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The Poisson hypothesis

Action potential [Dickson 00]

. Interspike interval (ISI) statistics (under random stimulation)
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The Poisson hypothesis

Action potential [Dickson 00]

. Interspike interval (ISI) statistics (under random stimulation)

. Poisson hypothesis: ISI has exponential distribution

Consequence: Markov property

. For which models is it a good approximation?

What ISI can we expect for other (stochastic, conductance-based)

models?
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The stochastic exit problem

Stochastic differential equation (SDE)

dxt = f(xt) dt+ σg(xt) dWt x ∈ R n

Exit problem:

Given D ⊂ R n, characterise

First-exit time (and location)

τD = inf{t > 0: xt 6∈ D}
D

xτD
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dxt = f(xt) dt+ σg(xt) dWt x ∈ R n

Exit problem:

Given D ⊂ R n, characterise

First-exit time (and location)

τD = inf{t > 0: xt 6∈ D}
D

xτD

When do we have lim
σ→0

P
{
τD > sE[τD]

}
= e−s ?
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The stochastic exit problem

Stochastic differential equation (SDE)

dxt = f(xt) dt+ σg(xt) dWt x ∈ R n

Exit problem:

Given D ⊂ R n, characterise

First-exit time (and location)

τD = inf{t > 0: xt 6∈ D}
D

xτD

When do we have lim
σ→0

P
{
τD > sE[τD]

}
= e−s ?

. True if n = 1 ⇒ true for integrate-and-fire models

. True if D ⊂ basin of attraction [Day ’83]

. True if f(x) = −∇U(x) and g(x) = 1l [Bovier et al ’04]
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The stochastic exit problem

Stochastic differential equation (SDE)

dxt = f(xt) dt+ σg(xt) dWt x ∈ R n

Exit problem:

Given D ⊂ R n, characterise

First-exit time (and location)

τD = inf{t > 0: xt 6∈ D}
D

xτD

When do we have lim
σ→0

P
{
τD > sE[τD]

}
= e−s ?

. True if n = 1 ⇒ true for integrate-and-fire models

. True if D ⊂ basin of attraction [Day ’83]

. True if f(x) = −∇U(x) and g(x) = 1l [Bovier et al ’04]

. Not necessarily true if n > 2, curl f 6= 0 and ∂D ⊃ det orbit
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Deterministic FitzHugh–Nagumo (FHN) equations

Consider the FHN equations in the form

εẋ = x− x3 + y

ẏ = a− x− by

. x ∝ membrane potential of neuron

. y ∝ proportion of open ion channels (recovery variable)

. ε� 1 ⇒ fast–slow system

. b = 0 in the following for simplicity
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Deterministic FitzHugh–Nagumo (FHN) equations

Consider the FHN equations in the form

εẋ = x− x3 + y

ẏ = a− x− by

. x ∝ membrane potential of neuron

. y ∝ proportion of open ion channels (recovery variable)

. ε� 1 ⇒ fast–slow system

. b = 0 in the following for simplicity

Stationary point P = (a, a3 − a)

Linearisation has eigenvalues −δ±
√
δ2−ε
ε where δ = 3a2−1

2

. δ > 0: stable node (δ >
√
ε ) or focus (0 < δ <

√
ε )

. δ = 0: singular Hopf bifurcation [Erneux & Mandel ’86]

. δ < 0: unstable focus (−
√
ε < δ < 0) or node (δ < −

√
ε )
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Deterministic FitzHugh–Nagumo (FHN) equations

δ > 0:

. P is asymptotically stable

. the system is excitable

. one can define a separatrix
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Deterministic FitzHugh–Nagumo (FHN) equations

δ > 0:

. P is asymptotically stable

. the system is excitable

. one can define a separatrix

δ < 0:

. P is unstable

. ∃ asympt. stable periodic orbit

. sensitive dependence on δ:

canard (duck) phenomenon
[Callot, Diener, Diener ’78,

Benôıt ’81, . . . ]
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. one can define a separatrix
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. P is unstable

. ∃ asympt. stable periodic orbit

. sensitive dependence on δ:

canard (duck) phenomenon
[Callot, Diener, Diener ’78,

Benôıt ’81, . . . ]
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Stochastic FHN equations

dxt =
1

ε
[xt − x3

t + yt] dt+
σ1√
ε

dW (1)
t

dyt = [a− xt] dt+ σ2 dW (2)
t

. W
(1)
t ,W

(2)
t : independent Wiener processes

. 0 < σ1, σ2 � 1, σ =
√
σ2

1 + σ2
2
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Stochastic FHN equations

dxt =
1

ε
[xt − x3

t + yt] dt+
σ1√
ε

dW (1)
t

dyt = [a− xt] dt+ σ2 dW (2)
t

. W
(1)
t ,W

(2)
t : independent Wiener processes

. 0 < σ1, σ2 � 1, σ =
√
σ2

1 + σ2
2

ε = 0.1

δ = 0.02
σ1 = σ2 = 0.03
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Some previous work

. Numerical: Kosmidis & Pakdaman ’03, . . . , Borowski et al ’11

. Moment methods: Tanabe & Pakdaman ’01

. Approx. of Fokker–Planck equ: Lindner et al ’99, Simpson & Kuske ’11

. Large deviations: Muratov & Vanden Eijnden ’05, Doss & Thieullen ’09

. Sample paths near canards: Sowers ’08
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Some previous work

. Numerical: Kosmidis & Pakdaman ’03, . . . , Borowski et al ’11

. Moment methods: Tanabe & Pakdaman ’01

. Approx. of Fokker–Planck equ: Lindner et al ’99, Simpson & Kuske ’11

. Large deviations: Muratov & Vanden Eijnden ’05, Doss & Thieullen ’09

. Sample paths near canards: Sowers ’08

Proposed “phase diagram” [Muratov & Vanden Eijnden ’08]

δε1/2

ε3/4

σ

σ = (δε)1/2

σ = δε1/4

σ = δ3/2
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Intermediate regime: mixed-mode oscillations (MMOs)

Time series t 7→ −xt for ε = 0.01, δ = 3 · 10−3, σ = 1.46 · 10−4, . . . ,3.65 · 10−4
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Precise analysis of sample paths
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Precise analysis of sample paths

. Dynamics near stable branch, unstable branch

and saddle–node bifurcation: already done in

[B & Gentz ’05]

Dynamics near singular Hopf bifurcation: To do
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and saddle–node bifurcation: already done in

[B & Gentz ’05]

. Dynamics near singular Hopf bifurcation: To do
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Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N :

separatrix

F, parametrised by R ∈ [0,1]

P

nullcline y = x3 − x

D
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Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N :

separatrix

F, parametrised by R ∈ [0,1]

P

nullcline y = x3 − x

D

(R0, R1, . . . , RN−1) substochastic Markov chain with kernel

K(R0, A) = PR0{Rτ ∈ A}

R ∈ F, A ⊂ F, τ = first-hitting time of F (after turning around P )

N = number of turns around P until leaving D
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General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey ’71, Nummelin ’84]

Principal eigenvalue: eigenvalue λ0 of K of largest module. λ0 ∈ R
Quasistationary distribution: prob. measure π0 s.t. π0K = λ0π0
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General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey ’71, Nummelin ’84]

Principal eigenvalue: eigenvalue λ0 of K of largest module. λ0 ∈ R
Quasistationary distribution: prob. measure π0 s.t. π0K = λ0π0

Theorem 1: [B & Landon, 2011] Assume σ1, σ2 > 0

. λ0 < 1

. K admits quasistationary distribution π0

. N is almost surely finite

. N is asymptotically geometric:

lim
n→∞P{N = n+ 1|N > n} = 1− λ0

. E[rN ] <∞ for r < 1/λ0, so all moments of N are finite
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General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey ’71, Nummelin ’84]

Principal eigenvalue: eigenvalue λ0 of K of largest module. λ0 ∈ R
Quasistationary distribution: prob. measure π0 s.t. π0K = λ0π0

Theorem 1: [B & Landon, 2011] Assume σ1, σ2 > 0

. λ0 < 1

. K admits quasistationary distribution π0

. N is almost surely finite

. N is asymptotically geometric:

lim
n→∞P{N = n+ 1|N > n} = 1− λ0

. E[rN ] <∞ for r < 1/λ0, so all moments of N are finite

Proof:

. uses Frobenius–Perron–Jentzsch–Krein–Rutman–Birkhoff theorem

. [Ben Arous, Kusuoka, Stroock ’84] implies uniform positivity of K

. which implies spectral gap
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Histograms of distribution of SAO number N (1000 spikes)

σ = ε = 10−4, δ = 1.2 · 10−3, . . . ,10−4
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Dynamics near the separatrix

Change of variables:

. Translate to Hopf bif. point

. Scale space and time

. Straighten nullcline ẋ = 0

⇒ variables (ξ, z) where nullcline: {z = 1
2}

dξt =
(

1

2
− zt−

√
ε

3
ξ3
t

)
dt+ σ̃1 dW (1)

t

dzt =
(
µ̃+ 2ξtzt+

2
√
ε

3
ξ4
t

)
dt−2σ̃1ξt dW (1)

t + σ̃2 dW (2)
t

where

µ̃ =
δ
√
ε
−σ̃2

1 σ̃1 = −
√

3
σ1

ε3/4
σ̃2 =

√
3
σ2

ε3/4
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Dynamics near the separatrix

Change of variables:

. Translate to Hopf bif. point

. Scale space and time

. Straighten nullcline ẋ = 0

⇒ variables (ξ, z) where nullcline: {z = 1
2}

dξt =
(

1

2
− zt−

√
ε

3
ξ3
t

)
dt+ σ̃1 dW (1)

t

dzt =
(
µ̃+ 2ξtzt+

2
√
ε

3
ξ4
t

)
dt−2σ̃1ξt dW (1)

t + σ̃2 dW (2)
t

where

µ̃ =
δ
√
ε
−σ̃2

1 σ̃1 = −
√

3
σ1

ε3/4
σ̃2 =

√
3
σ2

ε3/4

Upward drift dominates if µ̃2 � σ̃2
1 + σ̃2

2 ⇒ (ε1/4δ)2 � σ2
1 + σ2

2

Rotation around P : use that 2z e−2z−2ξ2+1 is constant for µ̃ = ε = 0
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Dynamics near the separatrix

(a) (b)

(c) (d)

z z

z z

ξ ξ

ξ ξ
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Transition from weak to strong noise

Linear approximation:

dz0
t =

(
µ̃+ tz0

t

)
dt− σ̃1tdW (1)

t + σ̃2 dW (2)
t

⇒ P{no SAO} ' Φ
(
−π1/4 µ̃√

σ̃2
1+σ̃2

2

)
Φ(x) =

∫ x
−∞

e−y
2/2

√
2π

dy
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Transition from weak to strong noise

Linear approximation:

dz0
t =

(
µ̃+ tz0

t

)
dt− σ̃1tdW (1)

t + σ̃2 dW (2)
t

⇒ P{no SAO} ' Φ
(
−π1/4 µ̃√

σ̃2
1+σ̃2

2

)
Φ(x) =

∫ x
−∞

e−y
2/2

√
2π

dy

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−µ/σ

 

 
series
1/E(N)
P(N=1)
phi

∗: P{no SAO}
+: 1/E[N ]

◦: 1− λ0

curve: x 7→ Φ(π1/4x)

x = − µ̃√
σ̃2

1+σ̃2
2

= −ε
1/4(δ−σ2

1/ε)√
σ2

1+σ2
2
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The weak-noise regime

Theorem 2: [B & Landon 2011]

Assume ε and δ/
√
ε sufficiently small

There exists κ > 0 s.t. for σ2 6 (ε1/4δ)2/ log(
√
ε/δ)
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The weak-noise regime

Theorem 2: [B & Landon 2011]

Assume ε and δ/
√
ε sufficiently small

There exists κ > 0 s.t. for σ2 6 (ε1/4δ)2/ log(
√
ε/δ)

. Principal eigenvalue:

1− λ0 6 exp
{
−κ

(ε1/4δ)2

σ2

}
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The weak-noise regime

Theorem 2: [B & Landon 2011]

Assume ε and δ/
√
ε sufficiently small

There exists κ > 0 s.t. for σ2 6 (ε1/4δ)2/ log(
√
ε/δ)

. Principal eigenvalue:

1− λ0 6 exp
{
−κ

(ε1/4δ)2

σ2

}
. Expected number of SAOs:

Eµ0[N ] > C(µ0) exp
{
κ

(ε1/4δ)2

σ2

}
where C(µ0) = probability of starting on F above separatrix
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The weak-noise regime

Theorem 2: [B & Landon 2011]

Assume ε and δ/
√
ε sufficiently small

There exists κ > 0 s.t. for σ2 6 (ε1/4δ)2/ log(
√
ε/δ)

. Principal eigenvalue:

1− λ0 6 exp
{
−κ

(ε1/4δ)2

σ2

}
. Expected number of SAOs:

Eµ0[N ] > C(µ0) exp
{
κ

(ε1/4δ)2

σ2

}
where C(µ0) = probability of starting on F above separatrix

Proof:

. Construct A ⊂ F such that K(x,A) exponentially close to 1 for all x ∈ A

. Use two different sets of coordinates to approximate K:
Near separatrix, and during SAO
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The story so far

Three regimes for δ <
√
ε:

. σ � ε1/4δ: rare isolated spikes

interval ' Exp(
√
ε e−(ε1/4δ)2/σ2

)

. ε1/4δ � σ � ε3/4: transition

asympt geometric nb of SAOs

σ = (δε)1/2: geometric(1/2)

. σ � ε3/4: repeated spikes δε1/2

ε3/4

σ

σ = (δε)1/2

σ = δε1/4

σ = δ3/2
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The story so far

Three regimes for δ <
√
ε:

. σ � ε1/4δ: rare isolated spikes

interval ' Exp(
√
ε e−(ε1/4δ)2/σ2

)

. ε1/4δ � σ � ε3/4: transition

asympt geometric nb of SAOs

σ = (δε)1/2: geometric(1/2)

. σ � ε3/4: repeated spikes δε1/2

ε3/4

σ

σ = (δε)1/2

σ = δε1/4

σ = δ3/2

Perspectives

. interspike interval distribution ' periodically modulated

exponential – how is it modulated?

. transient effects are important - bias towards N = 1

relation between P{no SAO}, 1/E[N ] and 1− λ0

. consequences of postspike distribution µ0 6= π0

. sharper bounds on λ0 (and π0)
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Higher dimensions

Systems with one fast and two slow variables

Fold

Fold

Folded node
Stable slow

Unstable slow

Stable slow

manifold

manifold

manifold
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Folded node singularity

Normal form [Benôıt, Lobry ’82, Szmolyan, Wechselberger ’01]:

εẋ = y − x2

ẏ = −(µ+ 1)x− z (+ higher-order terms)

ż =
µ

2
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Folded node singularity

Normal form [Benôıt, Lobry ’82, Szmolyan, Wechselberger ’01]:

εẋ = y − x2

ẏ = −(µ+ 1)x− z (+ higher-order terms)

ż =
µ

2

x

y

z

Ca
0

Cr
0

L

18-a



Folded node singularity

Theorem [Benôıt, Lobry ’82, Szmolyan, Wechselberger ’01]:
For 2k + 1 < µ−1 < 2k + 3, the system admits k canard solutions
The jth canard makes (2j + 1)/2 oscillations

Mixed-mode oscillations

(MMOs)

Picture: Mathieu Desroches

18-b



Effect of noise

dxt =
1

ε
(yt − x2

t ) dt+
σ
√
ε

dW (1)
t

dyt = [−(µ+ 1)xt − zt] dt+ σ dW (2)
t + h.o.t.

dzt =
µ

2
dt

• Noise smears out small amplitude oscillations

• Early transitions modify the mixed-mode pattern
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Main results

Theorem 3: [B, Gentz, Kuehn 2010]

. For z 6 0, paths stay with high probability in covariance tubes

. For z = 0, section of tube is close to circular with radius µ−1/4σ

. Distance between kth and k + 1st canard ∼ e−(2k+1)2µ

20
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Main results

Theorem 3: [B, Gentz, Kuehn 2010]

. For z 6 0, paths stay with high probability in covariance tubes

. For z = 0, section of tube is close to circular with radius µ−1/4σ

. Distance between kth and k + 1st canard ∼ e−(2k+1)2µ

Corollary:

Let

σk(µ) = µ1/4 e−(2k+1)2µ

Canards with 2k+1
4 oscillations

become indistinguishable from

noisy fluctuations for σ > σk(µ)
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Main results

Theorem 3: [B, Gentz, Kuehn 2010]

. For z 6 0, paths stay with high probability in covariance tubes

. For z = 0, section of tube is close to circular with radius µ−1/4σ

. Distance between kth and k + 1st canard ∼ e−(2k+1)2µ

Theorem 4: [B, Gentz, Kuehn 2010]

For z > 0, paths are likely to escape after time of order
√
µ|logσ|
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What’s next?

. Estimate global return map for stochastic system

. Analyse possible mixed-mode patterns

Possible scenario:

metastable transitions between regular patterns

. Comparison with real data
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What’s next?

. Estimate global return map for stochastic system

. Analyse possible mixed-mode patterns

Possible scenario:

metastable transitions between regular patterns

. Comparison with real data

Summary

. ISI distributions are not always exponential

. Transient effects are important (QSD, metastability)

. Precise sample path analysis is possible, useful tools exist

(in some cases): singular perturbation theory, large deviations,

martingales, substochastic Markov processes, . . .

. Still many open problems: other bifurcations, better approxi-

mation of QSD, higher dimensions, other types of noise, . . .

21-a



Further reading

N.B. and Barbara Gentz, Noise-induced phe-
nomena in slow-fast dynamical systems, A
sample-paths approach, Springer, Probability and
its Applications (2006)

N.B. and Barbara Gentz, Stochastic dynamic bifur-
cations and excitability, in C. Laing and G. Lord,
(Eds.), Stochastic methods in Neuroscience, p.
65-93, Oxford University Press (2009)

N.B., Stochastic dynamical systems in neuroscience, Oberwolfach Reports
8:2290–2293 (2011)

N.B., Barbara Gentz and Christian Kuehn, Hunting French Ducks in a Noisy
Environment, J. Differential Equations 252:4786–4841 (2012)

N.B. and Damien Landon, Mixed-mode oscillations and interspike interval
statistics in the stochastic FitzHugh–Nagumo model, Nonlinearity, at press
(2012). arXiv:1105.1278

www.univ-orleans.fr/mapmo/membres/berglund
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Additional material



Covariance tubes

Linearized stochastic equation around a canard (xdet
t , ydet

t , zdet
t )

dζt = A(t)ζt dt+ σ dWt A(t) =
(
−2xdet

t 1
−(1+µ) 0

)

ζt = U(t)ζ0 + σ
∫ t

0
U(t, s) dWs (U(t, s) : principal solution of U̇ = AU)

Gaussian process with covariance matrix

Cov(ζt) = σ2V (t) V (t) = U(t)V (0)U(t)−1+
∫ t

0
U(t, s)U(t, s)T ds

24



Covariance tubes

Linearized stochastic equation around a canard (xdet
t , ydet

t , zdet
t )

dζt = A(t)ζt dt+ σ dWt A(t) =
(
−2xdet

t 1
−(1+µ) 0

)

ζt = U(t)ζ0 + σ
∫ t

0
U(t, s) dWs (U(t, s) : principal solution of U̇ = AU)

Gaussian process with covariance matrix

Cov(ζt) = σ2V (t) V (t) = U(t)V (0)U(t)−1+
∫ t

0
U(t, s)U(t, s)T ds

Covariance tube :

B(h) =
{
〈(x, y)− (xdet

t , ydet
t ), V (t)−1[(x, y)− (xdet

t , ydet
t )]〉 < h2

}
Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with zt 6 0) :

P
{
τB(h) < t

}
6 C(t) e−κh

2/2σ2
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Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with zt 6 0) :

P
{
τB(h) < t

}
6 C(t) e−κh

2/2σ2

Sketch of proof :

. (Sub)martingale : {Mt}t>0, E{Mt|Ms} = (>)Ms for t > s > 0

. Doob’s submartingale inequality : P
{

sup
06t6T

Mt > L
}
6

1

L
E[MT ]
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Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with zt 6 0) :

P
{
τB(h) < t

}
6 C(t) e−κh

2/2σ2

Sketch of proof :

. (Sub)martingale : {Mt}t>0, E{Mt|Ms} = (>)Ms for t > s > 0

. Doob’s submartingale inequality : P
{

sup
06t6T

Mt > L
}
6

1

L
E[MT ]

. Linear equation : ζt = σ

∫ t

0
U(t, s) dWs is no martingale

but can be approximated by martingale on small time intervals

. exp{γ〈ζt, V (t)−1ζt〉} approximated by submartingale

. Doob’s inequality yields bound on probability of leaving B(h) during small
time intervals. Then sum over all time intervals
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Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with zt 6 0) :

P
{
τB(h) < t

}
6 C(t) e−κh

2/2σ2

Sketch of proof :

. (Sub)martingale : {Mt}t>0, E{Mt|Ms} = (>)Ms for t > s > 0

. Doob’s submartingale inequality : P
{

sup
06t6T

Mt > L
}
6

1

L
E[MT ]

. Linear equation : ζt = σ

∫ t

0
U(t, s) dWs is no martingale

but can be approximated by martingale on small time intervals

. exp{γ〈ζt, V (t)−1ζt〉} approximated by submartingale

. Doob’s inequality yields bound on probability of leaving B(h) during small
time intervals. Then sum over all time intervals

. Nonlinear equation : dζt = A(t)ζt dt+ b(ζt, t) dt+ σ dWt

ζt = σ

∫ t

0
U(t, s) dWs +

∫ t

0
U(t, s)b(ζs, s) ds

Second integral can be treated as small perturbation for t 6 τB(h)
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Early transitions

Let D be neighbourhood of size
√
z of a canard for z > 0 (unstable)

Theorem 4: [B, Gentz, Kuehn 2010]

∃κ,C, γ1, γ2 > 0 such that for σ|logσ|γ1 6 µ3/4 probability of leaving

D after zt = z satisfies

P
{
zτD > z

}
6 C|logσ|γ2 e−κ(z2−µ)/(µ|logσ|)

Small for z �
√
µ|logσ|/κ

Sketch of proof :

. Escape from neighbourhood of size σ|logσ|/
√
z :

compare with linearized equation on small time intervals + Markov property

. Escape from annulus σ|logσ|/
√
z 6 ‖ζ‖ 6

√
z :

use polar coordinates and averaging

. To combine the two regimes : use Laplace transforms
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