = 2N + 3, and can be decomposed as

$$S_{0} = O_{I^{+}} = \{I^{+}, I^{-}\}$$

$$S_{1} = O_{A} = \{A, RA, \dots, R^{N-1}A\}$$

$$S_{2} = O_{B} = \{B, RB, \dots, R^{N-1}B\}$$

$$S_{3} = O_{O} = \{O\}$$

with

$$A_j(\gamma) = \frac{2}{\sqrt{3}} \sqrt{1 - \frac{\gamma}{\gamma_1}} \sin\left(\frac{2\pi}{N}\left(j - \frac{1}{2}\right)\right) + \mathcal{O}\left(1 - \frac{\gamma}{\gamma_1}\right)$$
$$\frac{V_\gamma(A)}{N} = -\frac{1}{6} \left(1 - \frac{\gamma}{\gamma_1}\right)^2 + \mathcal{O}\left((1 - \frac{\gamma}{\gamma_1})^3\right)$$

▷ N odd: similar result, $|S| \ge 4N + 3$ ▷ Similar corollary τ , with $\tau_0 \mapsto \tau_{\cup gA}$ ▷ A and B have particular symmetries

Symmetries

N	x	$Fix(C_x)$
4 <i>L</i>	A	$(x_1, \ldots, x_L, x_L, \ldots, x_1, -x_1, \ldots, -x_L, -x_L, \ldots, -x_1)$
	B	$(x_1, \ldots, x_L, \ldots, x_1, 0, -x_1, \ldots, -x_L, \ldots, -x_1, 0)$
4L + 2	A	$(x_1, \ldots, x_{L+1}, \ldots, x_1, -x_1, \ldots, -x_{L+1}, \ldots, -x_1)$
	B	$(x_1, \ldots, x_L, x_L, \ldots, x_1, 0, -x_1, \ldots, -x_L, -x_L, \ldots, -x_1, 0)$
2L + 1	A	$(x_1,\ldots,x_L,-x_L,\ldots,-x_1,0)$
	B	$(x_1,\ldots,x_L,x_L,\ldots,x_1,x_0)$

Case N large: bifurcation diagram (N=4L)

Case N large

Let
$$\tilde{\gamma} = \frac{\gamma}{\gamma_1} = \gamma (1 - \cos(2\pi/N)),$$

 $\tilde{\gamma}_M = \frac{1 - \cos(2\pi/N)}{1 - \cos(2\pi/N)} \quad \left(= \frac{1}{M^2} + \mathcal{O}\left(\frac{1}{N^2}\right) \right)$

Theorem: $\forall M \ge 1$, $\exists N_M < \infty$ s.t. for $N \ge N_M$ and $\tilde{\gamma}_{M+1} < \tilde{\gamma} < \tilde{\gamma}_M$, S can be decomposed as

$$\begin{split} \mathcal{S}_{0} &= O_{I^{+}} = \{I^{+}, I^{-}\} \\ \mathcal{S}_{2m-1} &= O_{A(m)} & m = 1, \dots, M \\ \mathcal{S}_{2m} &= O_{B(m)} & m = 1, \dots, M \\ \mathcal{S}_{2M+1} &= O_{O} = \{O\} \end{split}$$

with $A_{j}^{(m)}(\tilde{\gamma}) &= a(m^{2}\tilde{\gamma}) \operatorname{sn}\left(\frac{4 \operatorname{K}(\kappa(m^{2}\tilde{\gamma}))}{N}m(j-\frac{1}{2}), \kappa(m^{2}\tilde{\gamma})\right) + \mathcal{O}\left(\frac{M}{N}\right)$

and
$$\kappa(\tilde{\gamma})$$
, $a(\tilde{\gamma})$ implicitly defined by
 $\tilde{\gamma} = \frac{\pi^2}{4 \, \kappa(\kappa(\tilde{\gamma}))^2 (1+\kappa(\tilde{\gamma})^2)}$
 $a(\tilde{\gamma})^2 = \frac{2\kappa(\tilde{\gamma})^2}{1+\kappa(\tilde{\gamma})^2}$

Case N large

Let
$$\tilde{\gamma} = \frac{\gamma}{\gamma_1} = \gamma (1 - \cos(2\pi/N)),$$

 $\tilde{\gamma}_M = \frac{1 - \cos(2\pi/N)}{1 - \cos(2\pi/N)} \quad \left(= \frac{1}{M^2} + \mathcal{O}\left(\frac{1}{N^2}\right) \right)$

Theorem: $\forall M \ge 1$, $\exists N_M < \infty$ s.t. for $N \ge N_M$ and $\tilde{\gamma}_{M+1} < \tilde{\gamma} < \tilde{\gamma}_M$, S can be decomposed as

$$\begin{split} \mathcal{S}_0 &= O_{I^+} = \{I^+, I^-\} \\ \mathcal{S}_{2m-1} &= O_{A(m)} \\ \mathcal{S}_{2m} &= O_{B(m)} \\ \mathcal{S}_{2M+1} &= O_O = \{O\} \\ \end{split}$$
 with $A_j^{(m)}(\tilde{\gamma}) &= a(m^2 \tilde{\gamma}) \operatorname{sn} \left(\frac{4 \operatorname{K}(\kappa(m^2 \tilde{\gamma}))}{N} m \left(j - \frac{1}{2}\right), \kappa(m^2 \tilde{\gamma})\right) + \mathcal{O}\left(\frac{M}{N}\right) \end{split}$

Corollary: $\forall 0 < \tilde{\gamma} \leq 1$, $\exists N_0(\tilde{\gamma})$ s.t. $\forall N \ge N_0(\tilde{\gamma})$, $\forall 0 < r < R \leq \frac{1}{2}$, $\forall x_0 \in \mathcal{B}(I^-, r)$:

- Let $\tau_{+} = \tau^{\text{hit}}(\mathcal{B}(I^{+}, r))$. Then $\forall \delta > 0$, $\lim_{\sigma \to 0} \mathbb{P}^{x_{0}} \left\{ e^{(2H(\widetilde{\gamma}) - \delta)/\sigma^{2}} \leqslant \tau_{+} \leqslant e^{(2H(\widetilde{\gamma}) + \delta)/\sigma^{2}} \right\} = 1$ $\lim_{\sigma \to 0} \sigma^{2} \log \mathbb{E}^{x_{0}} \{\tau_{+}\} = 2H(\widetilde{\gamma})$
- Let $\tau_A = \tau^{\operatorname{hit}}(\bigcup_{g \in G} \mathcal{B}(gA, r)),$ and $\tau_- = \inf\{t > \tau^{\operatorname{exit}}(\mathcal{B}(I^-, R)) \colon x_t \in \mathcal{B}(I^-, r)\}.$ Then $\lim_{\sigma \to 0} \mathbb{P}^{x_0}\{\tau_A < \tau_+ \mid \tau_+ < \tau_-\} = 1$

$$x \in S \quad \Leftrightarrow \quad f(x_n) + \frac{\gamma}{2} \Big[x_{n+1} - 2x_n + x_{n-1} \Big] = 0$$

$$\Leftrightarrow \quad \begin{cases} x_{n+1} = x_n + \varepsilon w_n - \frac{1}{2} \varepsilon^2 f(x_n) \\ w_{n+1} = w_n - \frac{1}{2} \varepsilon \Big[f(x_n) + f(x_{n+1}) \Big] \\ \varepsilon = \sqrt{\frac{2}{\gamma}} \simeq \frac{2\pi}{N\sqrt{\tilde{\gamma}}} \ll 1 \end{cases}$$

$$x \in S \quad \Leftrightarrow \quad f(x_n) + \frac{\gamma}{2} \Big[x_{n+1} - 2x_n + x_{n-1} \Big] = 0$$

$$\Leftrightarrow \quad \begin{cases} x_{n+1} = x_n + \varepsilon w_n - \frac{1}{2} \varepsilon^2 f(x_n) \\ w_{n+1} = w_n - \frac{1}{2} \varepsilon \Big[f(x_n) + f(x_{n+1}) \Big] \\ \varepsilon = \sqrt{\frac{2}{\gamma}} \simeq \frac{2\pi}{N\sqrt{\tilde{\gamma}}} \ll 1 \end{cases}$$

- ▷ Area-preserving map
- \triangleright Discretisation of $\ddot{x} = -f(x)$
- ▷ Almost conserved quantity: $C(x,w) = \frac{1}{2}(x^2 + w^2) \frac{1}{4}x^4$ $C(x_{n+1}, w_{n+1}) = C(x_n, w_n) + O(\varepsilon^3)$

$$x \in S \quad \Leftrightarrow \quad f(x_n) + \frac{\gamma}{2} \Big[x_{n+1} - 2x_n + x_{n-1} \Big] = 0$$

$$\Leftrightarrow \quad \begin{cases} x_{n+1} = x_n + \varepsilon w_n - \frac{1}{2} \varepsilon^2 f(x_n) \\ w_{n+1} = w_n - \frac{1}{2} \varepsilon \Big[f(x_n) + f(x_{n+1}) \Big] \\ \varepsilon = \sqrt{\frac{2}{\gamma}} \simeq \frac{2\pi}{N\sqrt{\tilde{\gamma}}} \ll 1 \end{cases}$$

▷ Area-preserving map ▷ Discretisation of $\ddot{x} = -f(x)$ ▷ Almost conserved quantity: $C(x,w) = \frac{1}{2}(x^2 + w^2) - \frac{1}{4}x^4$ $C(x_{n+1}, w_{n+1}) = C(x_n, w_n) + O(\varepsilon^3)$

In action-angle variables (I, ψ) :

$$\begin{cases} \psi_{n+1} = \psi_n + \varepsilon \Omega(I_n) + \varepsilon^3 f(\psi_n, I_n, \varepsilon) & (\text{mod } 2\pi) \\ I_{n+1} = I_n + \varepsilon^3 g(\psi_n, I_n, \varepsilon) & \end{cases}$$

I = h(C), and $(\psi, C) \mapsto (x, w)$ involves elliptic functions.

$$\begin{cases} \psi_{n+1} = \psi_n + \varepsilon \Omega(I_n) + \varepsilon^3 f(\psi_n, I_n, \varepsilon) & (\text{mod } 2\pi) \\ I_{n+1} = I_n + \varepsilon^3 g(\psi_n, I_n, \varepsilon) & \end{cases}$$

 $\Omega(I)$ monotonous in $I \Rightarrow$ twist map.

$$\begin{cases} \psi_{n+1} = \psi_n + \varepsilon \Omega(I_n) + \varepsilon^3 f(\psi_n, I_n, \varepsilon) & (\text{mod } 2\pi) \\ I_{n+1} = I_n + \varepsilon^3 g(\psi_n, I_n, \varepsilon) & \end{cases}$$

 $\Omega(I)$ monotonous in $I \Rightarrow$ twist map.

$$\triangleright "\varepsilon^{3} = 0":$$

$$\begin{cases} \psi_{n} = \psi_{0} + n\varepsilon\Omega(I_{0}) & (\text{mod } 2\pi) \\ I_{n} = I_{0} \end{cases}$$

Orbit of period N if $N \varepsilon \Omega(I_0) = 2\pi M$, $M \in \{1, 2, ...\}$. $\nu = M/N$: rotation number, $j \mapsto x_j$ has 2M sign changes.

$$\begin{cases} \psi_{n+1} = \psi_n + \varepsilon \Omega(I_n) + \varepsilon^3 f(\psi_n, I_n, \varepsilon) & (\text{mod } 2\pi) \\ I_{n+1} = I_n + \varepsilon^3 g(\psi_n, I_n, \varepsilon) & \end{cases}$$

 $\Omega(I)$ monotonous in $I \Rightarrow$ twist map.

$$\triangleright "\varepsilon^{3} = 0":$$

$$\begin{cases} \psi_{n} = \psi_{0} + n\varepsilon\Omega(I_{0}) & (\text{mod } 2\pi) \\ I_{n} = I_{0} \end{cases}$$

Orbit of period N if $N \varepsilon \Omega(I_0) = 2\pi M$, $M \in \{1, 2, ...\}$. $\nu = M/N$: rotation number, $j \mapsto x_j$ has 2M sign changes.

▷ ε > 0: Poincaré–Birkhoff theorem: \exists at least two periodic orbits for each ν with $2\pi\nu/\varepsilon$ in range of Ω . Problem: Show that there are only two orbits for each ν .

$$\begin{cases} \psi_{n+1} = \psi_n + \varepsilon \Omega(I_n) + \varepsilon^3 f(\psi_n, I_n, \varepsilon) & (\text{mod } 2\pi) \\ I_{n+1} = I_n + \varepsilon^3 g(\psi_n, I_n, \varepsilon) & \end{cases}$$

Generating function: $(\psi_n, \psi_{n+1}) \mapsto G(\psi_n, \psi_{n+1})$ such that $\partial_1 G(\psi_n, \psi_{n+1}) = -I_n \qquad \partial_2 G(\psi_n, \psi_{n+1}) = I_{n+1}$

$$\begin{cases} \psi_{n+1} = \psi_n + \varepsilon \Omega(I_n) + \varepsilon^3 f(\psi_n, I_n, \varepsilon) & (\text{mod } 2\pi) \\ I_{n+1} = I_n + \varepsilon^3 g(\psi_n, I_n, \varepsilon) & \end{cases}$$

Generating function: $(\psi_n, \psi_{n+1}) \mapsto G(\psi_n, \psi_{n+1})$ such that

$$\partial_1 G(\psi_n, \psi_{n+1}) = -I_n \qquad \partial_2 G(\psi_n, \psi_{n+1}) = I_{n+1}$$

Property: Orbits of period N are stationary points of

 $G_N(\psi_1, \dots, \psi_N) = G(\psi_1, \psi_2) + G(\psi_2, \psi_3) + \dots + G(\psi_N, \psi_1 + 2\pi N\nu)$

$$\begin{cases} \psi_{n+1} = \psi_n + \varepsilon \Omega(I_n) + \varepsilon^3 f(\psi_n, I_n, \varepsilon) & (\text{mod } 2\pi) \\ I_{n+1} = I_n + \varepsilon^3 g(\psi_n, I_n, \varepsilon) & \end{cases}$$

Generating function: $(\psi_n, \psi_{n+1}) \mapsto G(\psi_n, \psi_{n+1})$ such that

$$\partial_1 G(\psi_n, \psi_{n+1}) = -I_n \qquad \partial_2 G(\psi_n, \psi_{n+1}) = I_{n+1}$$

Property: Orbits of period N are stationary points of

$$G_N(\psi_1, \dots, \psi_N) = G(\psi_1, \psi_2) + G(\psi_2, \psi_3) + \dots + G(\psi_N, \psi_1 + 2\pi N\nu)$$

In our case,

$$G(\psi_1,\psi_2) = \varepsilon G_0\left(\frac{\psi_2 - \psi_1}{\varepsilon},\varepsilon\right) + 2\varepsilon^3 \sum_{p=1}^{\infty} \widehat{G}_p\left(\frac{\psi_2 - \psi_1}{\varepsilon},\varepsilon\right) \cos\left(p(\psi_1 + \psi_2)\right)$$

▷ N particles "connected by springs" in a periodic ext. potential. ▷ Stationary pts can be analysed by Fourier transf. for (ψ_1, \ldots, ψ_n) .