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North-Atlantic THC: Stommel’s Box Model ('61)
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North-Atlantic THC: Stommel’s Box Model ('61)

Scaling: © = AT/0, y= ASag/(apl), s = 14t
Separation of time scales: 7 L 74, e = 7 /7y <K 1

ci=—(z—1) — ea;[1 + n2(x — y)2]
g=p—y|l+n°(z—y)?
Slow manifold [Fenichel '79]: x =1+ O(e) = ez = 0.
Reduced equation on slow manifold:
g =pn—y|l+n°(1-y)*+0()] mpE =S

One or two stable equilibria,

A y[1+77(1 —y)?

depending on u (and n).



North-Atlantic THC: Stommel’s Box Model ('61)

Scaling: © = AT/0, y= ASag/(apl), s = 14t
Separation of time scales: 7 L 74, e = 7 /7y <K 1

cex=—(x—1) — 5:13[1 + n(z — y)Q]
g=p—y|l+n°(z—y)?
Slow manifold [Fenichel '79]: £ =14 O(¢) = ez = 0.

14+ n2(1 —y)?
Reduced equation on slow manifold: p oyl 0=y

g=p—y[l+PQA-92+0E)| eSS

One or two stable equilibria,

depending on u (and n). Y

Questions:

>What happens when pu = u(e’t) changes slowly?
> What is the effect of noise?



Deterministic slowly time-dependent systems

d
= f(x,es) x € R
ds
On the slow time scale t = ¢s:
dx
E— = , T
= f(x,1)

> Equilibrium branch: {x = z*(¢t)} where f(z*(t),t) = 0 for all ¢
> Stable if a*(t) = Oz f(2*(t),t) < —ag < O for all ¢



Deterministic slowly time-dependent systems

d
= f(x,es) x € R
ds
On the slow time scale t = ¢s:
dx
E— = , T
v f(z,1)

> Equilibrium branch: {x = z*(¢t)} where f(z*(t),t) = 0 for all ¢
> Stable if a*(t) = Oz f(2*(t),t) < —ag < O for all ¢

Then [Tikhonov '52, Fenichel '79]: T

> T here exists particular solution ()

Z(t) = 2" (t) + O(e)

> x attracts nearby orbits exp. fast

> x admits asymptotic series in

Theory generalises to higher-dimensional slow—fast systems



Noisy slowly time-dependent systems

dzs = f(xs,es) ds 4+ o dWs

where Wy is a Brownian motion. On slow time scale

1 o
dr; = — t) dt + — dW,
Ty Ef(fct ) dt + NG !

Assume z*(t) stable equilibrium branch



Noisy slowly time-dependent systems

dzs = f(xs,es) ds 4+ o dWs

where Wy is a Brownian motion. On slow time scale

1 o
der; = — ,t) dt + — dW,
Tt Ef(fct ) dt + 7z W

Assume z*(t) stable equilibrium branch
Observation: Consider linearised equation at z(¢):

1
déy = ga(t)ft dt + \% dW;

where a(t) = 0,f(z(t),t) = a*(t) + O(¢e)

¢ Gaussian process with variance o2v(t), s.t. e0 = 2a(t)v + 1
Asymptotically, v(t) ~v*(t) = 1/2|a(t))|

B(h): confidence strip of width ~ hy/v*(t) around z(t)



Noisy slowly time-dependent systems

1 o
doy = —f(x¢, t) dt + — dW,
12 8f( t,t) + \/E ¢
Theorem: [B.& Gentz, PTRF 2002] For nonlinear equation
2 2
C(t,s)e_“—h2/202 < P{Ieaving B(h) before time t} < C(t, s)e_"+h /20
k+ = 1F O(h)

C(t,e) = \/?\ /O "a(s) ds

h
o

[1 ~+ error of order e "/ t/s]

z*(t)

Lt

B(h) z(t)




Deterministic fold or saddle—node bifurcation

Normal form:

dx
e— = —x° — ¢
dt

> Stable branch: a:j_(t) = -t t<O0
> Unstable branch: 2* (t) = —v/—t, t <0



Deterministic fold or saddle—node bifurcation

Normal form:
d.CU 2

e— = —ax° —
dt
> Stable branch: a:fl_(t) =+—t, t<O0
> Unstable branch: 2*(t) = —v/—t, t <0
> Outer region: there is a solution with asymptotic expansion

) =TI S 2
x : - - e o o
—4t  32(—t)5/2
which becomes disordered at t = —e2/3
> Inner region: t = O(£2/3) T
Scaling x = 51/311,, t = 52/38 £2/3
d 1/3
= = 2 l -
dS ] t
Z(t) stays of order £1/3 up to time of z(t)
order £2/3 then makes fast transition ’




Noisy fold or saddle—node bifurcation

1 2 o
doy = —|—x;7 — t| dt + — dW,
Lt 6[ Lt } +\/§ t

Linearisation at z(¢):

a(t) ~ {—ﬁ t< —e?/3

L1300 22/3 <y 22/3

Define as before confidence strip B(h) of width < h/\/|a(t)]



Noisy fold or saddle—node bifurcation

1 2 o
dry = —|—x5y — t| dt + — dW,
Lt 6[ Lt } ‘|‘\/g t

Linearisation at z(¢):

a(t) ~ {—ﬁ t< —e?/3

_el/3 0 _g2/3 <y < 22/3
Define as before confidence strip B(h) of width = h/\/m
Theorem: [B.& Gentz, Nonlinearity 2002]
P{Ieaving B(h) before time t} < C(t,@:)e_“‘hz/za2
as long as h < |a(t)|3/2 (linear part dominates nonlinear part)

> Weak noise: o < /2 apply thm at ¢t = £2/3 with h = ¢1/2
IP’{Ieaving B(h) before time t} < C e—re/20°
> Strong noise: o > £1/2, thm applicable only for t < —g4/3



Noisy fold or saddle—node bifurcation

O'<<O'c:61/2

a>>0c=€1/2




Noisy fold or saddle—node bifurcation

a<<ac=€1/2

o

o
> Fluctuations grow like =
a(®)1/2 " max{(—t)1/4,e1/6}

> Early transitions occur if o > ¢1/2 at time < —o%/3

Theorem: [B.& Gentz, Nonlinearity 2002]
o . 2
Probability of early transition > 1 — e—ro~/¢lloga]

Proof uses idea of repeated attempts to escape



Avoided transcritical bifurcation

1 2 2 o
dry = —|t 0 — dt + — dW,
Lt 5[ ‘l‘ xt} —|—\/E t

0 < oc = max{s,}3/ o> oc = max{§,e}3/4

T

B(h)

Minimal distance between branches = §1/2
Det. case o = 0: Solutions stay max{d,e}1/2 above bif. point

Theorem: [B.& Gentz, Annals Applied Probab. 2002]

> VWeak noise: o < o¢, transition probability < e—cot/o?
> Strong noise: o > oc, Early trags3itions at t < —o2/3,
transition probability > 1 — e—co*/3/ellogo]|



Stochastic resonance
drs = [—23 4+ 2 4+ Acoses] ds + o dW,

> deterministically bistable climate [Croll, Milankovitch]

> random perturbations due to weather
[Benzi/Sutera/Vulpiani, Nicolis/Nicolis]

Sample paths {xs}s for e = 0.001:
‘ |

A=0, c=0.3

A=0.1, c =0.27
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Stochastic resonance
Critical noise intensity: oc = max{d,e}3/4, § = Ac — A

o K oc. transitions unlikely

o > oc. synchronisation

11



EXxcitability
FitzHugh—Nagumo equations
ex =x — x> + Y

Yy=a—<x

> x o« membrane potential of neuron
>y o< proportion of open ion channels (recovery variable)
>e K 1 = fast—slow system

12



EXxcitability
FitzHugh—Nagumo equations

8:i:=as—a:3—|-y

Yy=a—<

> x o« membrane potential of neuron
>y o< proportion of open ion channels (recovery variable)
>e K 1 = fast—slow system

Stationary point P = (a,a> — a)

3a°—1
2

. . . _54+/52_—
Linearisation has eigenvalues B 55 £ where § =

> > 0: stable node (§ > /) or focus (0 < § < /)
>d = O: [Erneux & Mandel '86]
> ¢ < 0: unstable focus (—+y/e <4 < 0) or node (§ < —y/&)

12-a



EXxcitability

o > 0:
> P is asymptotically stable
> the system is excitable
> one can define a separatrix

13




EXxcitability

d > 0: —
> P is asymptotically stable :
> the system is excitable
> one can define a separatrix

d < 0:
> P is unstable
> 3 asympt. stable periodic orbit
> sensitive dependence on §:

canard (duck) phenomenon

[Callot, Diener, Diener '78,
Benoit '81, ...]




EXxcitability

Proposed “phase diagram’ [Muratov & Vanden Eijnden '08]

14



EXxcitability

Proposed “phase diagram’’ [Muratov & Vanden Eijnden '08]
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Theorem: [B.& Landon, 2011]

> # N of small oscillations between spikes asympt. geometric
> Weak noise: If § < v/z, 02 < (6e2/%)2/10g(\/2/6)

> Intermediate noise: E[N] ~



Summary

When approaching a critical transition

> Fluctuations increase in a way caracteristic for the bifurcation
> Early transitions occur above a threshold noise intensity

Well understood:

> Codimension-1 bifurcations (fold, (avoided) transcritical, pitch-
fork, Hopf)

> Higher codimension: case studies (cf. Kuehn)

> Extension to infinite dim may be possible for discrete spectrum

> Other types of noise (except Ornstein—Uhlenbeck)
> Equations with
> Infinite dimensions with

15
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