Stochastic dynamical systems in neuroscience

Nils Berglund
MAPMO, Université d'Orléans CNRS, UMR 6628 \& Fédération Denis Poisson www. univ-orleans.fr/mapmo/membres/berglund

ANR project MANDy, Mathematical Analysis of Neuronal Dynamics
Coworkers: Barbara Gentz (Bielefeld), Christian Kuehn (Dresden) Stéphane Cordier, Damien Landon, Simona Mancini (Orléans)

Dynamics of Stochastic Systems and their Approximation, Oberwolfach, 22 August 2011

Plan

1. What kind of stochastic systems arise in neuroscience?
2. Which questions are relevant?
3. Which mathematical techniques are used?
4. Example: FitzHugh-Nagumo equations with noise

1. A hierarchy of problems

Single neuron
S(P)DEs for membrane potential
Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo model, ...

1. A hierarchy of problems

Populations of neurons

Single neuron

SDEs, DDEs
 Wilson-Cowan model

S(P)DEs for membrane potential Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo model, ...

1. A hierarchy of problems

The whole brain

Populations of neurons

Single neuron

SPDEs (field equations)

SDEs, DDEs
Wilson-Cowan model

S(P)DEs for membrane potential Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo model, ...

1. A hierarchy of problems

The whole brain

Populations of neurons

Single neuron

Ion channels Genetic networks

SPDEs (field equations)

SDEs, DDEs
Wilson-Cowan model

S(P)DEs for membrane potential Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo model, ...

Markov chains
Coupled maps

1. A hierarchy of problems

The whole brain

Populations of neurons

Single neuron

Ion channels Genetic networks

Molecular dynamics

SPDEs (field equations)

SDEs, DDEs
Wilson-Cowan model

S(P)DEs for membrane potential Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo model, ...

Markov chains Coupled maps

SDEs, Monte Carlo, ...

1.1 ODE models for action potential generation

- Hodgkin-Huxley model (1952)
- Morris-Lecar model (1982)

$$
\begin{aligned}
C \dot{v} & =-g_{\mathrm{Ca}} m^{*}(v)\left(v-v_{\mathrm{Ca}}\right)-g_{\mathrm{K}} w\left(v-v_{\mathrm{K}}\right)-g_{\mathrm{L}}\left(v-v_{\mathrm{L}}\right) \\
\tau_{w}(v) \dot{w} & =-\left(w-w^{*}(v)\right) \\
m^{*}(v) & =\frac{1+\tanh \left(\left(v-v_{1}\right) / v_{2}\right)}{2}, \tau_{w}(v)=\frac{1}{\left.\cosh \left(\left(v-v_{3}\right) / v_{4}\right)\right)} \\
w^{*}(v) & =\frac{1+\tanh \left(\left(v-v_{3}\right) / v_{4}\right)}{2}
\end{aligned}
$$

- FitzHugh-Nagumo model (1962)

$$
\begin{aligned}
& \frac{C}{g} \dot{v}=v-v^{3}+w+I(t) \\
& \tau \dot{w}=\alpha-\beta v-\gamma w
\end{aligned}
$$

For $C / g \ll \tau$: slow-fast systems of the form

$$
\begin{array}{r}
\varepsilon \dot{v}=f(v, w) \\
\dot{w}=g(v, w)
\end{array}
$$

1.2 Origins of noise

\triangleright External noise: input from other neurons (one level above)
\triangleright Internal noise: fluctuations in ion channels (one level below)

1.2 Origins of noise

\triangleright External noise: input from other neurons (one level above)
\triangleright Internal noise: fluctuations in ion channels (one level below)

Models for noise:
\triangleright Gaussian white noise $\mathrm{d} W_{t}$
\triangleright Time-correlated noise (Ornstein-Uhlenbeck)
\triangleright More general Lévy processes
\triangleright Point processes (Poisson or more general renewal processes)

1.2 Origins of noise

\triangleright External noise: input from other neurons (one level above)
\triangleright Internal noise: fluctuations in ion channels (one level below)

Models for noise:
\triangleright Gaussian white noise $\mathrm{d} W_{t}$
\triangleright Time-correlated noise (Ornstein-Uhlenbeck)
\triangleright More general Lévy processes
\triangleright Point processes (Poisson or more general renewal processes)

In the simplest case we have to study:

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon} f\left(x_{t}, y_{t}\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t} \\
\mathrm{~d} y_{t} & =g\left(x_{t}, y_{t}\right) \mathrm{d} t+\sigma^{\prime} \mathrm{d} W_{t}^{\prime}
\end{aligned}
$$

2. What are the relevant questions?

Modelling (choice of noise)
Asymptotic behaviour
\triangleright Existence and uniqueness of invariant state (measure)
\triangleright Convergence to the invariant state
2. What are the relevant questions?

Modelling (choice of noise)
Asymptotic behaviour
\triangleright Existence and uniqueness of invariant state (measure)
\triangleright Convergence to the invariant state

However, transients are important!
\triangleright Time-dependent forcing
\triangleright Metastability
\triangleright Excitability
\triangleright Stochastic resonance
$\triangleright \ldots$
2.1 Example: FitzHugh-Nagumo with noise

2.1 Example: FitzHugh-Nagumo with noise

\triangleright System is excitable (sensitive to small random perturbations)
\triangleright Invariant measure: gives probability to be spiking/quiescent
\triangleright We are interested in distribution of interspike time interval
2.2 Paradigm: the stochastic exit problem

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Given $\mathcal{D} \subset \mathbb{R}^{n}$, characterise
\triangleright Law of first-exit time

$$
\tau_{\mathcal{D}}=\inf \left\{t>0: x_{t} \notin \mathcal{D}\right\}
$$

\triangleright Law of first-exit location x_{τ} (harmonic measure)

2.2 Paradigm: the stochastic exit problem

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Given $\mathcal{D} \subset \mathbb{R}^{n}$, characterise
\triangleright Law of first-exit time

$$
\tau_{\mathcal{D}}=\inf \left\{t>0: x_{t} \notin \mathcal{D}\right\}
$$

\triangleright Law of first-exit location x_{τ} (harmonic measure)

\triangleright Dynamics within \mathcal{D} may be described by quasistationary state
\triangleright May be able to use coarse-grained description of motion between attractors (e.g. Markovian jump process)
3. What mathematical techniques are available?
\triangleright Large deviations \Rightarrow rare events, exit from domain
\triangleright PDEs \Rightarrow evolution of probability density, exit from domain
\triangleright Stochastic analysis \Rightarrow sample-path properties
\triangleright Random dynamical systems
ロ...

3.1 Large deviations

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Large deviation principle: Probability of sample path x_{t} being close to given curve $\varphi:[0, T] \rightarrow \mathbb{R}^{n}$ behaves like $\mathrm{e}^{-I(\varphi) / \sigma^{2}}$

Rate function: (or action functional or cost functional)

$$
I_{[0, T]}(\varphi)=\frac{1}{2} \int_{0}^{T}\left\|\dot{\varphi}_{t}-f\left(\varphi_{t}\right)\right\|^{2} \mathrm{~d} t
$$

3.1 Large deviations

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Large deviation principle: Probability of sample path x_{t} being close to given curve $\varphi:[0, T] \rightarrow \mathbb{R}^{n}$ behaves like $\mathrm{e}^{-I(\varphi) / \sigma^{2}}$

Rate function: (or action functional or cost functional)

$$
I_{[0, T]}(\varphi)=\frac{1}{2} \int_{0}^{T}\left\|\dot{\varphi}_{t}-f\left(\varphi_{t}\right)\right\|^{2} \mathrm{~d} t
$$

Application to exit problem: [Wentzell, Freidlin 1969] Assume \mathcal{D} contains unique equilibrium point x^{\star}

```
\(\triangleright\) Cost to reach \(y \in \partial \mathcal{D}: \bar{V}(y)=\inf _{T>0} \inf \left\{I_{[0, T]}(\varphi): \varphi_{0}=x^{\star}, \varphi_{T}=y\right\}\)
\(\triangleright\) Gradient case: \(f(x)=-\nabla V(x) \Rightarrow \bar{V}(y)=2\left(V(y)-V\left(x^{\star}\right)\right)\)
\(\triangleright\) Mean first-exit time: \(\mathbb{E}\left[\tau_{\mathcal{D}}\right] \sim \exp \left\{\frac{1}{\sigma^{2}} \inf _{y \in \mathcal{D}} \bar{V}(y)\right\}\)
\(\triangleright\) Exit location concentrated near points \(y\) minimising \(\bar{V}(y)\)
```


3.1 Large deviations

Advantages

\triangleright Works for very general class of equations (including SPDEs)
\triangleright Problem is reduced to deterministic variational problem (can be expressed in Euler-Lagrange or Hamilton form)
\triangleright Can be extended to situations with multiple attractors
\triangleright Can be extended to (very) slowly time-dependent systems

3.1 Large deviations

Advantages

\triangleright Works for very general class of equations (including SPDEs)
\triangleright Problem is reduced to deterministic variational problem
(can be expressed in Euler-Lagrange or Hamilton form)
\triangleright Can be extended to situations with multiple attractors
\triangleright Can be extended to (very) slowly time-dependent systems
Limitations
\triangleright Only applicable in the limit $\sigma \rightarrow 0$
$\triangleright \bar{V}$ difficult to compute, except in gradient (reversible) case
\triangleright Leads little information on distribution of τ

3.2 PDEs

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Generator: $L \varphi=f \cdot \nabla \varphi+\frac{1}{2} \sigma^{2} \Delta \varphi$
Adjoint: $L^{*} \varphi=\nabla \cdot(f \varphi)+\frac{1}{2} \sigma^{2} \Delta \varphi$
Kolmogorov forward or Fokker-Planck equation: $\partial_{t} \mu=L^{*} \mu$ where $\mu(x, t)=$ probability density of x_{t}

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Generator: $L \varphi=f \cdot \nabla \varphi+\frac{1}{2} \sigma^{2} \Delta \varphi$
Adjoint: $L^{*} \varphi=\nabla \cdot(f \varphi)+\frac{1}{2} \sigma^{2} \Delta \varphi$
Kolmogorov forward or Fokker-Planck equation: $\partial_{t} \mu=L^{*} \mu$ where $\mu(x, t)=$ probability density of x_{t}

Exit problem: Dirichlet-Poisson problems via Dynkin's formula and Feynman-Kac type equations, e.g.
$\triangleright u(x)=\mathbb{E}^{x}\left[\tau_{\mathcal{D}}\right]$ satisfies $\begin{cases}L u(x)=-1 & x \in \mathcal{D} \\ u(x)=0 & x \in \partial \mathcal{D}\end{cases}$
$\triangleright v(x)=\mathbb{E}^{x}\left[\phi\left(x_{\tau_{\mathcal{D}}}\right)\right]$ satisfies $\begin{cases}L v(x)=0 & x \in \mathcal{D} \\ v(x)=\phi(x) & x \in \partial \mathcal{D}\end{cases}$
\triangleright Similar formulas for Laplace transform $\mathbb{E}^{x}\left[\mathrm{e}^{\lambda \tau_{\mathcal{D}}}\right]$, etc

3.2 PDEs

Advantages

\triangleright Yields precise information on laws of $\tau_{\mathcal{D}}$ and $x_{\tau_{\mathcal{D}}}$ if DirichletPoisson problems can be solved
\triangleright Exactly solvable in one-dimensional and some linear cases
\triangleright In gradient case, precise results can be obtained in combination with potential theory [Bovier, Eckhoff, Gayrard, Klein]
\triangleright Accessible to perturbation (WKB) theory
\triangleright Accessible to numerical simulation
\triangleright Conversely, yields Monte-Carlo algorithms for solving PDEs

3.2 PDEs

Advantages

\triangleright Yields precise information on laws of $\tau_{\mathcal{D}}$ and $x_{\tau_{\mathcal{D}}}$ if DirichletPoisson problems can be solved
\triangleright Exactly solvable in one-dimensional and some linear cases
\triangleright In gradient case, precise results can be obtained in combination with potential theory [Bovier, Eckhoff, Gayrard, Klein]
\triangleright Accessible to perturbation (WKB) theory
\triangleright Accessible to numerical simulation
\triangleright Conversely, yields Monte-Carlo algorithms for solving PDEs

Limitations

\triangleright Few rigorous results in non-gradient case (L not self-adjoint)
\triangleright Moment methods: no rigorous control in nonlinear case
\triangleright Problems are stiff for small σ

3.3 Stochastic analysis

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma(x) \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Integral form for solution:

$$
x_{t}=x_{0}+\int_{0}^{t} f\left(x_{s}\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(x_{s}\right) \mathrm{d} W_{s}
$$

where the second integral is the Itô integral

3.3 Stochastic analysis

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma(x) \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Integral form for solution:

$$
x_{t}=x_{0}+\int_{0}^{t} f\left(x_{s}\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(x_{s}\right) \mathrm{d} W_{s}
$$

where the second integral is the Itô integral
Application to the exit problem:
The Itô integral is a martingale \Rightarrow its maximum can be controlled in terms of variance at endpoint (Doob) :
$\mathbb{P}\left\{\sup _{t \in[0, T]}\left|\int_{0}^{t} \sigma\left(x_{s}\right) \mathrm{d} W_{s}\right| \geqslant \delta\right\} \leqslant \frac{1}{\delta^{2}} \mathbb{E}\left[\left(\int_{0}^{T} \sigma\left(x_{s}\right) \mathrm{d} W_{s}\right)^{2}\right]$

Itô isometry:
$\mathbb{E}\left[\left(\int_{0}^{T} \sigma\left(x_{s}\right) \mathrm{d} W_{s}\right)^{2}\right]=\int_{0}^{T} \mathbb{E}\left[\sigma\left(x_{s}\right)^{2}\right] \mathrm{d} s$

3.3 Stochastic analysis

\triangleright Local methods describe dynamics near stable branch, unstable branch, saddle-node bifurcation, etc

3.3 Stochastic analysis

Advantages

\triangleright Well adapted to fast-slow SDEs
\triangleright Rigorous control of nonlinear terms
\triangleright Does not require taking the limit $\sigma \rightarrow 0$
\triangleright Works in higher dimensions

3.3 Stochastic analysis

Advantages

\triangleright Well adapted to fast-slow SDEs
\triangleright Rigorous control of nonlinear terms
\triangleright Does not require taking the limit $\sigma \rightarrow 0$
\triangleright Works in higher dimensions

Limitations

\triangleright Bounds on nonlinear terms are not optimal
\triangleright Requires case-by-case studies of different bifurcations
\triangleright Control of higher-dimensional bifurcations is not (yet) sufficient
4. Example: Stochastic FitzHugh-Nagumo equations

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon}\left[x_{t}-x_{t}^{3}+y_{t}\right] \mathrm{d} t+\frac{\sigma_{1}}{\sqrt{\varepsilon}} \mathrm{~d} W_{t}^{(1)} \\
\mathrm{d} y_{t} & =\left[a-x_{t}\right] \mathrm{d} t+\sigma_{2} \mathrm{~d} W_{t}^{(2)}
\end{aligned}
$$

$\triangleright W_{t}^{(1)}, W_{t}^{(2)}$: independent Wiener processes
$\triangleright 0<\sigma_{1}, \sigma_{2} \ll 1, \sigma=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$
4. Example: Stochastic FitzHugh-Nagumo equations

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon}\left[x_{t}-x_{t}^{3}+y_{t}\right] \mathrm{d} t+\frac{\sigma_{1}}{\sqrt{\varepsilon}} \mathrm{~d} W_{t}^{(1)} \\
\mathrm{d} y_{t} & =\left[a-x_{t}\right] \mathrm{d} t+\sigma_{2} \mathrm{~d} W_{t}^{(2)}
\end{aligned}
$$

$\triangleright W_{t}^{(1)}, W_{t}^{(2)}$: independent Wiener processes
$\triangleright 0<\sigma_{1}, \sigma_{2} \ll 1, \sigma=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$
$\sigma=0$: dynamics depends on $\delta=\frac{3 a^{2}-1}{2}$

4.1 Some prior work

\triangleright Numerical: Kosmidis \& Pakdaman '03, ..., Borowski et al '11
\triangleright Moment methods: Tanabe \& Pakdaman '01
\triangleright Approx. of Fokker-Planck equ: Lindner et al '99, Simpson \& Kuske '11
\triangleright Large deviations: Muratov \& Vanden Eijnden '05, Doss \& Thieullen '09
\triangleright Sample paths near canards: Sowers '08

4.1 Some prior work

\triangleright Numerical: Kosmidis \& Pakdaman '03, ..., Borowski et al '11
\triangleright Moment methods: Tanabe \& Pakdaman '01
\triangleright Approx. of Fokker-Planck equ: Lindner et al '99, Simpson \& Kuske '11
\triangleright Large deviations: Muratov \& Vanden Eijnden '05, Doss \& Thieullen '09
\triangleright Sample paths near canards: Sowers '08
Proposed "phase diagram" [Muratov \& Vanden Eijnden '08]

4.2 Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N :

4.2 Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N :

($R_{0}, R_{1}, \ldots, R_{N-1}$) substochastic Markov chain with kernel

$$
K\left(R_{0}, A\right)=\mathbb{P}^{R_{0}}\left\{R_{\tau} \in A\right\}
$$

$R \in \mathcal{F}, A \subset \mathcal{F}, \tau=$ first-hitting time of \mathcal{F} (after turning around P) $N=$ number of turns around P until leaving \mathcal{D}

4.2 Small-amplitude oscillations (SAOs)

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]
Principal eigenvalue: eigenvalue λ_{0} of K of largest module. $\lambda_{0} \in \mathbb{R}$ Quasistationary distribution: prob. measure π_{0} s.t. $\pi_{0} K=\lambda_{0} \pi_{0}$

4.2 Small-amplitude oscillations (SAOs)

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]
Principal eigenvalue: eigenvalue λ_{0} of K of largest module. $\lambda_{0} \in \mathbb{R}$
Quasistationary distribution: prob. measure π_{0} s.t. $\pi_{0} K=\lambda_{0} \pi_{0}$

Theorem 1: [B \& Landon, 2011] Assume $\sigma_{1}, \sigma_{2}>0$
$\triangleright \lambda_{0}<1$
$\triangleright K$ admits quasistationary distribution π_{0}
$\triangleright N$ is almost surely finite
$\triangleright N$ is asymptotically geometric:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\{N=n+1 \mid N>n\}=1-\lambda_{0}
$$

$\triangleright \mathbb{E}\left[r^{N}\right]<\infty$ for $r<1 / \lambda_{0}$, so all moments of N are finite

4.2 Small-amplitude oscillations (SAOs)

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]
Principal eigenvalue: eigenvalue λ_{0} of K of largest module. $\lambda_{0} \in \mathbb{R}$
Quasistationary distribution: prob. measure π_{0} s.t. $\pi_{0} K=\lambda_{0} \pi_{0}$

Theorem 1: [B \& Landon, 2011] Assume $\sigma_{1}, \sigma_{2}>0$
$\triangleright \lambda_{0}<1$
$\triangleright K$ admits quasistationary distribution π_{0}
$\triangleright N$ is almost surely finite
$\triangleright N$ is asymptotically geometric:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\{N=n+1 \mid N>n\}=1-\lambda_{0}
$$

$\triangleright \mathbb{E}\left[r^{N}\right]<\infty$ for $r<1 / \lambda_{0}$, so all moments of N are finite
Proof uses Frobenius-Perron-Jentzsch-Krein-Rutman-Birkhoff theorem and uniform positivity of K, which implies spectral gap

4.2 Small-amplitude oscillations (SAOs)

Theorem 2: [B \& Landon 2011]
Assume ε and $\delta / \sqrt{\varepsilon}$ sufficiently small
There exists $\kappa>0$ s.t. for $\sigma^{2} \leqslant\left(\varepsilon^{1 / 4} \delta\right)^{2} / \log (\sqrt{\varepsilon} / \delta)$
\triangleright Principal eigenvalue:

$$
1-\lambda_{0} \leqslant \exp \left\{-\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma^{2}}\right\}
$$

\triangleright Expected number of SAOs:

$$
\mathbb{E}^{\mu_{0}}[N] \geqslant C\left(\mu_{0}\right) \exp \left\{\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma^{2}}\right\}
$$

where $C\left(\mu_{0}\right)=$ probability of starting on \mathcal{F} above separatrix

Proof:

\triangleright Construct $A \subset \mathcal{F}$ such that $K(x, A)$ exponentially close to 1 for all $x \in A$
\triangleright Use two different sets of coordinates to approximate K :
Near separatrix, and during SAO

4.3 Conclusions

Three regimes for $\delta<\sqrt{\varepsilon}$:
$\triangleright \sigma \ll \varepsilon^{1 / 4} \delta$: rare isolated spikes interval $\simeq \mathcal{E} x p\left(\sqrt{\varepsilon} \mathrm{e}^{-\left(\varepsilon^{1 / 4} \delta\right)^{2} / \sigma^{2}}\right)$
$\triangleright \varepsilon^{1 / 4} \delta \ll \sigma \ll \varepsilon^{3 / 4}$: transition geometric number of SAOs $\sigma=(\delta \varepsilon)^{1 / 2}$: geometric (1/2)
$\triangleright \sigma \gg \varepsilon^{3 / 4}$: repeated spikes

4.3 Conclusions

Three regimes for $\delta<\sqrt{\varepsilon}$:
$\triangleright \sigma \ll \varepsilon^{1 / 4} \delta$: rare isolated spikes interval $\simeq \mathcal{E} x p\left(\sqrt{\varepsilon} \mathrm{e}^{-\left(\varepsilon^{1 / 4} \delta\right)^{2} / \sigma^{2}}\right)$
$\triangleright \varepsilon^{1 / 4} \delta \ll \sigma \ll \varepsilon^{3 / 4}$: transition geometric number of SAOs $\sigma=(\delta \varepsilon)^{1 / 2}$: geometric(1/2)
$\triangleright \sigma \gg \varepsilon^{3 / 4}$: repeated spikes

Warning:

If $\mu_{0}=\pi_{0}$, we would have
$1-\lambda_{0}=\frac{1}{\mathbb{E}[N]}=\mathbb{P}\{N=1\}$
However, except for weak noise,
$\mathbb{P}^{\mu_{0}}\{N=1\}>\mathbb{P}^{\pi_{0}}\{N=1\}$

Further reading

N.B. and Barbara Gentz, Noise-induced phenomena in slow-fast dynamical systems, A sample-paths approach, Springer, Probability and its Applications (2006)
N.B. and Barbara Gentz, Stochastic dynamic bifurcations and excitability, in C. Laing and G. Lord, (Eds.), Stochastic methods in Neuroscience, p. 65-93, Oxford University Press (2009)

N.B., Barbara Gentz and Christian Kuehn, Hunting French Ducks in a Noisy Environment, arXiv:1011.3193, submitted (2010)
N.B. and Damien Landon, Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model, arXiv:1105.1278, submitted (2011)
N.B., Kramers' law: Validity, derivations and generalisations, arXiv:1106.5799, submitted (2011)

