Sample-path behaviour of noisy systems near critical transitions

Nils Berglund

MAPMO, Université d'Orléans CNRS, UMR 7349 & Fédération Denis Poisson www.univ-orleans.fr/mapmo/membres/berglund nils.berglund@math.cnrs.fr

Joint work with Barbara Gentz (Bielefeld), Damien Landon (Orléans)

Workshop on critical transitions in complex systems Imperial College, London 21 March 2012

North-Atlantic THC: Stommel's Box Model ('61)

- T_i : temperatures
- S_i : salinities
- F: freshwater flux
- $Q(\Delta \rho)$: mass exchange
- $\Delta \rho = \alpha_S \Delta S \alpha_T \Delta T$
- $\Delta T = T_1 T_2$
- $\Delta S = S_1 S_2$

$$\frac{\mathrm{d}}{\mathrm{d}s}\Delta T = -\frac{1}{\tau_r}(\Delta T - \theta) - Q(\Delta \rho)\Delta T$$
$$\frac{\mathrm{d}}{\mathrm{d}s}\Delta S = \frac{S_0}{H}F - Q(\Delta \rho)\Delta S$$

Model for Q [Cessi]: $Q(\Delta \rho) = \frac{1}{\tau_d} + \frac{q}{V} \Delta \rho^2$.

North-Atlantic THC: Stommel's Box Model ('61)

Scaling: $x = \Delta T/\theta$, $y = \Delta S\alpha_S/(\alpha_T\theta)$, $s = \tau_d t$ Separation of time scales: $\tau_r \ll \tau_d$, $\varepsilon = \tau_r/\tau_d \ll 1$

$$\varepsilon \dot{x} = -(x-1) - \varepsilon x \left[1 + \eta^2 (x-y)^2 \right]$$
$$\dot{y} = \mu - y \left[1 + \eta^2 (x-y)^2 \right]$$

Slow manifold [Fenichel '79]: $x = 1 + \mathcal{O}(\varepsilon) \Rightarrow \varepsilon \dot{x} = 0$.

Reduced equation on slow manifold:

 $\dot{y} = \mu - y \left[1 + \eta^2 (1 - y)^2 + \mathcal{O}(\varepsilon) \right]$

One or two stable equilibria, depending on μ (and η).

North-Atlantic THC: Stommel's Box Model ('61)

Scaling: $x = \Delta T/\theta$, $y = \Delta S\alpha_S/(\alpha_T\theta)$, $s = \tau_d t$ Separation of time scales: $\tau_r \ll \tau_d$, $\varepsilon = \tau_r/\tau_d \ll 1$

$$\begin{aligned} \varepsilon \dot{x} &= -(x-1) - \varepsilon x \Big[1 + \eta^2 (x-y)^2 \Big] \\ \dot{y} &= \mu - y \Big[1 + \eta^2 (x-y)^2 \Big] \end{aligned}$$

Slow manifold [Fenichel '79]: $x = 1 + \mathcal{O}(\varepsilon) \Rightarrow \varepsilon \dot{x} = 0$.

Reduced equation on slow manifold:

$$\dot{y} = \mu - y \left[1 + \eta^2 (1 - y)^2 + \mathcal{O}(\varepsilon) \right]$$

One or two stable equilibria, depending on μ (and η).

Questions:

- \triangleright What happens when $\mu = \mu(\varepsilon' t)$ changes slowly?
- ▷ What is the effect of noise?

Deterministic slowly time-dependent systems

$$\frac{\mathrm{d}x}{\mathrm{d}s} = f(x, \varepsilon s) \qquad x \in \mathbb{R}$$

On the slow time scale $t = \varepsilon s$:

$$\varepsilon \frac{\mathrm{d}x}{\mathrm{d}t} = f(x,t)$$

▷ Equilibrium branch: $\{x = x^{\star}(t)\}$ where $f(x^{\star}(t), t) = 0$ for all t▷ Stable if $a^{*}(t) = \partial_{x}f(x^{\star}(t), t) \leq -a_{0} < 0$ for all t

Deterministic slowly time-dependent systems

$$\frac{\mathrm{d}x}{\mathrm{d}s} = f(x, \varepsilon s) \qquad x \in \mathbb{R}$$

On the slow time scale $t = \varepsilon s$:

$$\varepsilon \frac{\mathrm{d}x}{\mathrm{d}t} = f(x,t)$$

▷ Equilibrium branch: $\{x = x^*(t)\}$ where $f(x^*(t), t) = 0$ for all t▷ Stable if $a^*(t) = \partial_x f(x^*(t), t) \leq -a_0 < 0$ for all t

Then [Tikhonov '52, Fenichel '79]: ▷ There exists particular solution

 $\bar{x}(t) = x^*(t) + \mathcal{O}(\varepsilon)$

 $\triangleright \ \overline{x}$ attracts nearby orbits exp. fast $\triangleright \ \overline{x}$ admits asymptotic series in $\ \varepsilon$

Theory generalises to higher-dimensional slow-fast systems

Noisy slowly time-dependent systems

$$\mathrm{d}x_s = f(x_s, \varepsilon s) \, \mathrm{d}s + \sigma \, \mathrm{d}W_s$$

where W_s is a Brownian motion. On slow time scale

$$dx_t = \frac{1}{\varepsilon} f(x_t, t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Assume $x^{\star}(t)$ stable equilibrium branch

Noisy slowly time-dependent systems

$$\mathrm{d}x_s = f(x_s, \varepsilon s) \; \mathrm{d}s + \sigma \, \mathrm{d}W_s$$

where W_s is a Brownian motion. On slow time scale

$$dx_t = \frac{1}{\varepsilon} f(x_t, t) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$$

Assume $x^{\star}(t)$ stable equilibrium branch

Observation: Consider linearised equation at $\bar{x}(t)$:

$$d\xi_t = \frac{1}{\varepsilon}\bar{a}(t)\xi_t \ dt + \frac{\sigma}{\sqrt{\varepsilon}} \ dW_t$$

where $\bar{a}(t) = \partial_x f(\bar{x}(t), t) = a^*(t) + \mathcal{O}(\varepsilon)$

 ξ_t : Gaussian process with variance $\sigma^2 v(t)$, s.t. $\varepsilon \dot{v} = 2\bar{a}(t)v + 1$ Asymptotically, $v(t) \simeq v^*(t) = 1/2|\bar{a}(t)|$ $\mathcal{B}(h)$: confidence strip of width $\simeq h\sqrt{v^*(t)}$ around $\bar{x}(t)$ Noisy slowly time-dependent systems

$$dx_t = \frac{1}{\varepsilon} f(x_t, t) \ dt + \frac{\sigma}{\sqrt{\varepsilon}} \ dW_t$$

Theorem: [B. & Gentz, PTRF 2002] For nonlinear equation

 $C(t,\varepsilon)e^{-\kappa_-h^2/2\sigma^2} \leq \mathbb{P}\Big\{\text{leaving }\mathcal{B}(h) \text{ before time }t\Big\} \leq C(t,\varepsilon)e^{-\kappa_+h^2/2\sigma^2}$ $\kappa_+ = 1 \mp \mathcal{O}(h)$

$$C(t,\varepsilon) = \sqrt{\frac{2}{\pi} \frac{1}{\varepsilon}} \left| \int_0^t \bar{a}(s) \, \mathrm{d}s \right| \frac{h}{\sigma} \left[1 + \text{error of order } \mathrm{e}^{-h^2/\sigma^2} t/\varepsilon \right]$$

Deterministic fold or saddle-node bifurcation

Normal form:

$$\varepsilon \frac{\mathrm{d}x}{\mathrm{d}t} = -x^2 - t$$

▷ Stable branch: $x^{\star}_{+}(t) = \sqrt{-t}, t \leq 0$ ▷ Unstable branch: $x^{\star}_{-}(t) = -\sqrt{-t}, t \leq 0$

Deterministic fold or saddle-node bifurcation

Normal form:

$$\varepsilon \frac{\mathrm{d}x}{\mathrm{d}t} = -x^2 - t$$

▷ Stable branch: $x^{\star}_{+}(t) = \sqrt{-t}, t \leq 0$ ▷ Unstable branch: $x^{\star}_{-}(t) = -\sqrt{-t}, t \leq 0$

▷ Outer region: there is a solution with asymptotic expansion

$$\bar{x}(t) = \sqrt{-t} + \frac{\varepsilon}{-4t} - \frac{5}{32} \frac{\varepsilon^2}{(-t)^{5/2}} + \dots$$

which becomes disordered at $t \simeq -\varepsilon^{2/3}$

▷ Inner region: $t = O(\varepsilon^{2/3})$ Scaling $x = \varepsilon^{1/3}u$, $t = \varepsilon^{2/3}s$

$$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}s} = -u^2 - s$$

 $\bar{x}(t)$ stays of order $\varepsilon^{1/3}$ up to time of order $\varepsilon^{2/3}$ then makes fast transition

$$\mathrm{d}x_t = \frac{1}{\varepsilon} \left[-x_t^2 - t \right] \, \mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \, \mathrm{d}W_t$$

Linearisation at $\bar{x}(t)$:

$$\bar{a}(t) \simeq \begin{cases} -\sqrt{t} & t \leqslant -\varepsilon^{2/3} \\ -\varepsilon^{1/3} & -\varepsilon^{2/3} \leqslant t \leqslant \varepsilon^{2/3} \end{cases}$$

Define as before confidence strip $\mathcal{B}(h)$ of width $\asymp h/\sqrt{|\bar{a}(t)|}$

$$dx_t = \frac{1}{\varepsilon} \left[-x_t^2 - t \right] \, dt + \frac{\sigma}{\sqrt{\varepsilon}} \, dW_t$$

Linearisation at $\bar{x}(t)$:

$$\bar{a}(t) \simeq \begin{cases} -\sqrt{t} & t \leqslant -\varepsilon^{2/3} \\ -\varepsilon^{1/3} & -\varepsilon^{2/3} \leqslant t \leqslant \varepsilon^{2/3} \end{cases}$$

Define as before confidence strip $\mathcal{B}(h)$ of width $\simeq h/\sqrt{|\bar{a}(t)|}$

Theorem: [B. & Gentz, Nonlinearity 2002]

 $\mathbb{P}\left\{ \text{leaving } \mathcal{B}(h) \text{ before time } t \right\} \leq C(t,\varepsilon) e^{-\kappa h^2/2\sigma^2}$

as long as $h \leq |\bar{a}(t)|^{3/2}$ (linear part dominates nonlinear part)

▷ Fluctuations grow like $\frac{\sigma}{|\bar{a}(t)|^{1/2}} \asymp \frac{\sigma}{\max\{(-t)^{1/4}, \varepsilon^{1/6}\}}$ ▷ Early transitions occur if $\sigma \gg \varepsilon^{1/2}$ at time $\asymp -\sigma^{4/3}$

Theorem: [B. & Gentz, Nonlinearity 2002] Probability of early transition $\ge 1 - e^{-\kappa\sigma^2/\varepsilon |\log \sigma|}$ Proof uses idea of repeated attempts to escape

Avoided transcritical bifurcation

Minimal distance between branches $= \delta^{1/2}$ Det. case $\sigma = 0$: Solutions stay $\max{\{\delta, \varepsilon\}^{1/2}}$ above bif. point

Theorem: [B. & Gentz, Annals Applied Probab. 2002]

- ▷ Weak noise: $\sigma \ll \sigma_{\rm C}$, transition probability $\leq e^{-c\sigma_{\rm C}^2/\sigma^2}$
- ▷ Strong noise: $\sigma \gg \sigma_{\rm C}$, Early transitions at $t \approx -\sigma^{2/3}$, transition probability $\ge 1 e^{-c\sigma^{4/3}/\varepsilon |\log \sigma|}$

Stochastic resonance

$$dx_s = [-x^3 + x + A\cos\varepsilon s] ds + \sigma dW_s$$

 deterministically bistable climate [Croll, Milankovitch]
 random perturbations due to weather [Benzi/Sutera/Vulpiani, Nicolis/Nicolis]

Sample paths $\{x_s\}_s$ for $\varepsilon = 0.001$:

 $A = 0.1, \ \sigma = 0.27$

 $A = 0.35, \sigma = 0.2$

Stochastic resonance

Critical noise intensity: $\sigma_{\rm C} = \max\{\delta, \varepsilon\}^{3/4}$, $\delta = A_{\rm C} - A$

 $\sigma \ll \sigma_{\rm C}$: transitions unlikely

$\sigma \gg \sigma_{\rm C}$: synchronisation

FitzHugh–Nagumo equations

$$\varepsilon \dot{x} = x - x^3 + y$$
$$\dot{y} = a - x$$

▷ $x \propto$ membrane potential of neuron ▷ $y \propto$ proportion of open ion channels (recovery variable) ▷ $\varepsilon \ll 1 \Rightarrow$ fast-slow system

FitzHugh–Nagumo equations

$$\varepsilon \dot{x} = x - x^3 + y$$
$$\dot{y} = a - x$$

▷ $x \propto$ membrane potential of neuron ▷ $y \propto$ proportion of open ion channels (recovery variable) ▷ $\varepsilon \ll 1 \Rightarrow$ fast-slow system

Stationary point $P = (a, a^3 - a)$ Linearisation has eigenvalues $\frac{-\delta \pm \sqrt{\delta^2 - \varepsilon}}{\varepsilon}$ where $\delta = \frac{3a^2 - 1}{2}$

▷ δ > 0: stable node (δ > $\sqrt{\varepsilon}$) or focus ($0 < \delta < \sqrt{\varepsilon}$) ▷ δ = 0: singular Hopf bifurcation [Erneux & Mandel '86] ▷ δ < 0: unstable focus ($-\sqrt{\varepsilon} < \delta < 0$) or node ($\delta < -\sqrt{\varepsilon}$)

$\delta > 0$:

P is asymptotically stable
the system is excitable
one can define a separatrix

 $\delta > 0$:

▷ P is asymptotically stable
▷ the system is excitable
▷ one can define a separatrix

$\delta < 0$:

- $\triangleright P$ is unstable
- $ightarrow \exists$ asympt. stable periodic orbit
- ▷ sensitive dependence on δ:
 canard (duck) phenomenon
 [Callot, Diener, Diener '78,
 Benoît '81, ...]

Proposed "phase diagram" [Muratov & Vanden Eijnden '08]

Proposed "phase diagram" [Muratov & Vanden Eijnden '08]

Theorem: [B. & Landon, 2011]

▷ # N of small oscillations between spikes asympt. geometric ▷ Weak noise: If $\delta < \sqrt{\varepsilon}$, $\sigma^2 \leq (\delta \varepsilon^{1/4})^2 / \log(\sqrt{\varepsilon}/\delta)$

$$\frac{1}{\mathbb{E}[N]} \leqslant C \, \mathrm{e}^{-\kappa (\delta \varepsilon^{1/4})^2 / \sigma^2}$$

> Intermediate noise:
$$\frac{1}{\mathbb{E}[N]} \simeq \Phi \left(-\frac{(\pi \varepsilon)^{1/4} (\delta - \sigma^2 / \varepsilon)}{\sigma} \right)$$

Summary

When approaching a critical transition

- ▷ Fluctuations increase in a way caracteristic for the bifurcation
- Early transitions occur above a threshold noise intensity

Well understood:

- Codimension-1 bifurcations (fold, (avoided) transcritical, pitchfork, Hopf)
- ▷ Higher codimension: case studies (cf. Kuehn)
- Extension to infinite dim may be possible for discrete spectrum

Essentially still open:

- Other types of noise (except Ornstein–Uhlenbeck)
- ▷ Equations with delay
- Infinite dimensions with continuous spectrum

Further reading

- N. B. & Barbara Gentz, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields 122, 341–388 (2002)
- A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential, Ann. Applied Probab. 12, 1419-1470 (2002)
- ▷ _____, The effect of additive noise on dynamical hysteresis, Nonlinearity 15, 605–632 (2002)
- ▷ _____, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191, 1–54 (2003)
- Noise-induced phenomena in slowfast dynamical systems, A sample-paths approach, Springer, Probability and its Applications (2006)
- Stochastic dynamic bifurcations and excitability, in C. Laing and G. Lord, (Eds.), Stochastic methods in Neuroscience, p. 65-93, Oxford University Press (2009)

N.B. & Damien Landon, Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model, arXiv:1105.1278, submitted (2011)