Some results on interspike interval statistics in conductance-based models for neuron action potentials

### Nils Berglund

MAPMO, Université d'Orléans CNRS, UMR 7349 et Fédération Denis Poisson www.univ-orleans.fr/mapmo/membres/berglund nils.berglund@math.cnrs.fr

Collaborators: Barbara Gentz (Bielefeld) Christian Kuehn (Vienne), Damien Landon (Orléans) Projet ANR MANDy, Mathematical Analysis of Neuronal Dynamics

> Random Models in Neuroscience UPMC, Paris, July 5, 2012

### The Poisson hypothesis



▷ Interspike interval (ISI) statistics (under random stimulation)

## The Poisson hypothesis



Interspike interval (ISI) statistics (under random stimulation)
 Poisson hypothesis: ISI has exponential distribution
 Consequence: Markov property

# The Poisson hypothesis



▷ Interspike interval (ISI) statistics (under random stimulation)

- Poisson hypothesis: ISI has exponential distribution Consequence: Markov property
- For which models is it a good approximation? What ISI can we expect for other (stochastic, conductance-based) models?

Stochastic differential equation (SDE)

 $dx_t = f(x_t) dt + \sigma g(x_t) dW_t \qquad x \in \mathbb{R}^n$ 

### Exit problem:

Given  $\mathcal{D} \subset \mathbb{R}^n$ , characterise First-exit time (and location)  $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$ 



Stochastic differential equation (SDE)

 $dx_t = f(x_t) dt + \sigma g(x_t) dW_t \qquad x \in \mathbb{R}^n$ 

### Exit problem:

Given  $\mathcal{D} \subset \mathbb{R}^n$ , characterise First-exit time (and location)  $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$ 



When do we have  $\lim_{\sigma \to 0} \mathbb{P} \{ \tau_{\mathcal{D}} > s \mathbb{E}[\tau_{\mathcal{D}}] \} = e^{-s}$ ?

Stochastic differential equation (SDE)

 $dx_t = f(x_t) dt + \sigma g(x_t) dW_t \qquad x \in \mathbb{R}^n$ 

#### Exit problem:

Given  $\mathcal{D} \subset \mathbb{R}^n$ , characterise First-exit time (and location)  $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$ 



When do we have  $\lim_{\sigma \to 0} \mathbb{P} \{ \tau_{\mathcal{D}} > s \mathbb{E}[\tau_{\mathcal{D}}] \} = e^{-s}$ ?

▷ True if n = 1 ⇒ true for integrate-and-fire models ▷ True if  $\mathcal{D} \subset$  basin of attraction [Day '83] ▷ True if  $f(x) = -\nabla U(x)$  and g(x) = 1 [Bovier et al '04]

Stochastic differential equation (SDE)

 $dx_t = f(x_t) dt + \sigma g(x_t) dW_t \qquad x \in \mathbb{R}^n$ 

#### Exit problem:

Given  $\mathcal{D} \subset \mathbb{R}^n$ , characterise First-exit time (and location)  $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$ 



When do we have  $\lim_{\sigma \to 0} \mathbb{P} \{ \tau_{\mathcal{D}} > s \mathbb{E}[\tau_{\mathcal{D}}] \} = e^{-s}$ ?

▷ True if n = 1 ⇒ true for integrate-and-fire models ▷ True if  $\mathcal{D} \subset$  basin of attraction [Day '83] ▷ True if  $f(x) = -\nabla U(x)$  and g(x) = 1 [Bovier et al '04] ▷ Not necessarily true if  $n \ge 2$ , curl  $f \ne 0$  and  $\partial \mathcal{D} \supset$  det orbit

Consider the FHN equations in the form

$$\varepsilon \dot{x} = x - x^3 + y$$
$$\dot{y} = a - x - by$$

 $ho x \propto$  membrane potential of neuron

 $> y \propto$  proportion of open ion channels (recovery variable)

 $\triangleright \varepsilon \ll 1 \Rightarrow \text{fast-slow system}$ 

b = 0 in the following for simplicity

Consider the FHN equations in the form

$$\varepsilon \dot{x} = x - x^3 + y$$
$$\dot{y} = a - x - by$$

▷  $x \propto$  membrane potential of neuron ▷  $y \propto$  proportion of open ion channels (recovery variable) ▷  $\varepsilon \ll 1 \Rightarrow$  fast-slow system ▷ b = 0 in the following for simplicity

Stationary point  $P = (a, a^3 - a)$ Linearisation has eigenvalues  $\frac{-\delta \pm \sqrt{\delta^2 - \varepsilon}}{\varepsilon}$  where  $\delta = \frac{3a^2 - 1}{2}$ 

▷  $\delta$  > 0: stable node ( $\delta$  >  $\sqrt{\varepsilon}$ ) or focus ( $0 < \delta < \sqrt{\varepsilon}$ ) ▷  $\delta$  = 0: singular Hopf bifurcation [Erneux & Mandel '86] ▷  $\delta$  < 0: unstable focus ( $-\sqrt{\varepsilon} < \delta < 0$ ) or node ( $\delta < -\sqrt{\varepsilon}$ )

 $\delta > 0$ :

P is asymptotically stable
the system is excitable
one can define a separatrix



 $\delta > 0$ :

▷ P is asymptotically stable
▷ the system is excitable
▷ one can define a separatrix



# $\delta < 0$ :

- $\triangleright P$  is unstable
- $ightarrow \exists$  asympt. stable periodic orbit
- ▷ sensitive dependence on δ: canard (duck) phenomenon
   [Callot, Diener, Diener '78, Benoît '81, ...]



 $\delta > 0$ :

*P* is asymptotically stable
the system is excitable
one can define a separatrix



# $\delta < 0$ :

- $\triangleright P$  is unstable
- $ightarrow \exists$  asympt. stable periodic orbit
- ▷ sensitive dependence on δ:
   canard (duck) phenomenon
   [Callot, Diener, Diener '78,
   Benoît '81, ...]



### **Stochastic FHN equations**

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$
$$dy_t = [a - x_t] dt + \sigma_2 dW_t^{(2)}$$

 $\triangleright W_t^{(1)}, W_t^{(2)}$ : independent Wiener processes  $\triangleright 0 < \sigma_1, \sigma_2 \ll 1, \ \sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$ 

### **Stochastic FHN equations**

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$
$$dy_t = [a - x_t] dt + \sigma_2 dW_t^{(2)}$$

 $\triangleright W_t^{(1)}, W_t^{(2)}$ : independent Wiener processes  $\triangleright 0 < \sigma_1, \sigma_2 \ll 1, \ \sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$ 



 $\varepsilon = 0.1$   $\delta = 0.02$  $\sigma_1 = \sigma_2 = 0.03$ 

## Some previous work

▷ Numerical: Kosmidis & Pakdaman '03, ..., Borowski et al '11

▷ Moment methods: Tanabe & Pakdaman '01

▷ Approx. of Fokker–Planck equ: Lindner et al '99, Simpson & Kuske '11

▷ Large deviations: Muratov & Vanden Eijnden '05, Doss & Thieullen '09

▷ Sample paths near canards: Sowers '08

### Some previous work

▷ Numerical: Kosmidis & Pakdaman '03, ..., Borowski et al '11

▷ Moment methods: Tanabe & Pakdaman '01

▷ Approx. of Fokker–Planck equ: Lindner et al '99, Simpson & Kuske '11

▷ Large deviations: Muratov & Vanden Eijnden '05, Doss & Thieullen '09

▷ Sample paths near canards: Sowers '08

Proposed "phase diagram" [Muratov & Vanden Eijnden '08]





#### Intermediate regime: mixed-mode oscillations (MMOs)

Time series  $t \mapsto -x_t$  for  $\varepsilon = 0.01$ ,  $\delta = 3 \cdot 10^{-3}$ ,  $\sigma = 1.46 \cdot 10^{-4}$ , ...,  $3.65 \cdot 10^{-4}$ 

# **Precise analysis of sample paths**



# **Precise analysis of sample paths**



 Dynamics near stable branch, unstable branch and saddle-node bifurcation: already done in [B & Gentz '05]



# **Precise analysis of sample paths**



- Dynamics near stable branch, unstable branch and saddle-node bifurcation: already done in [B & Gentz '05]
- Dynamics near singular Hopf bifurcation: To do



# Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N:



# Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N:



 $(R_0, R_1, \ldots, R_{N-1})$  substochastic Markov chain with kernel

$$K(R_0, A) = \mathbb{P}^{R_0} \{ R_\tau \in A \}$$

 $R \in \mathcal{F}, A \subset \mathcal{F}, \tau = \text{first-hitting time of } \mathcal{F} \text{ (after turning around } P)$  $N = \text{number of turns around } P \text{ until leaving } \mathcal{D}$ 

### General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84] Principal eigenvalue: eigenvalue  $\lambda_0$  of K of largest module.  $\lambda_0 \in \mathbb{R}$ Quasistationary distribution: prob. measure  $\pi_0$  s.t.  $\pi_0 K = \lambda_0 \pi_0$ 

# General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84] Principal eigenvalue: eigenvalue  $\lambda_0$  of K of largest module.  $\lambda_0 \in \mathbb{R}$ Quasistationary distribution: prob. measure  $\pi_0$  s.t.  $\pi_0 K = \lambda_0 \pi_0$ 

**Theorem 1:** [B & Landon, 2011] Assume  $\sigma_1, \sigma_2 > 0$ 

- $\triangleright \lambda_0 < 1$
- $\triangleright K$  admits quasistationary distribution  $\pi_0$
- $\triangleright N$  is almost surely finite
- $\triangleright N$  is asymptotically geometric:

 $\lim_{n\to\infty} \mathbb{P}\{N=n+1|N>n\}=1-\lambda_0$ 

 $\triangleright \mathbb{E}[r^N] < \infty$  for  $r < 1/\lambda_0$ , so all moments of N are finite

# General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84] Principal eigenvalue: eigenvalue  $\lambda_0$  of K of largest module.  $\lambda_0 \in \mathbb{R}$ Quasistationary distribution: prob. measure  $\pi_0$  s.t.  $\pi_0 K = \lambda_0 \pi_0$ 

**Theorem 1:** [B & Landon, 2011] Assume  $\sigma_1, \sigma_2 > 0$ 

- $\triangleright \lambda_0 < 1$
- $\triangleright K$  admits quasistationary distribution  $\pi_0$
- $\triangleright N$  is almost surely finite
- $\triangleright N$  is asymptotically geometric:

 $\lim_{n\to\infty} \mathbb{P}\{N=n+1|N>n\}=1-\lambda_0$ 

 $\triangleright \mathbb{E}[r^N] < \infty$  for  $r < 1/\lambda_0$ , so all moments of N are finite

#### **Proof:**

- ▷ uses Frobenius–Perron–Jentzsch–Krein–Rutman–Birkhoff theorem
- $\triangleright$  [Ben Arous, Kusuoka, Stroock '84] implies uniform positivity of K
- ▷ which implies spectral gap

Histograms of distribution of SAO number *N* (1000 spikes)  $\sigma = \varepsilon = 10^{-4}, \delta = 1.2 \cdot 10^{-3}, \dots, 10^{-4}$ 



11

### Dynamics near the separatrix

Change of variables:

- ▷ Translate to Hopf bif. point
- $\triangleright$  Scale space and time
- $\triangleright$  Straighten nullcline  $\dot{x}=0$

 $\Rightarrow$  variables  $(\xi, z)$  where nullcline:  $\{z = \frac{1}{2}\}$ 

$$d\xi_t = \left(\frac{1}{2} - z_t - \frac{\sqrt{\varepsilon}}{3}\xi_t^3\right) dt$$
$$dz_t = \left(\tilde{\mu} + 2\xi_t z_t + \frac{2\sqrt{\varepsilon}}{3}\xi_t^4\right) dt$$

where

$$\tilde{\mu} = \frac{\delta}{\sqrt{\varepsilon}}$$



#### Dynamics near the separatrix

Change of variables:

- ▷ Translate to Hopf bif. point
- $\triangleright$  Scale space and time
- $\triangleright$  Straighten nullcline  $\dot{x}=0$

 $\Rightarrow$  variables  $(\xi, z)$  where nullcline:  $\{z = \frac{1}{2}\}$ 



$$d\xi_t = \left(\frac{1}{2} - z_t - \frac{\sqrt{\varepsilon}}{3}\xi_t^3\right) dt + \tilde{\sigma}_1 dW_t^{(1)}$$
  
$$dz_t = \left(\tilde{\mu} + 2\xi_t z_t + \frac{2\sqrt{\varepsilon}}{3}\xi_t^4\right) dt - 2\tilde{\sigma}_1\xi_t dW_t^{(1)} + \tilde{\sigma}_2 dW_t^{(2)}$$

where

$$\tilde{\mu} = \frac{\delta}{\sqrt{\varepsilon}} - \tilde{\sigma}_1^2 \qquad \tilde{\sigma}_1 = -\sqrt{3} \frac{\sigma_1}{\varepsilon^{3/4}} \qquad \tilde{\sigma}_2 = \sqrt{3} \frac{\sigma_2}{\varepsilon^{3/4}}$$

Upward drift dominates if  $\tilde{\mu}^2 \gg \tilde{\sigma}_1^2 + \tilde{\sigma}_2^2 \Rightarrow (\varepsilon^{1/4}\delta)^2 \gg \sigma_1^2 + \sigma_2^2$ Rotation around *P*: use that  $2z e^{-2z-2\xi^2+1}$  is constant for  $\tilde{\mu} = \varepsilon = 0$ 

# Dynamics near the separatrix



# Transition from weak to strong noise

Linear approximation:

$$dz_t^0 = \left(\tilde{\mu} + tz_t^0\right) dt - \tilde{\sigma}_1 t \, dW_t^{(1)} + \tilde{\sigma}_2 \, dW_t^{(2)}$$

$$\Rightarrow \quad \mathbb{P}\{\text{no SAO}\} \simeq \Phi\left(-\pi^{1/4} \frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_1^2 + \tilde{\sigma}_2^2}}\right) \qquad \Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, \mathrm{d}y$$

### Transition from weak to strong noise

Linear approximation:

$$dz_t^0 = \left(\tilde{\mu} + tz_t^0\right) dt - \tilde{\sigma}_1 t \, dW_t^{(1)} + \tilde{\sigma}_2 \, dW_t^{(2)}$$

$$\Rightarrow \quad \mathbb{P}\{\text{no SAO}\} \simeq \Phi\left(-\pi^{1/4} \frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_1^2 + \tilde{\sigma}_2^2}}\right) \qquad \Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, \mathrm{d}y$$



\*:  $\mathbb{P}\{\text{no SAO}\}$ +:  $1/\mathbb{E}[N]$ o:  $1 - \lambda_0$ curve:  $x \mapsto \Phi(\pi^{1/4}x)$ 

$$x = -\frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_1^2 + \tilde{\sigma}_2^2}} = -\frac{\varepsilon^{1/4}(\delta - \sigma_1^2/\varepsilon)}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

**Theorem 2:** [B & Landon 2011]

Assume  $\varepsilon$  and  $\delta/\sqrt{\varepsilon}$  sufficiently small

There exists  $\kappa > 0$  s.t. for  $\sigma^2 \leq (\varepsilon^{1/4} \delta)^2 / \log(\sqrt{\varepsilon}/\delta)$ 

**Theorem 2:** [B & Landon 2011] Assume  $\varepsilon$  and  $\delta/\sqrt{\varepsilon}$  sufficiently small There exists  $\kappa > 0$  s.t. for  $\sigma^2 \leq (\varepsilon^{1/4}\delta)^2 / \log(\sqrt{\varepsilon}/\delta)$ 

▷ Principal eigenvalue:

$$1 - \lambda_0 \leqslant \exp\left\{-\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

**Theorem 2:** [B & Landon 2011] Assume  $\varepsilon$  and  $\delta/\sqrt{\varepsilon}$  sufficiently small There exists  $\kappa > 0$  s.t. for  $\sigma^2 \leq (\varepsilon^{1/4}\delta)^2/\log(\sqrt{\varepsilon}/\delta)$ 

▷ Principal eigenvalue:

$$1 - \lambda_0 \leqslant \exp\left\{-\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

▷ Expected number of SAOs:

$$\mathbb{E}^{\mu_0}[N] \ge C(\mu_0) \exp\left\{\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

where  $C(\mu_0)$  = probability of starting on  $\mathcal{F}$  above separatrix

**Theorem 2:** [B & Landon 2011] Assume  $\varepsilon$  and  $\delta/\sqrt{\varepsilon}$  sufficiently small There exists  $\kappa > 0$  s.t. for  $\sigma^2 \leq (\varepsilon^{1/4}\delta)^2 / \log(\sqrt{\varepsilon}/\delta)$ 

▷ Principal eigenvalue:

$$1 - \lambda_0 \leqslant \exp\left\{-\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

▷ Expected number of SAOs:

$$\mathbb{E}^{\mu_0}[N] \ge C(\mu_0) \exp\left\{\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

where  $C(\mu_0)$  = probability of starting on  $\mathcal{F}$  above separatrix

#### Proof:

- $\triangleright$  Construct  $A \subset \mathcal{F}$  such that K(x, A) exponentially close to 1 for all  $x \in A$
- > Use two different sets of coordinates to approximate K: Near separatrix, and during SAO

#### The story so far

Three regimes for  $\delta < \sqrt{\varepsilon}$ :  $\triangleright \sigma \ll \varepsilon^{1/4} \delta$ : rare isolated spikes interval  $\simeq \mathcal{E}xp(\sqrt{\varepsilon} e^{-(\varepsilon^{1/4}\delta)^2/\sigma^2})$   $\triangleright \varepsilon^{1/4} \delta \ll \sigma \ll \varepsilon^{3/4}$ : transition asympt geometric nb of SAOs  $\sigma = (\delta \varepsilon)^{1/2}$ : geometric(1/2)

 $\triangleright \sigma \gg \varepsilon^{3/4}$ : repeated spikes



# The story so far

Three regimes for  $\delta < \sqrt{\varepsilon}$ :  $\triangleright \sigma \ll \varepsilon^{1/4} \delta$ : rare isolated spikes interval  $\simeq \mathcal{E}xp(\sqrt{\varepsilon} e^{-(\varepsilon^{1/4}\delta)^2/\sigma^2})$   $\triangleright \varepsilon^{1/4} \delta \ll \sigma \ll \varepsilon^{3/4}$ : transition asympt geometric nb of SAOs  $\sigma = (\delta \varepsilon)^{1/2}$ : geometric(1/2)  $\triangleright \sigma \gg \varepsilon^{3/4}$ : repeated spikes

$$\sigma = \delta^{3/2}$$

$$\sigma = (\delta \varepsilon)^{1/2}$$

$$\sigma = \delta \varepsilon^{1/4}$$

$$\varepsilon^{1/2}$$

# Perspectives

- $\triangleright$  interspike interval distribution  $\simeq$  periodically modulated exponential how is it modulated?
- ▷ transient effects are important bias towards N = 1relation between  $\mathbb{P}$ {no SAO},  $1/\mathbb{E}[N]$  and  $1 - \lambda_0$
- $\triangleright$  consequences of postspike distribution  $\mu_0 \neq \pi_0$
- $\triangleright$  sharper bounds on  $\lambda_0$  (and  $\pi_0$ )

# **Higher dimensions**

Systems with one fast and two slow variables



# Folded node singularity

Normal form [Benoît, Lobry '82, Szmolyan, Wechselberger '01]:

$$\epsilon \dot{x} = y - x^{2}$$
  

$$\dot{y} = -(\mu + 1)x - z \qquad (+ \text{ higher-order terms})$$
  

$$\dot{z} = \frac{\mu}{2}$$

#### Folded node singularity

Normal form [Benoît, Lobry '82, Szmolyan, Wechselberger '01]:



18-a

# Folded node singularity

Theorem [Benoît, Lobry '82, Szmolyan, Wechselberger '01]: For  $2k + 1 < \mu^{-1} < 2k + 3$ , the system admits k canard solutions The  $j^{\text{th}}$  canard makes (2j + 1)/2 oscillations



Effect of noise

$$dx_t = \frac{1}{\varepsilon} (y_t - x_t^2) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t^{(1)}$$
  

$$dy_t = [-(\mu + 1)x_t - z_t] dt + \sigma dW_t^{(2)} + h.o.t.$$
  

$$dz_t = \frac{\mu}{2} dt$$



- Noise smears out small amplitude oscillations
- Early transitions modify the mixed-mode pattern

#### Main results

# Theorem 3: [B, Gentz, Kuehn 2010]

▷ For  $z \leq 0$ , paths stay with high probability in covariance tubes ▷ For z = 0, section of tube is close to circular with radius  $\mu^{-1/4}\sigma$ ▷ Distance between  $k^{\text{th}}$  and  $k + 1^{\text{st}}$  canard  $\sim e^{-(2k+1)^2\mu}$ 



#### Main results

## Theorem 3: [B, Gentz, Kuehn 2010]

▷ For  $z \leq 0$ , paths stay with high probability in covariance tubes ▷ For z = 0, section of tube is close to circular with radius  $\mu^{-1/4}\sigma$ ▷ Distance between  $k^{\text{th}}$  and  $k + 1^{\text{st}}$  canard  $\sim e^{-(2k+1)^2\mu}$ 



#### Main results

#### Theorem 3: [B, Gentz, Kuehn 2010]

▷ For  $z \leq 0$ , paths stay with high probability in covariance tubes ▷ For z = 0, section of tube is close to circular with radius  $\mu^{-1/4}\sigma$ ▷ Distance between  $k^{\text{th}}$  and  $k + 1^{\text{st}}$  canard  $\sim e^{-(2k+1)^2\mu}$ 

#### Theorem 4: [B, Gentz, Kuehn 2010]

For z > 0, paths are likely to escape after time of order  $\sqrt{\mu |\log \sigma|}$ 



# What's next?

- Estimate global return map for stochastic system
- > Analyse possible mixed-mode patterns
  - Possible scenario:
  - metastable transitions between regular patterns
- $\triangleright$  Comparison with real data

# What's next?

- Estimate global return map for stochastic system
- > Analyse possible mixed-mode patterns
  - Possible scenario:
  - metastable transitions between regular patterns
- ▷ Comparison with real data

# Summary

- ISI distributions are not always exponential
- ▷ Transient effects are important (QSD, metastability)
- Precise sample path analysis is possible, useful tools exist (in some cases): singular perturbation theory, large deviations, martingales, substochastic Markov processes, ...
- Still many open problems: other bifurcations, better approximation of QSD, higher dimensions, other types of noise, ...

#### **Further reading**

N.B. and Barbara Gentz, *Noise-induced phenomena in slow-fast dynamical systems, A sample-paths approach*, Springer, Probability and its Applications (2006)

N.B. and Barbara Gentz, *Stochastic dynamic bifurcations and excitability*, in C. Laing and G. Lord, (Eds.), *Stochastic methods in Neuroscience*, p. 65-93, Oxford University Press (2009)



N.B., *Stochastic dynamical systems in neuroscience*, Oberwolfach Reports **8**:2290–2293 (2011)

N.B., Barbara Gentz and Christian Kuehn, *Hunting French Ducks in a Noisy Environment*, J. Differential Equations **252**:4786–4841 (2012)

N.B. and Damien Landon, *Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model*, Nonlinearity, at press (2012). arXiv:1105.1278

www.univ-orleans.fr/mapmo/membres/berglund

# Additional material

Linearized stochastic equation around a canard  $(x_t^{\text{det}}, y_t^{\text{det}}, z_t^{\text{det}})$ 

$$d\zeta_t = A(t)\zeta_t dt + \sigma dW_t \qquad A(t) = \begin{pmatrix} -2x_t^{\text{det}} & 1\\ -(1+\mu) & 0 \end{pmatrix}$$

 $\zeta_t = U(t)\zeta_0 + \sigma \int_0^t U(t,s) \, dW_s \qquad (U(t,s) : \text{ principal solution of } \dot{U} = AU)$ Gaussian process with covariance matrix

 $Cov(\zeta_t) = \sigma^2 V(t) \qquad V(t) = U(t)V(0)U(t)^{-1} + \int_0^t U(t,s)U(t,s)^T \, ds$ 

Linearized stochastic equation around a canard  $(x_t^{\text{det}}, y_t^{\text{det}}, z_t^{\text{det}})$ 

$$d\zeta_t = A(t)\zeta_t dt + \sigma dW_t \qquad A(t) = \begin{pmatrix} -2x_t^{\det} & 1 \\ -(1+\mu) & 0 \end{pmatrix}$$

 $\zeta_t = U(t)\zeta_0 + \sigma \int_0^t U(t,s) \, \mathrm{d}W_s \qquad (U(t,s) : \text{ principal solution of } \dot{U} = AU)$ Gaussian process with covariance matrix  $\operatorname{Cov}(\zeta_t) = \sigma^2 V(t) \qquad V(t) = U(t)V(0)U(t)^{-1} + \int_0^t U(t,s)U(t,s)^T \, \mathrm{d}s$ 

Covariance tube :

$$\mathcal{B}(h) = \left\{ \langle (x,y) - (x_t^{\mathsf{det}}, y_t^{\mathsf{det}}), V(t)^{-1}[(x,y) - (x_t^{\mathsf{det}}, y_t^{\mathsf{det}})] \rangle < h^2 \right\}$$

**Theorem 3:** [B, Gentz, Kuehn 2010] Probability of leaving covariance tube before time t (with  $z_t \leq 0$ ) :

$$\mathbb{P}\left\{\tau_{\mathcal{B}(h)} < t\right\} \leqslant C(t) \, \mathrm{e}^{-\kappa h^2/2\sigma^2}$$

# Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with  $z_t \leq 0$ ) :

$$\mathbb{P}\left\{\tau_{\mathcal{B}(h)} < t\right\} \leqslant C(t) \, \mathrm{e}^{-\kappa h^2/2\sigma^2}$$

Sketch of proof :

- $\triangleright$  (Sub)martingale :  $\{M_t\}_{t \ge 0}$ ,  $\mathbb{E}\{M_t | M_s\} = (\ge)M_s$  for  $t \ge s \ge 0$
- $\triangleright$  Doob's submartingale inequality :  $\mathbb{P}\left\{\sup_{0 \leq t \leq T} M_t \geq L\right\} \leq \frac{1}{L}\mathbb{E}[M_T]$

# Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with  $z_t \leq 0$ ) :

$$\mathbb{P}\left\{\tau_{\mathcal{B}(h)} < t\right\} \leqslant C(t) \, \mathrm{e}^{-\kappa h^2/2\sigma^2}$$

Sketch of proof :

- $\triangleright$  (Sub)martingale :  $\{M_t\}_{t \ge 0}$ ,  $\mathbb{E}\{M_t | M_s\} = (\ge)M_s$  for  $t \ge s \ge 0$
- $\triangleright$  Doob's submartingale inequality :  $\mathbb{P}\left\{\sup_{0 \leq t \leq T} M_t \geq L\right\} \leq \frac{1}{L}\mathbb{E}[M_T]$
- ▷ Linear equation :  $\zeta_t = \sigma \int_0^t U(t,s) \, \mathrm{d}W_s$  is no martingale

but can be approximated by martingale on small time intervals

- $\triangleright \exp{\gamma\langle \zeta_t, V(t)^{-1}\zeta_t \rangle}$  approximated by submartingale
- ▷ Doob's inequality yields bound on probability of leaving  $\mathcal{B}(h)$  during small time intervals. Then sum over all time intervals

# Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with  $z_t \leq 0$ ):

$$\mathbb{P}\left\{\tau_{\mathcal{B}(h)} < t\right\} \leqslant C(t) \, \mathrm{e}^{-\kappa h^2/2\sigma^2}$$

Sketch of proof :

- $\triangleright$  (Sub)martingale :  $\{M_t\}_{t \ge 0}$ ,  $\mathbb{E}\{M_t | M_s\} = (\ge)M_s$  for  $t \ge s \ge 0$
- $\triangleright$  Doob's submartingale inequality :  $\mathbb{P}\left\{\sup_{0 \leq t \leq T} M_t \geq L\right\} \leq \frac{1}{L}\mathbb{E}[M_T]$
- ▷ Linear equation :  $\zeta_t = \sigma \int_0^t U(t,s) \, \mathrm{d}W_s$  is no martingale

but can be approximated by martingale on small time intervals

- $\triangleright \exp{\gamma\langle \zeta_t, V(t)^{-1}\zeta_t \rangle}$  approximated by submartingale
- ▷ Doob's inequality yields bound on probability of leaving  $\mathcal{B}(h)$  during small time intervals. Then sum over all time intervals
- $\triangleright \text{ Nonlinear equation : } d\zeta_t = A(t)\zeta_t dt + b(\zeta_t, t) dt + \sigma dW_t$

$$\zeta_t = \sigma \int_0^t U(t,s) \, \mathrm{d}W_s + \int_0^t U(t,s) b(\zeta_s,s) \, \mathrm{d}s$$

Second integral can be treated as small perturbation for  $t \leq \tau_{\mathcal{B}(h)}$ 

# **Early transitions**

Let  $\mathcal{D}$  be neighbourhood of size  $\sqrt{z}$  of a canard for z > 0 (unstable)

**Theorem 4:** [B, Gentz, Kuehn 2010]  $\exists \kappa, C, \gamma_1, \gamma_2 > 0$  such that for  $\sigma |\log \sigma|^{\gamma_1} \leq \mu^{3/4}$  probability of leaving  $\mathcal{D}$  after  $z_t = z$  satisfies

$$\mathbb{P}\left\{z_{\tau_{\mathcal{D}}} > z\right\} \leqslant C |\log \sigma|^{\gamma_2} \, \mathrm{e}^{-\kappa(z^2 - \mu)/(\mu |\log \sigma|)}$$

Small for  $z \gg \sqrt{\mu |\log \sigma|/\kappa}$ 

Sketch of proof :

- ▷ Escape from neighbourhood of size  $\sigma |\log \sigma| / \sqrt{z}$ : compare with linearized equation on small time intervals + Markov property
- ▷ Escape from annulus  $\sigma |\log \sigma| / \sqrt{z} \leq ||\zeta|| \leq \sqrt{z}$ : use polar coordinates and averaging
- ▷ To combine the two regimes : use Laplace transforms