
BILLIARDS IN A POTENTIAL: VARIATIONAL METHODS,PERIODIC ORBITS AND KAM TORIN. BERGLUND,INSTITUT DE PHYSIQUE TH�EORIQUE,EPFL, PHB{ECUBLENS,CH-1015 LAUSANNE, SWITZERLANDAbstract. We consider the classical motion of a particle in a plane domain, underthe in
uence of a perpendicular magnetic �eld and a smooth potential, with elasticre
ections on the walls of the domain. We discuss a variational method for �ndingperiodic orbits, determining their stability and proving the existence of KAM tori.This method is applied to a circular scatterer in crossed electromagnetic �elds,where we prove the existence of a set of bound states with positive measure, forsu�ciently small electric �eld and low or moderate magnetic �eld.1. IntroductionClassical billiards are popular models for various physical systems, in �elds rangingfrom mechanics of systems with impacts and ergodic theory to semiclassical methodsin quantum chaos. In particular, billiards in a magnetic �eld appear to be relevantfor the study of transport properties in mesoscopic systems, diamagnetism and thequantum Hall e�ect (see for instance [T]).Periodic orbits play an important role in the billiard dynamics. They oftenstrongly in
uence the structure of phase space: Elliptic orbits are usually surroundedby KAM tori, which prevent the system from being ergodic. On the other hand,hyperbolic orbits are often accompanied by homoclinic tangles which make the dy-namics non{integrable. Furthermore, periodic orbits are of fundamental importancein semi{classical methods.In practice, it is often di�cult to construct periodic orbits. In this work, wediscuss a variational method which simpli�es the computation of such orbits, atleast for not too large periods. More speci�cally, we will consider billiards in a planedomain, with a perpendicular magnetic �eld and an in{plane potential. The casewithout a potential has been previously discussed in [BK].In Section 2, we construct from the action a generating function which contains allthe necessary information on the billiard dynamics. It allows us to de�ne canonicallyconjugate variables, to compute the location of periodic orbits, and to determinetheir linear and non{linear stability.In Section 3, we apply these methods to the billiard outside a circular scatterer,the potential being given by a uniform electric �eld. This model is of basic interestfor the Lorenz gas in a magnetic �eld, and was studied in the low{magnetic{�eldlimit in [BHHP]. It has been shown that a particle drifting in from in�nity willleave the scatterer again with probability one. However, it may happen that in spiteof the drift due to the electric �eld, the particle remains trapped in the vicinity ofDate: 18 July 1996. 1



2 N. BERGLUNDthe scatterer for in�nite positive and negative times. Here we use our variationalmethod to �nd stable orbits of period 2, proving the existence of a set of suchbound states with positive measure, for su�ciently small electric �eld and small ormoderate magnetic �eld. We also obtain an estimation of the critical electric �eldbeyond which there is no trapping.2. General billiards2.1. Billards in a potential.We consider the classical motion of a particle in a connected domain Q of theplane. This domain is not necessarily bounded, nor simply connected. We assumeits boundary @Q to consist of one or several simple closed curves, which will be,unless otherwise speci�ed, piecewise C2. A convenient parametrization of @Q isgiven by its arclength:x(s) = (X(s); Y (s)); ds2 = dX2 + dY 2; (1)so that the unit tangent vector has the form t(s) = (X 0(s); Y 0(s)).Inside the domain Q, the billiard 
ow is de�ned by the LagrangianL := 12m _x2 + q _x �A(x) + V (x); (2)where m and q denote mass and charge of the billiard particle, V (x) is a smooth (C1)scalar potential, and A(x) := 12B(�y; x) the vector potential for a uniform magnetic�eld B in symmetric gauge.The dynamics is de�ned in the following way: the particle evolves in Q accordingto the Lagrange equations until it hits the boundary, where there is a change ofvelocity direction speci�ed by the law of specular re
ection (i.e., the componenttangent to @Q remains the same, while the normal component changes sign).The 
ow is de�ned on the three{dimensionnal manifold of constant energy E =12m _x2+V (x). We will mostly consider orbits that hit the boundary repeatedly, whichcan be described by a \bouncing map": to each collision, we assign two variables(describing for example position and direction of velocity), and the map describesthe evolution of these quantities from one collision to the next.2.2. Generating functions.Consider two points x0 = x(s0) and x1 = x(s1) on the boundary @Q. If thereexists a trajectory 
, solution of the Lagrange equations, connecting x0 to x1 (Fig.1),we can de�ne the (reduced) action along 
:F (x0;x1) := Z
 p � dx (3)p := @L@ _x = m _x +A(x) = (m _x� 12qBy;m _y + 12qBx): (4)We know from analytical mechanics that for in�nitesimal variations of the endpoints x0 and x1, the change in the action is given bydF = �p0 � dx0 + p1 � dx1; (5)
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Figure 1. Trajectory 
 between two collisions with the boundary @Q occuringat s = s0 and s = s1.where pi is the momentum (4) evaluated at the end point xi. In particular, forvariations along the boundary,dF = �p0 � t(s0)ds0 + p1 � t(s1)ds1 = �p0ds0 + p1ds1 (6)where pi = pi � t(si) denotes the tangent momentum.Thus, if we de�ne the generating functionG(s0; s1) :=F (x(s0);x(s1)); (7)it will have the property @G@s0 = �p0; @G@s1 = p1: (8)Instead of p, it is often more convenient to use the tangent velocity u = cos � jvjas a conjugate variable (Fig.1). This can be achieved by de�ning, instead of (7),1G(s0; s1) := 1mF (x(s0);x(s1)) + qB2m Z s1s0 Y (s)X 0(s)�X(s)Y 0(s)ds (9)so that (8) becomes @G@s0 = �u0; @G@s1 = u1: (10)Up to now, we have assumed that there is exactly one trajectory 
 connectingthe points x0 and x1. This is not necessarily true. For some values of s0 and s1,there may be no such trajectory, either because there is no solution to the Lagrangeequations, or because the solutions would leave the domain Q (\ghost" orbits).This would impose restrictions on the domain of de�nition of G(s0; s1). On theother hand, there may also be several trajectories connecting the same end points.In this case, we would have several \branches" of generating functions Gi(s0; s1),i = 0; : : : ; N(s0; s1). From the implicit function theorem, we expect each branch Gito be a smooth function of its arguments (as smooth as the boundary), except atsome special points, where several branches meet.1It should be clear that the results will not be a�ected by any linear transformation of G. Itis also possible to use another parametrization of @Q than its arclength, if the de�nition of t ischanged accordingly.



4 N. BERGLUNDFor example, in the case where there is only a magnetic �eld2 (V (x) = 0), thereis no solution when the distance beween x0 and x1 is larger than twice the Larmorradius, and there are two solutions when it is smaller (provided the two arcs arecompatible with the geometry of Q). When both distances are equal, these twodeterminations meet in a square root singularity [BK].2.3. Periodic orbits.Once we have made a choice for the generating function, we have automaticallya pair of canonically conjugate variables, that we will denote x = (s; u). For eachinitial condition (s0; u0) such that the trajectory returns to the boundary of thebilliard, we can determine the coordinates (s1; u1) of the next collision, which de�nesthe bouncing map T : (s0; u0) 7! (s1; u1): (11)The conjugacy of s and u means that this map is area preserving (see next section).In the special case where @s1@u0 has always the same sign, T is a twist map [Me] andhas a unique generating function.An orbit of the map is a sequence fxnjxn+1 = T (xn)g, where n belongs to ZZ ifthe particle returns inde�nitely to the boundary, or to a smaller subset if it neverreturns to the boundary after a �nite number of bounces. A periodic orbit of periodn of the map is an orbit such that xi+n = xi 8i. It is obtained by searching a �xedpoint x� of T n: T n(x�) = x�. To localize a periodic orbit, we meet in general thefollowing technical problem: The exact expression of T is often di�cult to compute,since it involves some implicit condition of intersection between orbit and boundary.The iterates T n of T are even harder to compute, so that its �xed points are nearlyimpossible to �nd, when there is no special symmetry to help us.An alternative is to use a variational method. To this end, we de�ne the n-pointgenerating functionG(n)(s0; s1; : : : ; sn�1) :=G(s0; s1) +G(s1; s2) + � � �+G(sn�1; s0): (12)Let us consider an orbit of period n (assuming for the moment that the generatingfunction is unique). If G is de�ned and di�erentiable for each orbit segment betweenconsecutive collisions, then the law of specular re
ection takes the form@G(n)@si = 0; i = 0; : : : ; n� 1: (13)In other words, the total action along the orbit is stationary.Conversely, if (s0; : : : ; sn�1) is a stationary point of G(n), then there exists aperiodic orbit connecting these points, provided G(si; si+1) is de�ned for each i(that means in particular that we have to exclude \ghost" orbits, which would leavethe billiard domain Q).It is thus possible to �nd almost all3 orbits of period n by computing the stationarypoints of a function. The advantage of this method is that once the expressionof G is known, it is not di�cult to compute G(n). Equation (13) is a system ofn nonlinear algebraic equations for n variables, which is easier to solve than theequation T n(x�) = x�, be it analytically or numerically (note that each line of thesystem contains only three di�erent variables). Moreover, the existence of stationary2In this case, G can be given a simple geometric interpretation [BK].3All orbits but those containing arclengths where the generating function is singular.



BILLIARDS IN A POTENTIAL 5points can be sometimes deduced from topological properties [Me]. Finally, thesolution of (13) immediately gives the abscissas of the n collision points, and weshall see that the stability of the orbit can be directly related to these quantities,without having to compute the ui.In the more general case where there are several determinations ofG, the existenceof a periodic orbit implies the stationarity of a combination of the formn�1Xi=0 G�(i)(si; si+1); sn = s0; �(i) = 1; 2; : : : ; N(si; si+1); (14)and, conversely, any admissible stationary point of one of the above functions cor-responds to a periodic orbit (because of the di�erent ranges of the @jGi, only someof these equations will actually admit solutions).2.4. Linear stability.The linearized bouncing map can be obtained directly from the generating func-tion. To do this, we di�erentiate equation (10), givingdu0 = �G20ds0 �G11ds1du1 = G11ds0 +G02ds1 Gnm := @n+mG@sn0 @sm1 (s0; s1): (15)Inverting this system with respect to ds1, du1, we obtain the Jacobian matrix of themap (11), which is de�ned by dx1 = T 0dx0:T 0(s0; s1) = � 1G11 � G20 1G20G02 �G211 G02 � : (16)Note that, as announced, this matrix has unit determinant, so that the bouncingmap expressed in these coordinates is area preserving.After n bounces, occuring at the arclengths s0; s1; : : : ; sn, the chain derivationrule gives dxn = Sndx0, where the stability matrix Sn is given bySn(s0; : : : ; sn) :=T 0(sn; sn�1)T 0(sn�1; sn�2) : : : T 0(s1; s0): (17)Of course, for multiply de�ned generating functions, this de�nition has to be changedaccordingly.The linear stability of a periodic orbit with period n depends on the eigenvalues�+, �� of Sn, because dxkn = Skn dx0. Since �+�� = detSn = 1, we have threecases, depending on the value of t = 12 TrSn:� If jtj > 1, the eigenvalues are reciprocal real numbers, �� = sign(t) e�Argch t.The periodic orbit is hyperbolic (inverse hyperbolic if t < �1), and in thevicinity the map acts like a contraction in one direction and a stretching inanother one, thus the orbit is unstable.� If jtj < 1, the eigenvalues are conjugate complex numbers on the unit circle,�� = e� i Arccos t. The orbit is elliptic and linearly stable, since the map actslike a rotation in its neighborhood.� If jtj = 1, the eigenvalues are equal to �1. The orbit is parabolic.The type of periodic orbit can sometimes be related to the nature of the stationarypoint of G [MM].



6 N. BERGLUND2.5. Nonlinear stability and KAM theory.If one includes the e�ect of nonlinear terms in a neighborhood of a periodic orbit,hyperbolic orbits remain unstable, as a consequence of the center manifold theorem.The case of elliptic orbits is more subtle. In fact, the KAM theorem implies thatthey are generically stable. To see this, we have to compute the Birkho� normalform to lowest order. We begin with a few preliminary steps:1. For two consecutive collisions at s0, s1, expansion of (10) gives (assuming themap is su�ciently di�erentiable)�u0 = � Xn+m 6 3 1n!m!Gn+1m�sn0�sm1 +O(4)�u1 = Xn+m 6 3 1n!m!Gnm+1�sn0�sm1 +O(4); (18)where Gnm is given in (15), and O(4) denotes terms of fourth order in �s0; �s1.2. Inverting the �rst series with respect to �s1 and replacing this in the secondequation, we can express �x1 = (�s1; �u1) as a function of �x0 = (�s0; �u0) toorder 3.3. Composing these expansions along the orbit, we get�xn = Sn�x0 + b(�x0) +O(4); (19)where b(�x) is a polynomial with terms of order 2 and 3.4. A linear change of variables z = � �s+ � �u, �; � 2 C transforms (19) intozn = ei' z0 + X2 6 n+m 6 3 bnmzn0 zm0 +O(4); (20)where ' = Arccos t is the rotation angle of the linear part.The Birkho� normal form is obtained from (20) by eliminating a maximum ofterms of order 2 and 3. If the normal form is not degenerate, Moser's theorem [Mo]can be used to show existence of an invariant neighborhood of the periodic orbit,implying its stability in the sense of Liapunov. We summarize these results in thefollowing way:Theorem 1. Let the map (20) be measure{preserving and C5 in a neighborhood ofz0 = 0. Assume that ' is such that (ei')3 6= 1 and (ei')4 6= 1 and de�neC := b20b11 1� 2 ei'ei'(ei'�1) + jb11j21� ei' + 2 jb02j2e� i'(e3 i'�1) + b21: (21)Then if the non{degeneracy conditionIm(C e� i') 6= 0 (22)is satis�ed, there exists a neighborhood of 0 which is invariant under the map (20).Proof: We �rst carry out three successive changes of variables:1. If (ei')3 6= 1, we may introduce a new variable w de�ned byz = w + Xn+m=2 hnmwnwm; hnm = bnmei'(e(n�m�1) i'�1) ;



BILLIARDS IN A POTENTIAL 7transforming the map intow1 = ei'w0 + Xn+m=3 cnmwn0wm0 +O(4);where an explicit calculation shows c21=:C to be given by (21).2. If (ei')4 6= 1, a similar change of variables eliminates terms of order 3,except the term c21 jw0j2w0, which is resonant, so that we get!1 = ei' !0 + C j!0j2 !0 +O(4):3. Introducing polar coordinates ! = p� ei �, C = jCj ei �nally yields theBirkho� normal form�1 = �0 + '+ jCj sin( � ')�0 +O(�3=20 )�1 = �0 +O(�20)The result follows from Moser's theorem, which can be applied in a strip� < � < 2� � 1, provided jCj sin( � ') 6= 0, which is equivalent to (22):the existence of a KAM torus encircling the periodic point shows its interiorto be invariant under the map.3. A scattering system3.1. De�nition of the system.We now particularize to the case where the scalar potential is given by a uniformin{plane electric �eld, so that the Lagrangian takes the formL := 12m _x2 + q _x �A(x) + qE � x; (23)A(x) = 12B(�y; x); E = (0; E):The billiard domain Q is de�ned as the exterior of a circle of radius r, centered atthe origin, parametrized by x(s) = (r cos s; r sin s), s 2 [0; 2�).The cyclotron frequency 
 = jqBj =m and the drift velocity v = jE=Bj allow usto de�ne dimensionless variables, by introducing a new time  = 
t, a new lengthunit r and an energy unit mr2
2. The Lagrangian thus becomes (with the signconventions qB < 0, qE < 0)L = 12 _x2 + 12(y _x� x _y)� "y; (24)where the dimensionless parameter " = v=
r measures the strength of the electric�eld.The trajectories are cycloids of the formx( ) = a+ " + � cos( � � )y( ) = b+ � sin( � � ) (25)where � reduces to the Larmor radius when " = 0. The coe�cients a, b, � and� , which can be expressed in terms of initial conditions, change after each collisionwith the scatterer. However, the energy E = 12("2 + 2"b + �2) being conserved, wemay introduce a new dimensionless parameter � = p2E � "2, describing the energyof the particle, such that the width of the cycloid becomes � =p�2 � 2"b.



8 N. BERGLUND
Figure 2. A trajectory scattered o� the hard disc. Trajectories coming in fromin�nity leave the scatterer again with probability one. However, some orbits mayform \bound states" which are inde�nitely bouncing on the scatterer.3.2. Generating function.We will describe the trajectory 
 between two consecutive collisions, with abscissass0 and s1, by the equationz( ) = x( ) + i y( ) = a+ i b+ " +p�2 � 2"b ei ;  0 6  6  1: (26)To make use of the symmetries of the problem, we will introduce the variabless� := 12(s1 � s0) (mod 2�). The generating function will be de�ned byG := 2 Z
 p � dx = 2ReZ  1 0 p _z d ; p = _z � 12 i z; (27)for the convenience of notation. The relations between the parameters de�ningthe trajectory and the arclenghs s� involve implicit equations which we will solveperturbatively. It turns out that the generating function has to be known at secondorder in ". The result isProposition 1. There are positive constants c1, c2 and "0, such that for c1" < s� <�� c1", � > 1+ c2" and 0 6 " < "0, the generating function of the bouncing map isan analytic function of s�, � and ", and admits the expansionG(s�; s+) = �2� � 2(C +R)S � 2" [2S + (C +R)� ] sin s++ "2 ��2(C +R)2S�2R + 2C +RR � + �22RS� 2� sin2 s+ � R2S� 2�+O("3); (28)where C, S, R, � denote functions of s� alone:C(s�) := cos s�; S(s�) := sin s�; R(s�) :=p�2 � S(s�)2;� (s�) := 2� � Arccos �1� 2�2S(s�)2� : (29)Proof: Integration of (27) givesG = (�2 � "b+ 2"2)( 1 �  0) +p�2 � 2"b [(2"+ b)(cos 1 � cos 0)�a(sin 1 � sin 0)� "( 1 sin 1 �  0 sin 0)] (30)



BILLIARDS IN A POTENTIAL 9The four parameters a, b,  0 and  1 are related to s� by the equationsz( j) = ei sj ; j = 0; 1. For " = 0, they have the solutiona(0) + i b(0) = (C � R) ei s+; (31)ei (0)0 = � 1�(�R + iS) ei s+; ei (0)1 = � 1�(�R� iS) ei s+ :The two solutions � correspond to a long or a short skip. In the case � > 1,only the + solution is admissible.For positive ", we have to solve2a+ "( 1 +  0) +p�2 � 2"b (cos 1 + cos 0) = 2C cos s+"( 1 �  0) +p�2 � 2"b (cos 1 � cos 0) = �2S sin s+2b +p�2 � 2"b (sin 1 + sin 0) = 2C sin s+p�2 � 2"b (sin 1 � sin 0) = 2S cos s+: (32)From these relations, we can in a �rst step eliminate all nonlinear functionsof the parameters in (30), givingG = (�2 � "b� "C sin s+)( 1 �  0)� "S cos s+( 1 +  0)� 2(2"+ b)S sin s+ � 2aS cos s+: (33)It remains to express all variables as functions of s� by inverting the re-lations (32). We do this perturbatively, by using the implicit functiontheorem. (32) is of the form �(x; ") = 0. For " = 0, the solution of�(x(0); 0) = 0 is given by (31). The implicit function theorem assuresthat for small positive ", there is an analytic solution to (32) provideddet �@x�(x(0); 0)� = �8RS 6= 0. This is true under the assumptions of thetheorem (when s1 is close to s0, there can be trajectories encircling thescatterer several times). The solution can be computed by the recurrencex(n+1) = x(n)��@x�(x(0); 0)��1�(x(n); ") to second order. The calculation istedious but straightforward4, and replacing the solution in (33), we obtainthe conclusion of the proposition.Remarks1. In this proposition, we discussed only the case � > 1 + O("). When � < 1,there are in general two determinations (see (31)) for the generating function,corresponding to a long or a short skip, if sin s� < � � O("). A singularityarises where the two determinations meet.2. Since the system (32) is invariant under the symmetry transformation(s+; a; b;  0;  1) 7! (� � s+;�a� "�; b; � �  1; � �  0);the generating function has the propertyG(s�; � � s+) = G(s�; s+) (34)on its entire domain of de�nition.4The calculations can be quite easily implemented with computer algebra, using the derivationrules C 0 = �S, S0 = C, R0 = �SC=R, � 0 = �2C=R.



10 N. BERGLUND3. When " = 0, the generating function depends only on s�: Gj"=0 = g(s�). Thismeans that the zero{electric{�eld limit is integrable: From equations (10), weobtain that the bouncing map takes the form s1 = s0 + 
(u0), u1 = u0, wherethe frequency 
 is given by 12g0(
=2) = u0.The introduction of an electric �eld will perturb this map with terms uni-formly bounded by a constant times ", provided we exclude initial conditionswith a very small normal velocity, for which the hypothesis on s� is not satis-�ed. Applying KAM theorems to this map would already allow us to concludeas for the existence of trapped orbits, but we will try to obtain better estimateson the critical electric �eld by studying orbits of period 2 with our variationalmethod.3.3. Orbits of period 2: rigorous results.The 2-point generating function is given byG(2)(s�; s+) = G(s�; s+) +G(� � s�; � + s+)= 2�2� � 4RS � 4"C� sin s++ 2"2 �2(C2 +R2)S�2R + 2� + �22RS� 2� sin2 s+ � "2RS� 2+O("3): (35)By using the implicit function theorem (and the symmetries of the problem), oneshows that G(2) has the following two pairs of stationary points5, corresponding totwo orbits of period 2:1. Minima at s+ = 0; � and s� = �=2. The associated orbit hits the scatterer ats = �=2 and 3�=2 (Fig.3a).2. Saddle points at s+ = �=2; 3�=2 and s� = �=2� ��"+O("3), where��(�) = � (�=2)2R(�=2) = 2� � Arccos(1� 2=�2)2p�2 � 1 : (36)The corresponding orbit hits the disc at s = ��"+O("3) and � � ��"+O("3)(Fig.3b).From the results of [MM], we expect the �rst orbit to be hyperbolic, and thesecond elliptic or inverse hyperbolic. This can be checked by a direct calculation oft = 12 TrS2, using (17).1. Orbit s 2 f�=2; 3�=2g: t = 1 + �(�)"2 +O("3), where�(�) = 2" 4�2 + 4� (�=2)p�2 � 1 + � (�=2)2# ; (37)� (�=2) = 2� � Arccos(1� 2=�2): (38)Since �(�) > 0, this orbit is hyperbolic for small positive ".2. Orbit s 2 f��"+O("3); � � ��"+O("3)g: t = 1��(�)"2+O("3), for the same�(�). Here, the orbit is elliptic for small positive " (and may become inversehyperbolic for larger ").5We needed to compute G at second order in " because the denivellation between the stationarypoints is of order ".



BILLIARDS IN A POTENTIAL 11(a) (b)

Figure 3. Orbits of period 2, for " = 0:1 and � = 1:5: (a) hyperbolic orbit, (b)elliptic orbit.We can now apply Theorem 1 in order to show the existence of an invariantneighborhood of the elliptic periodic orbit, which will correspond physically to boundstates of the scattering system.Theorem 2. There are positive constants c3 and "1 such that for almost all " 2[0; "1), � > 1 + c3", the scattering system has a set of bound states with positivemeasure.Proof: When " = 0, the assertion follows from the integrability of the map. When" > 0, we have to check the hypotheses of theorem 1, treating with somecare the limit "! 0.The �rst condition is that we avoid the resonance values e3 i' = 0, e4 i' = 0,where ' = Arccos t = p2�"+O("3) (that is, we must have t 6= �1; 0;�12).Since t = 1 � "2�(�) + O("3) with � 0(�) 6= 0, both derivatives of t withrespect to � and " do not vanish in a neighborhood of " = 0. Hence,the resonance values are only reached exceptionnaly, on a set of measure 0(with respect to d� d").The second thing to check is the non-degeneracy condition (22). First ofall, we have to show that the limit " ! 0 is well{de�ned, although thedenominators in (21) vanish, and the stability matrix S2 becomes non{diagonalizable. To see this, we �rst note that S2 has the structureS2 = � 1 + "u� "2� 2=R� "2w"2v 1� "u� "2� �+O("3);where u, v, w are known functions of �. The linear part of (19) can be diag-onalized by the change of variables z = "� �(u+ ip2� )�s� "v �u+O("3)�,where � can always be chosen in such a way that C is �nite when "! 0.To avoid checking the non{degeneracy condition for arbitrary �, we canstudy the low{magnetic{�eld limit. With � = 1=� and � = 2�", the rescaled



12 N. BERGLUNDgenerating functioneG := 12 ��G� 2�� �= �2 sin s� � � sin s+ � 14�2 cos2 s+sin s� +O(�3) +O(�) (39)is analytic in a neighborhood of the real{� axis for 0 < � < 1 � O(�). Inthis limit, condition (22) is relatively easily checked since by symmetry,the quadratic terms of b(�x) are equal to zero. C(�; �) being an analyticfunction on the considered set, with lim�;�!0C(�; �) 6= 0, it cannot vanishon an set of positive measure.3.4. Further observations.Beyond what is proved rigorously in the present work, we can make several re-marks. First of all, KAM theory breaks down for the resonance values of " and �,where ei' is a cubic or quartic root of unity. This does not necessarily imply that theorbit becomes unstable (the behaviour depends on nonlinear terms). Numerically,it seems that the elliptic orbit of period 2 is always stable for � > 1 and small ".The dependence of the dynamics on " becomes clear on �gure 4. For small ", thestructure of phase space is quite typical for a slightly perturbed integrable map. Themeasure of the elliptic islands vanishes in the limit "! 0, because all periodic orbitsbecome parabolic. Thus, our method is not optimal in this limit, better results canbe obtained by applying Moser's theorem to the explicit expression of the bouncingmap, establishing the existence of invariant curves winding around phase space. Onthe other hand, for larger ", only a few elliptic islands remain. Hence, the methodwe use to prove existence of bound states allows us to control a larger domain ofelectric �elds.We did not try to determine precisely the critical value of " beyond which pertur-bation theory no longer works. It is clear that for su�ciently strong electric �elds,orbits of period 2 cease to exist. But assuming that the critical value is not toosmall, one may estimate from the equation t = 1 � "2�(�) + O("3) the value of "where t = �1 and the period-2 orbit loses stability. If we neglect terms of order "3,we get " ' "̂(�) =s 2�(�) = " 4�2 + 4� (�=2)p�2 � 1 + � (�=2)2#�1=2 : (40)This estimation is in good agreement with numerics, which show the period{2 orbitundergoing a period doubling bifurcation near "̂(�).The function "̂(�) is increasing and converges towards 12� as � ! 1. In thislimit, the estimation (40) can be proved to be exact. Indeed, if � denotes thedirection, measured from the potitive{x axis, of the velocity before a collision withthe scatterer, and � denotes the impact parameter, one obtains from simple geometry[BHHP] the map �1 = �0 + 
(�0)�1 = �0 � � sin�1; 
(�) = � � 2Arcsin(�); (41)
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Figure 4. Phase portraits of the bouncing map (� = 2), with the arclengthon the horizontal axis and the tangent velocity on the vertical axis. (a) " =0:05: Chains of elliptic islands and hyperbolic points are separated by KAM toriwinding around phase space. Near the upper boundary, there are more chaoticorbits, which correspond to forward skipping trajectories sometimes encircling thescatterer several times. The empty region near the lower boundary correspondsto backward glancing orbits which escape. (b) " = 0:12: The invariant curveswinding around phase space have disappeared. There remain a few elliptic islands,in particular around the easily recognized orbit of period 2. Between these islandsis a stochastic sea of chaotic orbits which remain trapped for a considerable time,but ultimately miss the scatterer and escape.where � = 2�". This map is compatible with the generating function (39) obtained inthe limit �!1 (with s = �+��Arcsin(�) and u = �). One easily checks that theperiod{2 orbit � = 0; �, � = 0 is elliptic for 0 < � < 1, i.e. for 0 < " < 12� = "̂(1).On the other hand, in the limit �! 1+, "̂(�) goes to zero, re
ecting the fact thatorbits of period 2 cease to exist for smaller �. When the magnetic �eld increasesbeyond that value one could study the stability of orbits with higher period in orderto prove the existence of bound states. It seems however that the measure of trappedorbits goes to zero when �! 0 (B !1).Finally, one could wonder if bound states also exist for more general, not necessar-illy rotationally symmetric scatterers. The behaviour will depend on the dynamicsin zero electric �eld. If elliptic islands are present in this limit (this is the case, forinstance, for an elliptical or a rectangular scatterer in not too strong magnetic �eld),we expect that these islands will survive perturbation by a small electric �eld. Ifthe billiard is ergodic when " = 0, the question on what e�ect the addition of anelectric �eld will have remains open.4. ConclusionThe introduction of a generating function considerably simpli�es several problemsarising in billiards with a potential and a magnetic �eld. In particular, periodicorbits can be found by a variational method, and their stability can be determined.This requires of course the generating function to be known explicitly, and still thecalculations become rapidly more complex for increasing period. However, to solve



14 N. BERGLUNDsome questions as existence of elliptic islands, it is often su�cient to construct oneorbit of small period.This method has been illustrated on a scattering billiard, where the existence,for small electric and not too high magnetic �elds, of an elliptic orbit of period2 implies bound states of positive measure. Since we computed the generatingfunction perturbatively, for small electric �eld, we were not able to delineate exactlythe domain of existence of elliptic islands, but it was possible to obtain estimationswhich agree with numerics.An interesting problem which remains open is the converse question: is there acritical electric �eld beyond which bound states have zero measure? From intuitiveand numerical observations, it seems that the answer is positive, but we have forthe moment no method for proving this rigorously.AcknowledgementsI thank Prof. H. Kunz, who instigated my interest in billiards with magnetic�elds, for numerous inspiring discussions. I am grateful to Profs. A. Hansen, E. H.Hauge and J. Piasecki for suggesting the scattering problem to me, and for animatedconversations. This work is supported by the Fonds National Suisse de la RechercheScienti�que. References[BHHP] N. Berglund, A. Hansen, E.H. Hauge and J. Piasecki, Can a local repulsive potential trapan electron?, preprint chao-dyn/9604018, (1996). Submitted to Phys. Rev. Letters.[BK] N. Berglund, H. Kunz, Integrability and Ergodicity of Classical Billiards in a MagneticField, J. Stat. Phys. 83, 81{126, (1996).[Me] J.D. Meiss, Symplectic maps, variational principles, and transport, Rev. Mod. Phys. 64,795{848, (1992).[Mo] J. Moser, Stable and Random Motions in Dynamical Systems, (Princeton University Press,New Jersey, 1973).[MM] R.S. MacKay, J.D. Meiss, Linear stability of periodic orbits in Lagrangian systems, Phys.Letters 98A, 92{94, (1983).[T] S.A. Trugman, Complex scattering dynamics and the quantum Hall e�ect, Physica D 83,271{279, (1995).N. BerglundInstitut de Physique Th�eorique,EPFL, PHB{Ecublens,CH-1015 Lausanne, SwitzerlandE-mail address : berglund@iptsg.epfl.ch


