
Quantifying the effect of noise

on oscillatory patterns

Nils Berglund

MAPMO, Université d’Orléans
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Oscillations in natural systems

Belousov-Zhabotinsky reaction Stellate cells

Mean temperature based on ice core measurements
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Oscillations in natural systems

Belousov-Zhabotinsky reaction Stellate cells

. Deterministic models reproducing these oscillations exist

and have been abundantly studied

They often involve singular perturbation theory

. We want to understand the effect of noise

on oscillatory patterns
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Example: Van der Pol oscillator x′′+ε−1/2(x2−1)x′+x = 0

ẋ = y + x− 1
3x

3 t 7→εt εẋ = y + x− 1
3x

3

ẏ = −εx
⇐⇒

ẏ = −x
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3 t 7→εt εẋ = y + x− 1
3x

3
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Example: Van der Pol oscillator x′′+ε−1/2(x2−1)x′+x = 0

ẋ = y + x− 1
3x

3 t 7→εt εẋ=y + x− 1
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ẏ = −εx
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Relaxation oscillations
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Effect of noise on the Van der Pol oscillator

dxt =

[
yt + xt −

x3
t

3

]
dt+ σ dWt

dyt = −εxt dt
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Effect of noise on the Van der Pol oscillator

dxt =

[
yt + xt −

x3
t

3

]
dt+ σ dWt

dyt = −εxt dt

Theorem [B & Gentz 2006]

• σ <
√
ε : Cycles comparable to deterministic ones

with probability 1−O(e−ε/σ
2
)

• σ >
√
ε : Cycles are smaller, by O(σ4/3), than deter-

ministic cycles, with probability

1−O(e−σ
2/ε|logσ|)
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Neuron

. Single neuron communicates by generating action potential

. Excitable: small change in parameters yields spike generation

. May display Mixed-Mode Oscillations (MMOs) and Relaxation

Oscillations
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Conductance-based models for membrane potential

Hodgkin–Huxley model (1952)

Cv̇ = −
∑
i

ḡiϕ
αi
i χ

βi
i (v − v∗i ) voltage

τϕ,i(v)ϕ̇i = −(ϕi − ϕ∗i (v)) activation

τχ,i(v)χ̇i = −(χi − χ∗i (v)) inactivation

. i ∈ {Na+,K+, . . . } describes different types of ion channels

. ϕ∗i (v), χ∗i (v) sigmöıdal functions, e.g. tanh(av + b)
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Conductance-based models for membrane potential

Hodgkin–Huxley model (1952)

Cv̇ = −
∑
i

ḡiϕ
αi
i χ

βi
i (v − v∗i ) voltage

τϕ,i(v)ϕ̇i = −(ϕi − ϕ∗i (v)) activation

τχ,i(v)χ̇i = −(χi − χ∗i (v)) inactivation

. i ∈ {Na+,K+, . . . } describes different types of ion channels

. ϕ∗i (v), χ∗i (v) sigmöıdal functions, e.g. tanh(av + b)

For C/ḡi � τx,i: slow–fast systems of the form

εv̇= f(v, w)

ẇi= gi(v, w)
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Conductance-based models for membrane potential

Fitzhugh–Nagumo model (1962)

εẋ = x− x3 + y

ẏ = α− βx− γy
= 1√

3
+ δ − x
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Conductance-based models for membrane potential

Fitzhugh–Nagumo model (1962)

εẋ = x− x3 + y

ẏ = α− βx− γy
= 1√

3
+ δ − x

The canard (french duck) phenomenon

ε = 0.05

α = 1√
3

+ δ

β = 1

γ = 0

δ1 = −0.003

δ2 = −0.003765458

δ3 = −0.003765459

δ4 = −0.005

δ1

δ2
δ3

δ4

x

y
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εẋ = x− x3 + y
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= 1√

3
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The canard (french duck) phenomenon

Normal form near fold point

εẋ = y − x2

ẏ = δ − x
(+ higher-order terms)
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Folded node singularity

Normal form [Benôıt, Lobry ’82, Szmolyan, Wechselberger ’01]:

εẋ = y − x2

ẏ = −(µ+ 1)x− z (+ higher-order terms)

ż =
µ

2
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Folded node singularity

Normal form [Benôıt, Lobry ’82, Szmolyan, Wechselberger ’01]:

εẋ = y − x2

ẏ = −(µ+ 1)x− z (+ higher-order terms)

ż =
µ

2
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Folded node singularity

Theorem [Benôıt, Lobry ’82, Szmolyan, Wechselberger ’01]:

For 2k + 1 < µ−1 < 2k + 3, the system admits k canard solutions

The jth canard makes (2j + 1)/2 oscillations

Mixed-mode oscillations

(MMOs)

Picture: Mathieu Desroches
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Effect of noise
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• Noise smears out small amplitude oscillations

• Early transitions modify the mixed-mode pattern
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Covariance tubes

Linearized stochastic equation around a canard (xdet
t , ydet

t , zdet
t )

dζt = A(t)ζt dt+ σ dWt A(t) =
(
−2xdet

t 1
−(1+µ) 0

)

ζt Gaussian process with covariance matrix

Cov(ζt) = σ2V (t) V (t) = U(t)V (0)U(t)−1+
∫ t

0
U(t, s)U(t, s)T ds
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Covariance tubes

Linearized stochastic equation around a canard (xdet
t , ydet

t , zdet
t )

dζt = A(t)ζt dt+ σ dWt A(t) =
(
−2xdet

t 1
−(1+µ) 0

)

ζt Gaussian process with covariance matrix

Cov(ζt) = σ2V (t) V (t) = U(t)V (0)U(t)−1+
∫ t

0
U(t, s)U(t, s)T ds

Covariance tube :

B(h) =
{
〈(x, y)− (xdet

t , ydet
t ), V (t)−1[(x, y)− (xdet

t , ydet
t )]〉 < h2

}

Theorem [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with zt 6 0) :

P
{
τB(h) < t

}
6 C(t) e−κh

2/2σ2
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Small-amplitude oscillations and noise

One shows that for z = 0

. The distance between the kth and k + 1st canard

has order e−(2k+1)2µ

. The section of B(h) is close to circular with radius µ−1/4σ
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Small-amplitude oscillations and noise

One shows that for z = 0

. The distance between the kth and k + 1st canard

has order e−(2k+1)2µ

. The section of B(h) is close to circular with radius µ−1/4h

Corollary

Let

σk(µ) = µ1/4 e−(2k+1)2µ

Canards with 2k+1
4 oscillations

become indistinguishable from

noisy fluctuations for σ > σk(µ)
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Early transitions

Let D be neighbourhood

of size
√
z of a canard

for z > 0

Theorem [B, Gentz, Kuehn 2010]

∃κ,C, γ1, γ2 > 0 such that

for σ|logσ|γ1 6 µ3/4

probability of leaving D
after zt = z satisfies

P
{
zτD > z

}
6

C|logσ|γ2 e−κ(z2−µ)/(µ|logσ|)

Small for z �
√
µ|logσ|/κ
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Further work

. Better understanding of distribution of noise-induced transitions

. Effect on mixed-mode pattern in conjunction with global return mechanism
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Further work

. Better understanding of distribution of noise-induced transitions

. Effect on mixed-mode pattern in conjunction with global return mechanism
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Noise-induced MMOs [D. Landon, PhD thesis, in progress]

FitzHugh–Nagumo, normal form near bifurcation point:

dxt= (yt − x2
t ) dt+ σ dWt

dyt= ε(δ − xt) dt

. δ >
√
ε: equilibrium (δ, δ2) is a node, effectively 1D problem

• σ � δ3/2: rare spikes, approx. exponential interspike times
• σ � δ3/2: repeated spikes

δ <
√
ε: equilibrium (δ, δ2) is a focus. Two-dimensional problem
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Noise-induced MMOs [D. Landon, PhD thesis, in progress]

Conjectured bifurcation diagram [Muratov and Vanden Eijnden (2007)] :

δε1/2

ε3/4

σ

σ = (δε)1/2

σ = δε1/4

σ = δ3/2
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Noise-induced MMOs [D. Landon, PhD thesis, in progress]

Conjectured bifurcation diagram [Muratov and Vanden Eijnden (2007)] :

δε1/2

ε3/4

σ

σ = (δε)1/2

σ = δε1/4

σ = δ3/2

Work in progress :

. Prove bifurcation diagram is correct

. Characterize interspike time statistics and spike train statistics

. Characterize distribution of mixed-mode patterns
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