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ABSTRACT. We consider the classical motion of a particle in a plane domain, under
the influence of a perpendicular magnetic field and a smooth potential, with elastic
reflections on the walls of the domain. We discuss a variational method for finding
periodic orbits, determining their stability and proving the existence of KAM tori.
This method is applied to a circular scatterer in crossed electromagnetic fields,
where we prove the existence of a set of bound states with positive measure, for
sufficiently small electric field and low or moderate magnetic field.

1. INTRODUCTION

Classical billiards are popular models for various physical systems, in fields ranging
from mechanics of systems with impacts and ergodic theory to semiclassical methods
in quantum chaos. In particular, billiards in a magnetic field appear to be relevant
for the study of transport properties in mesoscopic systems, diamagnetism and the
quantum Hall effect (see for instance [T]).

Periodic orbits play an important role in the billiard dynamics. They often
strongly influence the structure of phase space: Elliptic orbits are usually surrounded
by KAM tori, which prevent the system from being ergodic. On the other hand,
hyperbolic orbits are often accompanied by homoclinic tangles which make the dy-
namics non—integrable. Furthermore, periodic orbits are of fundamental importance
in semi—classical methods.

In practice, it is often difficult to construct periodic orbits. In this work, we
discuss a variational method which simplifies the computation of such orbits, at
least for not too large periods. More specifically, we will consider billiards in a plane
domain, with a perpendicular magnetic field and an in—plane potential. The case
without a potential has been previously discussed in [BK].

In Section 2, we construct from the action a generating function which contains all
the necessary information on the billiard dynamics. It allows us to define canonically
conjugate variables, to compute the location of periodic orbits, and to determine
their linear and non-linear stability.

In Section 3, we apply these methods to the billiard outside a circular scatterer,
the potential being given by a uniform electric field. This model is of basic interest
for the Lorenz gas in a magnetic field, and was studied in the low—magnetic—field
limit in [BHHP]. It has been shown that a particle drifting in from infinity will
leave the scatterer again with probability one. However, it may happen that in spite
of the drift due to the electric field, the particle remains trapped in the vicinity of
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the scatterer for infinite positive and negative times. Here we use our variational
method to find stable orbits of period 2, proving the existence of a set of such
bound states with positive measure, for sufficiently small electric field and small or
moderate magnetic field. We also obtain an estimation of the critical electric field
beyond which there is no trapping.

2. (GENERAL BILLIARDS

2.1. Billards in a potential.

We consider the classical motion of a particle in a connected domain () of the
plane. This domain is not necessarily bounded, nor simply connected. We assume
its boundary 9@ to consist of one or several simple closed curves, which will be,
unless otherwise specified, piecewise C2. A convenient parametrization of 0Q is
given by its arclength:

x(s) = (X (5),Y(s)), ds*=dX?*+dY?, (1)

so that the unit tangent vector has the form t(s) = (X'(s),Y(s)).
Inside the domain (), the billiard flow is defined by the Lagrangian

L= %mig +qx - A(x) + V(x), (2)
where m and ¢ denote mass and charge of the billiard particle, V' (x) is a smooth (C')
scalar potential, and A(x):=$B(—y, z) the vector potential for a uniform magnetic
field B in symmetric gauge.

The dynamics is defined in the following way: the particle evolves in () according
to the Lagrange equations until it hits the boundary, where there is a change of
velocity direction specified by the law of specular reflection (i.e., the component
tangent to Q) remains the same, while the normal component changes sign).

The flow is defined on the three-dimensionnal manifold of constant energy E =
%mic2+V(X). We will mostly consider orbits that hit the boundary repeatedly, which
can be described by a “bouncing map”: to each collision, we assign two variables
(describing for example position and direction of velocity), and the map describes
the evolution of these quantities from one collision to the next.

2.2. Generating functions.

Consider two points xo = X(sg) and x; = x(s;) on the boundary 0Q. If there
exists a trajectory -, solution of the Lagrange equations, connecting x¢ to x; (Fig.1),
we can define the (reduced) action along ~:

F(x0,%1) ::/p dx (3)
gl
oL 1 1
pi=n = mx + A(x) = (mi — Qqu’ my + Equ‘). (4)
We know from analytical mechanics that for infinitesimal variations of the end
points xy and x;, the change in the action is given by

dF = —pg - dxo + p; - dxy, (5)
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F1GURE 1. Trajectory v between two collisions with the boundary 0@Q occuring
at s = sg and s = s7.

where p; is the momentum (4) evaluated at the end point x;. In particular, for
variations along the boundary,
dF = —Po t(So)dSO + P1- t(sl)dsl = —podSo +p1d31 (6)

where p; = p; - t(s;) denotes the tangent momentum.
Thus, if we define the generating function

G (s0, 51) = F(x(s0), x(51)), (7)
it will have the property
oG oG
8—30 = —Po, 8—31 = P1- (8)

Instead of p, it is often more convenient to use the tangent velocity u = cos@ |v|
as a conjugate variable (Fig.1). This can be achieved by defining, instead of (7),!

Gso. 1) = - Flx(s0),x(s1)) + %/ Y($)X'(s) - X(5)Y'(5)ds  (9)

S0

so that (8) becomes
oG oG

880 - 881 N
Up to now, we have assumed that there is exactly one trajectory v connecting
the points xo and x;. This is not necessarily true. For some values of sy and sy,
there may be no such trajectory, either because there is no solution to the Lagrange
equations, or because the solutions would leave the domain @ (“ghost” orbits).
This would impose restrictions on the domain of definition of G(sp,s1). On the
other hand, there may also be several trajectories connecting the same end points.
In this case, we would have several “branches” of generating functions G;(so, s1),
i=0,...,N(so,51). From the implicit function theorem, we expect each branch G;
to be a smooth function of its arguments (as smooth as the boundary), except at
some special points, where several branches meet.

u. (10)

Tt should be clear that the results will not be affected by any linear transformation of G. Tt
is also possible to use another parametrization of 9@ than its arclength, if the definition of t is
changed accordingly.
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For example, in the case where there is only a magnetic field* (V(x) = 0), there
is no solution when the distance beween xy and x; is larger than twice the Larmor
radius, and there are two solutions when it is smaller (provided the two arcs are
compatible with the geometry of @?). When both distances are equal, these two
determinations meet in a square root singularity [BK].

2.3. Periodic orbits.

Once we have made a choice for the generating function, we have automatically
a pair of canonically conjugate variables, that we will denote x = (s,u). For each
initial condition (sg,up) such that the trajectory returns to the boundary of the
billiard, we can determine the coordinates (s, u;) of the next collision, which defines
the bouncing map

T : (50, up) — (81, u1). (11)

The conjugacy of s and u means that this map is area preserving (see next section).
In the special case where % has always the same sign, T is a twist map [Me]| and
has a unique generating function.

An orbit of the map is a sequence {z,|r,,; = T(z,)}, where n belongs to Z if
the particle returns indefinitely to the boundary, or to a smaller subset if it never
returns to the boundary after a finite number of bounces. A periodic orbit of period
n of the map is an orbit such that x;,, = x; Vi. It is obtained by searching a fixed
point x* of T™: T™(z*) = x*. To localize a periodic orbit, we meet in general the
following technical problem: The exact expression of 7" is often difficult to compute,
since it involves some implicit condition of intersection between orbit and boundary.
The iterates T™ of T  are even harder to compute, so that its fixed points are nearly
impossible to find, when there is no special symmetry to help us.

An alternative is to use a variational method. To this end, we define the n-point
generating function

G(n)(SO, Sty ,Sn_l) = G(SO, 81) + G(Sl, 82) + -+ G(Sn_l, 30)- (12)

Let us consider an orbit of period n (assuming for the moment that the generating
function is unique). If G is defined and differentiable for each orbit segment between
consecutive collisions, then the law of specular reflection takes the form

oG™ .
9. =0, i=0,...,n—1. (13)
2
In other words, the total action along the orbit is stationary.
Conversely, if (sg,...,s,_1) is a stationary point of G, then there exists a

periodic orbit connecting these points, provided G(s;, s;;1) is defined for each i
(that means in particular that we have to exclude “ghost” orbits, which would leave
the billiard domain Q).

It is thus possible to find almost all® orbits of period n by computing the stationary
points of a function. The advantage of this method is that once the expression
of G is known, it is not difficult to compute G™. Equation (13) is a system of
n nonlinear algebraic equations for n variables, which is easier to solve than the
equation T"(z*) = z*, be it analytically or numerically (note that each line of the
system contains only three different variables). Moreover, the existence of stationary

2In this case, G can be given a simple geometric interpretation [BK].
3 All orbits but those containing arclengths where the generating function is singular.
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points can be sometimes deduced from topological properties [Me]. Finally, the
solution of (13) immediately gives the abscissas of the n collision points, and we
shall see that the stability of the orbit can be directly related to these quantities,
without having to compute the u;.

In the more general case where there are several determinations of GG, the existence
of a periodic orbit implies the stationarity of a combination of the form

—

n—

Ga(i)(sia 5i+1)a Sn = S0, U(Z) =12,... 7N(5i7 Si+1)7 (14)

I
=)

i

and, conversely, any admissible stationary point of one of the above functions cor-
responds to a periodic orbit (because of the different ranges of the 9;G;, only some
of these equations will actually admit solutions).

2.4. Linear stability.
The linearized bouncing map can be obtained directly from the generating func-
tion. To do this, we differentiate equation (10), giving

dUU = —G20d80 — G11d51 . 8n+mG

du; =  Guidso + Goadsy mm Osg OsT" (50, 51)- (15)

Inverting this system with respect to dsy, du;, we obtain the Jacobian matrix of the
map (11), which is defined by dz; = T"dz:

/ 1 G 1
Tlsos1) = =z < GG — G Gy ) ' (16)

Note that, as announced, this matrix has unit determinant, so that the bouncing
map expressed in these coordinates is area preserving.

After n bounces, occuring at the arclengths sg, sy,...,s,, the chain derivation
rule gives dx,, = S,dxy, where the stability matriz S, is given by

Sn(50s- -+ 80) =T (S0, $n-1)T" (Sn_1, Sn_2) ... T'(s1, 80). (17)

Of course, for multiply defined generating functions, this definition has to be changed
accordingly.

The linear stability of a periodic orbit with period n depends on the eigenvalues
A, A_ of S,, because dzg, = S¥dx. Since Ay A_ = det S, = 1, we have three
cases, depending on the value of t = %Tr Sh:

e If |t| > 1, the eigenvalues are reciprocal real numbers, Ay = sign(t) e®Atech?,

The periodic orbit is hyperbolic (inverse hyperbolic if ¢+ < —1), and in the
vicinity the map acts like a contraction in one direction and a stretching in
another one, thus the orbit is unstable.

e If |t| < 1, the eigenvalues are conjugate complex numbers on the unit circle,
Ay = etiArccost - The orbit is elliptic and linearly stable, since the map acts
like a rotation in its neighborhood.

e If || = 1, the eigenvalues are equal to £1. The orbit is parabolic.

The type of periodic orbit can sometimes be related to the nature of the stationary
point of G [MM].
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2.5. Nonlinear stability and KAM theory.
If one includes the effect of nonlinear terms in a neighborhood of a periodic orbit,
hyperbolic orbits remain unstable, as a consequence of the center manifold theorem.
The case of elliptic orbits is more subtle. In fact, the KAM theorem implies that
they are generically stable. To see this, we have to compute the Birkhoff normal
form to lowest order. We begin with a few preliminary steps:

1. For two consecutive collisions at sg, s1, expansion of (10) gives (assuming the
map is sufficiently differentiable)

1
dug=— Y _ — G m0s30s7" + O(4)
n+m < 3 1 (18)
5U1 = Z WGnnH»léSgéS?ln + 0(4)7
n+m <3

where G, is given in (15), and O(4) denotes terms of fourth order in dsg, ds;.
2. Inverting the first series with respect to ds; and replacing this in the second
equation, we can express dr; = (dsy,duq) as a function of dzy = (dso, dug) to
order 3.
3. Composing these expansions along the orbit, we get

8 = Spdo + b(670) + O(4), (19)

where b(dz) is a polynomial with terms of order 2 and 3.
4. A linear change of variables z = ads + du, o, § € C transforms (19) into

2y = €% 2y + Z bum2 2y + O(4), (20)

2<n+m <3
where ¢ = Arccost is the rotation angle of the linear part.

The Birkhoff normal form is obtained from (20) by eliminating a maximum of
terms of order 2 and 3. If the normal form is not degenerate, Moser’s theorem [Mo]
can be used to show existence of an invariant neighborhood of the periodic orbit,
implying its stability in the sense of Liapunov. We summarize these results in the
following way:

Theorem 1. Let the map (20) be measure—preserving and C* in a neighborhood of
2o = 0. Assume that o is such that (€'%)® # 1 and (e'¥)! # 1 and define

L 1 —2ei(’0 |b11|2 2|b02|2
Then if the non—degeneracy condition
Im(Ce %) #0 (22)

is satisfied, there exists a neighborhood of 0 which is invariant under the map (20).

ProOF: We first carry out three successive changes of variables:
1. If (¢'¥)® # 1, we may introduce a new variable w defined by

b
z=w+ Z D" W™, By = al

—, ei(p(e(n—m—l)igo_]_)’
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transforming the map into
wy = e wy + Z CamWo W, + O(4),
n+m=3
where an explicit calculation shows cy; =: C' to be given by (21).

2. If (e'#)* # 1, a similar change of variables eliminates terms of order 3,
except the term cyy |w0|2 wy, which is resonant, so that we get

wi = e'?wy 4+ C |wol” wy + O(4).

3. Introducing polar coordinates w = \/pe'?, C' = |C|e' finally yields the
Birkhoff normal form

b1 = 0y + ¢ + |Csin(y — ) py + O(py*)
p1L = po+ O(Pg)

The result follows from Moser’s theorem, which can be applied in a strip
€ < p < 2 < 1, provided |C|sin(y) — ¢) # 0, which is equivalent to (22):
the existence of a KAM torus encircling the periodic point shows its interior
to be invariant under the map. O

3. A SCATTERING SYSTEM

3.1. Definition of the system.
We now particularize to the case where the scalar potential is given by a uniform
in—plane electric field, so that the Lagrangian takes the form

1
L= §m5c2 + g% - A(x) + ¢€ - x, (23)

Ax) = %B(—y,x), £=(0,6).

The billiard domain ) is defined as the exterior of a circle of radius r, centered at
the origin, parametrized by x(s) = (rcos s, rsins), s € [0, 27).

The cyclotron frequency Q2 = |¢B|/m and the drift velocity v = |£/B| allow us
to define dimensionless variables, by introducing a new time ¢ = ¢, a new length
unit r and an energy unit mr?Q%. The Lagrangian thus becomes (with the sign
conventions ¢B < 0, ¢€ < 0)

1 1
L= 5}'(2 + E(yx — zy) — ey, (24)

where the dimensionless parameter £ = T/Qr measures the strength of the electric
field.
The trajectories are cycloids of the form

z(¢y) = a+ e + peos(y — 1)
y(¥) = b+ psin(y —¢) (25)
where p reduces to the Larmor radius when ¢ = 0. The coefficients a, b, p and

v, which can be expressed in terms of initial conditions, change after each collision
with the scatterer. However, the energy E = (¢ + 2¢b + p?) being conserved, we

may introduce a new dimensionless parameter u = \/2F — £2, describing the energy
of the particle, such that the width of the cycloid becomes p = /u? — 2¢b.
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FI1GURE 2. A trajectory scattered off the hard disc. Trajectories coming in from
infinity leave the scatterer again with probability one. However, some orbits may
form “bound states” which are indefinitely bouncing on the scatterer.

3.2. Generating function.
We will describe the trajectory v between two consecutive collisions, with abscissas
sg and sq, by the equation

2(Y) = 2(¥) +iy(Y) = a+ib+ep 4+ /2 — 2eb e'?, Yo <V <. (26)

To make use of the symmetries of the problem, we will introduce the variables
Sy =3(s1 = 89) (mod 2m). The generating function will be defined by

¥ 1
G:zZ/p-dszRe/ pzdi, p:,é—iiz, (27)
Y 0

for the convenience of notation. The relations between the parameters defining
the trajectory and the arclenghs si involve implicit equations which we will solve
perturbatively. It turns out that the generating function has to be known at second
order in . The result is

Proposition 1. There are positive constants ¢y, co and €y, such that for cie < s_ <
T —cig, p>14coe and 0 < € < gy, the generating function of the bouncing map is
an analytic function of s, u and €, and admits the expansion

G(s_,54) = A —2(C + R)S — 2¢[2S + (C + R)Av¢]sin s,

20C+R)*S _C+R 2 . R
2 2 2. Av o
+e€ [( 2R +2 7 Aw—l-QRSAw sin” s, ZSAw
+0("),
(28)
where C', S, R, A denote functions of s_ alone:
C(s_):=coss_, S(s )=sins_, R(s )=+/p?>—S(s )2
Atp(s_) ==2r — Arccos [1 — %S(s_)Q} : (29)
1

PROOF: Integration of (27) gives

G = (1 — b+ 28”) (Y1 — tho) + /2 — 2eb[(2¢ + b)(cos 1y — cos 1)
—a(sin gy —sinthy) — e(¢y sin ¢y — g sint)y)] (30)
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The four parameters a, b, Yy and ¢, are related to sy by the equations
z(Yj) = €%, 5 =0,1. For £ = 0, they have the solution

40 )-I-lb (C:tR) 1s+’ (31)
1 ~ 1 i

1w(O) _——(:I:R+iS)els+, 111’(0) _——(:I:R—is)els+.
ll/ /L

The two solutions + correspond to a long or a short skip. In the case u > 1,
only the + solution is admissible.
For positive €, we have to solve

2a + (P + ) + /12 — 2eb (cos Py + costhy) = 2C cos sy
e(th1 — o) + / u? — 2eb (coshy — costhy) = —2S'sin s
2b + /2 — 22b (sin ¢y + sin ) = 2C sin 5,
V112 = 2eb (sin iy — sin ) = 285 cos s (32)

From these relations, we can in a first step eliminate all nonlinear functions
of the parameters in (30), giving

G = (,u2 —eb—eCsinsy) () — 1y) — S cos s4 (11 + 1)

. (33)
—2(2¢ +b)Ssins; — 2aS cos 5.

It remains to express all variables as functions of sy by inverting the re-
lations (32). We do this perturbatively, by using the implicit function
theorem. (32) is of the form ®(z,e) = 0. For ¢ = 0, the solution of
®(z™,0) = 0 is given by (31). The implicit function theorem assures
that for small positive €, there is an analytic solution to (32) provided
det [0,@(z(¥,0)] = —8RS # 0. This is true under the assumptions of the
theorem (when s; is close to sp, there can be trajectories encircling the
scatterer several times) The solution can be computed by the recurrence

) = W —[9,®(z(,0)] ~ ®(2(™, ¢) to second order. The calculation is
tedious but stra1ghtf0rward4, and replacing the solution in (33), we obtain
the conclusion of the proposition. O

Remarks

1. In this proposition, we discussed only the case u > 1+ O(g). When pu < 1,
there are in general two determinations (see (31)) for the generating function,
corresponding to a long or a short skip, if sins_ < p — O(e). A singularity
arises where the two determinations meet.

2. Since the system (32) is invariant under the symmetry transformation

(s4,a,b,0,01) — (T — s, —a —em, b,m — Py, ™ — 1),
the generating function has the property
G(s—,m—sy)=G(s-,54) (34)
on its entire domain of definition.

4The calculations can be quite easily implemented with computer algebra, using the derivation

rules C'=-5,58" =C, R =-SC/R, Ay' = -2C/R.
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3. When ¢ = 0, the generating function depends only on s_: G|.—¢ = ¢g(s_). This
means that the zero—electric—field limit is integrable: From equations (10), we
obtain that the bouncing map takes the form s; = so + Q(ug), vy = ug, where
the frequency €2 is given by ¢'(€2/2) = uo.

The introduction of an electric field will perturb this map with terms uni-
formly bounded by a constant times ¢, provided we exclude initial conditions
with a very small normal velocity, for which the hypothesis on s_ is not satis-
fied. Applying KAM theorems to this map would already allow us to conclude
as for the existence of trapped orbits, but we will try to obtain better estimates
on the critical electric field by studying orbits of period 2 with our variational
method.

3.3. Orbits of period 2: rigorous results.
The 2-point generating function is given by
GP(s_ ,s.)=G(s_,5,) +G(m—s_,m+5y)

= 2*Ap — 4RS — 4eC Apsin s,

2(02+R2)S MQ 2| 2 o R 2
//?—R + 2A7,/} + %Aﬁ/} S sy —¢& gA’I,/}

35
+ 2¢? (35)

+ O(e%).

By using the implicit function theorem (and the symmetries of the problem), one
shows that G® has the following two pairs of stationary points®, corresponding to
two orbits of period 2:

1. Minima at s, = 0,7 and s_ = 7/2. The associated orbit hits the scatterer at
s =m/2 and 37/2 (Fig.3a).
2. Saddle points at s; = 7/2,37/2 and s = 7/2 F §_e + O(e?), where
5_(4) = A(m/2) 2w — Arccos(1 — 2/p?)
= 9R(/2) 20/ 12— 1 '
The corresponding orbit hits the disc at s = ¢+ O(*) and 7 — 6_e + O(e?)
(Fig.3b).
From the results of [MM], we expect the first orbit to be hyperbolic, and the

second elliptic or inverse hyperbolic. This can be checked by a direct calculation of
t=1TrS,, using (17).

1. Orbit s € {w/2,37/2}: t =1+ 7(p)e? + O(e?), where
4 aA()
preo\ur—1

Avp(m/2) = 21 — Arccos(1 — 2/1%). (38)

(36)

T(n) =2 +Ap(r/2)*| (37)

Since 7(p) > 0, this orbit is hyperbolic for small positive e.

2. Orbit s € {d_e + O(®),m —d_e + O(e*)}: t = 1—7(p)e? +O(e?), for the same
7(u). Here, the orbit is elliptic for small positive £ (and may become inverse
hyperbolic for larger ).

5We needed to compute G at second order in € because the denivellation between the stationary
points is of order .



BILLIARDS IN A POTENTIAL 11

(a) (b)

FIGURE 3. Orbits of period 2, for e = 0.1 and p = 1.5: (a) hyperbolic orbit, (b)
elliptic orbit.

We can now apply Theorem 1 in order to show the existence of an invariant
neighborhood of the elliptic periodic orbit, which will correspond physically to bound
states of the scattering system.

Theorem 2. There are positive constants c3 and €y such that for almost all ¢ €
[0,e1), u > 1+ e3¢, the scattering system has a set of bound states with positive
measure.

PrROOF: When £ = 0, the assertion follows from the integrability of the map. When
e > 0, we have to check the hypotheses of theorem 1, treating with some
care the limit ¢ — 0.

The first condition is that we avoid the resonance values e31¢ = 0, e*1¥ = 0,
where ¢ = Arccost = v/27¢ + O(£®) (that is, we must have ¢ # £1,0, —1).
Since t = 1 — er(u) + O(?®) with 7/(u) # 0, both derivatives of ¢ with
respect to g and € do not vanish in a neighborhood of ¢ = 0. Hence,
the resonance values are only reached exceptionnaly, on a set of measure 0
(with respect to dude).

The second thing to check is the non-degeneracy condition (22). First of
all, we have to show that the limit ¢ — 0 is well-defined, although the
denominators in (21) vanish, and the stability matrix S becomes non-
diagonalizable. To see this, we first note that S, has the structure

<1+5u—527 2/R — c*w
Sy =

2 ) +0(e%),

2 1 —cu—e’r

where u, v, w are known functions of p. The linear part of (19) can be diag-
onalized by the change of variables z = ¢” [(u +1v/27)ds — ev du + O(%)],
where v can always be chosen in such a way that C' is finite when ¢ — 0.

To avoid checking the non—degeneracy condition for arbitrary u, we can
study the low—magnetic—field limit. With n = 1/p and € = 27e, the rescaled
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generating function

@::1 [T]G—Q—ﬂ]
2 U

_ , 1 ,cos? s,
= —2sins_ —esinsy — ZE —_

3
— + O(€’) + O(n) (39)
is analytic in a neighborhood of the real-n axis for 0 < n <1 — O(e). In
this limit, condition (22) is relatively easily checked since by symmetry,
the quadratic terms of b(dz) are equal to zero. C(n,€) being an analytic
function on the considered set, with lim, .o C(n,€) # 0, it cannot vanish
on an set of positive measure. ]

3.4. Further observations.

Beyond what is proved rigorously in the present work, we can make several re-
marks. First of all, KAM theory breaks down for the resonance values of ¢ and p,
where e'? is a cubic or quartic root of unity. This does not necessarily imply that the
orbit becomes unstable (the behaviour depends on nonlinear terms). Numerically,
it seems that the elliptic orbit of period 2 is always stable for ;4 > 1 and small €.

The dependence of the dynamics on € becomes clear on figure 4. For small ¢, the
structure of phase space is quite typical for a slightly perturbed integrable map. The
measure of the elliptic islands vanishes in the limit ¢ — 0, because all periodic orbits
become parabolic. Thus, our method is not optimal in this limit, better results can
be obtained by applying Moser’s theorem to the explicit expression of the bouncing
map, establishing the existence of invariant curves winding around phase space. On
the other hand, for larger ¢, only a few elliptic islands remain. Hence, the method
we use to prove existence of bound states allows us to control a larger domain of
electric fields.

We did not try to determine precisely the critical value of € beyond which pertur-
bation theory no longer works. It is clear that for sufficiently strong electric fields,
orbits of period 2 cease to exist. But assuming that the critical value is not too
small, one may estimate from the equation ¢t = 1 — 27 (u) + O(&3) the value of €

where ¢t = —1 and the period-2 orbit loses stability. If we neglect terms of order &3,
we get
2 4 4AY(T/2) e
T
e~ é(p) = — = | = + ——L2 + AY(r/2)? . 40

This estimation is in good agreement with numerics, which show the period—2 orbit
undergoing a period doubling bifurcation near &(u).

The function £(u) is increasing and converges towards % as 1 — oo. In this
limit, the estimation (40) can be proved to be exact. Indeed, if ¢ denotes the
direction, measured from the potitive—z axis, of the velocity before a collision with
the scatterer, and (3 denotes the impact parameter, one obtains from simple geometry

[BHHP] the map

gi i gg ir ?S(i?lf);h Q(B) =7 — 2 Arcsin(3), (41)
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FIGURE 4. Phase portraits of the bouncing map (g = 2), with the arclength
on the horizontal axis and the tangent velocity on the vertical axis. (a) € =
0.05: Chains of elliptic islands and hyperbolic points are separated by KAM tori
winding around phase space. Near the upper boundary, there are more chaotic
orbits, which correspond to forward skipping trajectories sometimes encircling the
scatterer several times. The empty region near the lower boundary corresponds
to backward glancing orbits which escape. (b) € = 0.12: The invariant curves
winding around phase space have disappeared. There remain a few elliptic islands,
in particular around the easily recognized orbit of period 2. Between these islands
is a stochastic sea of chaotic orbits which remain trapped for a considerable time,
but ultimately miss the scatterer and escape.

where € = 27e. This map is compatible with the generating function (39) obtained in
the limit 1 — oo (with s = ¢p+7 — Arcsin() and u = 3). One easily checks that the
period—2 orbit ¢ = 0,7, # = 0 is elliptic for 0 < e < 1, i.e. for 0 <e < % = £(00).

On the other hand, in the limit g — 1., £(u) goes to zero, reflecting the fact that
orbits of period 2 cease to exist for smaller u. When the magnetic field increases
beyond that value one could study the stability of orbits with higher period in order
to prove the existence of bound states. It seems however that the measure of trapped
orbits goes to zero when y — 0 (B — 00).

Finally, one could wonder if bound states also exist for more general, not necessar-
illy rotationally symmetric scatterers. The behaviour will depend on the dynamics
in zero electric field. If elliptic islands are present in this limit (this is the case, for
instance, for an elliptical or a rectangular scatterer in not too strong magnetic field),
we expect that these islands will survive perturbation by a small electric field. If
the billiard is ergodic when £ = 0, the question on what effect the addition of an
electric field will have remains open.

4. CONCLUSION

The introduction of a generating function considerably simplifies several problems
arising in billiards with a potential and a magnetic field. In particular, periodic
orbits can be found by a variational method, and their stability can be determined.
This requires of course the generating function to be known explicitly, and still the
calculations become rapidly more complex for increasing period. However, to solve
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some questions as existence of elliptic islands, it is often sufficient to construct one
orbit of small period.

This method has been illustrated on a scattering billiard, where the existence,
for small electric and not too high magnetic fields, of an elliptic orbit of period
2 implies bound states of positive measure. Since we computed the generating
function perturbatively, for small electric field, we were not able to delineate exactly
the domain of existence of elliptic islands, but it was possible to obtain estimations
which agree with numerics.

An interesting problem which remains open is the converse question: is there a
critical electric field beyond which bound states have zero measure? From intuitive
and numerical observations, it seems that the answer is positive, but we have for
the moment no method for proving this rigorously.
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