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Plan

1. Deterministic

> Modeling neurons
> Slow—fast dynamical systems
> Excitability : Types I and II

2. Stochastic

> Mathematical tools
> Sample-path approach
> Application to excitable systems



EXxcitable systems

The structure of a neuron

i e,
~_ Axan
terminals

> Single neuron communicates by generating action potential
> Excitable: small change in parameters vields spike generation



ODE models for action potential generation

e Hodgkin—Huxley model (1952)
e Morris—Lecar model (1982)

Cio= —gcam (v)(v —vca) — gkw(v —vK) — gL (v —v)
Tw(v)w= —(w — w*(v))

m*(v) = 1+tanh((2@—’01)/712)

, Tw(v) = cosh((vzv3)/v4))'

w*(v) — 1—|—tanh((2@—v3)/'04)

e Fitzhugh—Nagumo model (1962)

%1}=v—v3—|-w

TW= a — Bv — yw

For C/g <« T: slow—fast systems of the form

ev= f(v,w)

w= g(v,w)



Deterministic slow—fast systems

ex= f(xz,vy) x . fast variable
y= g(x,vy) y . slow variable

e K 1: Singular perturbation theory

Qualitative analysis: nullclines f =0 and ¢g =20

T




Quantitative results
Stable slow manifold: f =0, 9,f <O

Tikhonov (1952) / Fenichel (1979):
Orbits converge to e-neighbourhood of stable slow manifold

Dynamic bifurcations: f = 0, 0,f = 0 = local analysis
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fle,y) = - —y+... flz,y)=—-2+y°+... f(z,y) =yz—a>+...



Excitability of type I

> Stable equilibrium point at intersection of f =0 and ¢g =20

> Close to a saddle—node-on-invariant-circle (SNIC) bifurcation
> At bifurcation, periodic solutions appear

> Period diverges at bifurcation point

> Example: Morris—Lecar model




Excitability of type II

> Stable equilibrium point at intersection of f =0 and ¢g =20
> Close to a Hopf bifurcation

> At bifurcation, periodic solutions appear

> Period converges at bifurcation point

> Canard (french duck) phenomenon

> Example: Fitzhugh—Nagumo model




Adding noise

1 o
dor= — : dt + — dW,
Tt 8f(a% ye) dt + NG f

dyr= g(z¢,yr) dt + o’ AW}

Wi, W/: Brownian motions (independent) = W, W/: white noises

Different mathematical methods :

> PDEs = evolution of probability density, exit from domain
> LLarge deviations = rare events, exit from domain

> Stochastic analysis = sample-path properties

> ...



Noise and partial differential equations

dzy = f(xy) dt + o dW, reR"
Generator: Ly = f -V + 302A¢
Adjoint: L*o =V - (f¢) + 5020

Kolmogorov forward or Fokker—Planck equation: oiu = L*pu
where u(x,t) = probability density of x;



Noise and partial differential equations

dzy = f(xy) dt + o dW, reR"
Generator: Ly = f -V + 302A¢
Adjoint: L*o =V - (f¢) + 5020

Kolmogorov forward or Fokker—Planck equation: oiu = L*pu
where u(x,t) = probability density of x;

EXxit problem:
Given D C R"™, characterise
o = inf{t > 0: x; € D}

Fact: u(z) = E*{rp} satisfies

Lu(x) = -1 xz€D
u(x) =0 x € 0D

Similar boundary value problems give distribution of exit time
and exit location



Noise and large deviations

dzy = f(x¢) dt + o dW; reR"

Large deviation principle: Probability of sample path x; being
close to given curve ¢ : [0,T] — R™ behaves like e—1(p)/0”

Rate function: (or action functional or cost functional)

1 T
omy(©) =3 [ llee = ot



Noise and large deviations

dzy = f(x¢) dt + o dW; reR"

Large deviation principle: Probability of sample path z; being
close to given curve ¢ : [0,T] — R™ behaves like e—1(p)/0”

Rate function: (or action functional or cost functional)
1 T >
Iio1(p) = 5/0 [t — f(pe)||< dt

Application to exit problem: (Wentzell, Freidlin 1969)
Assume D contains unigue equilibrium point z*

> Cost to reach y € 9D: V(y) = %r;% inf{I10.1(¥): vo = 2", o7 = y}
> Gradient case: f(z) = -VV(z) = V(y) =2(V(y) — V(z*))

1
> Mean first-exit time: E[mp] ~ exp{— mafD V(y)}
ye



Noise and stochastic analysis

dzy = f(x¢) dt + o(x) AW, reR"™

Integral form for solution:

t t
xt::cO—I—/o f(xs) ds—I—/O o(xs)dWs

where the second integral is the It0 integral
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Noise and stochastic analysis

dzy = f(x¢) dt + o(x) AW, reR"™

Integral form for solution:

t t
:Utzzvo—l—/o f(xs) ds—l—/o o(xs)dWs

where the second integral is the It0 integral

Application to the exit problem:
The ItO integral is a martingale = its maximum can be
controlled in terms of variance at endpoint (Doob) :

[ o) aws ( [ ot dwsﬂ

PJ su
{po 52

> 5} <R
te[0,T]

ItO isometry:

E (/OTJ(:I:S)dI/VS)Q] =/OTE[U(;ES)2] ds




Application to slow—fast systems

1 o
day= = f (2. yp) dt 4+ - dW,
Tt Ef(xt Yt) +\/g t

dyr= g(z¢,y) dt + o’ AW}

Use different methods

> Near stable slow manifold (f = 0,9.f < 0)
> Near bifurcation points (f = 0,0,f = 0)
> Far from slow manifold (f #= 0)
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Near stable slow manifold

1 o
dory = — ,t) dt + — dW,
T 8f(i% ) dt + 2 W

Slow—fast system with y; =t

If 3 stable slow manif: f(xz*(t),t) = 0,
a*(t) = Oz f(x*(t),t) < —ag

then 3 adiabatic solution: z(t,e) = 2*(t) + O(e) of ex = f(x,t)
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Near stable slow manifold

1 o
dory = — ,t) dt + — dW,
T 8f(fct ) dt + 2 W

Slow—fast system with y; =t

If 3 stable slow manif: f(xz*(t),t) = 0,

a*(t) = Oz f(x*(t),t) < —ag
then 3 adiabatic solution: z(t,e) = 2*(t) + O(e) of ex = f(x,t)
Observation: Let a(t,e) = 0. f(x(t,e),t) = a*(t) + O(e)

Consider linearised equation at x(¢,¢):

1
dé; = ga(t, e)& dt + \% dW;

&:: gaussian process with variance azv(t), s.t. ev =2a(t,e)v+1
Asymptotically, v(t) ~ v*(t) = 1/2|a(t,e)]
B(h): strip of width ~ hy/v*(t,e) around z(t,¢)



Near stable slow manifold

1 o
dzy = — t) dt + — dW,
Lt sf(ict ) dt + NG ¢
Theorem: [B.& Gentz, PTRF 2002]
C(t,g)e—m_fﬁ/zg? < IP’{Ieaving B(h) before time t} < C(t,g)e—’f+h2/202

k+ =1F O(h)

O(t,e) = \/%Vota(s,s) ds

h
- [1 -+ error of order e—h?/o? t/e}
o
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Saddle—node bifurcation e.g. f(z,y) = —y—z2

O‘<<O'C:€1/2

Deterministic case ¢ = 0: Solutions stay at distance /3 above
bifurcation point until time £2/3 after bifurcation.

Theorem: [B.& Gentz, Nonlinearity 2002]

1. If 0 < oc: Paths likely to stay in B(h)

until time ¢2/3 after bifurcation, maximal spreading o /e1/6.
2. If o > oc: Transition typically for ¢ =< —o4/3

transition probability > 1 — e—co>/elloga|
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Excitability of type I

Near bifurcation point:

1 2 (o}
dri= — — dt + —dW.
Tt €(yt xy) dt 4+ NG [
dy;= (6 — yz) dt

Global behaviour:
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Excitability of type I

Time series of —xy:

R S
MERIES)| AN

> o K §3/4: rare spikes, times between spikes ~ exponentially
distributed, mean waiting time of order e53/2/02
= Poisson point process

> o > §3/4: frequent spikes, more regularly spaced, waiting time
of order |log o]
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Excitability of type II

Near bifurcation point:

1 o
dr;= —(y; — 22) dt + — dW,
Tt g(yt ) -I-\/g t
dytz (5—Cct)dt

> & > /z: equilibrium (68,62) is a node

Similar behaviour as before, crossover at o ~ §3/2
> & < /z: equilibrium (6,62) is a focus. Two-dimensional problem

............. |
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Excitability of type II

Time series of —xy:

Muratov and Vanden Eijnden (2007):

> o < del/%: rare spikes
>0el/? < o < (66)1/2: rare sequences of spikes (MMQOSs)
> o > (55)1/2: more frequent and regularly spaced spikes
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