Some results on interspike interval statistics

in conductance-based models
for neuron action potentials

Nils Berglund
MAPMO, Université d'Orléans
CNRS, UMR 7349 et Fédération Denis Poisson
www. univ-orleans.fr/mapmo/membres/berglund
nils.berglund@math.cnrs.fr
Collaborators: Barbara Gentz (Bielefeld)
Christian Kuehn (Vienne), Damien Landon (Orléans)
Projet ANR MANDy, Mathematical Analysis of Neuronal Dynamics

Random Models in Neuroscience
UPMC, Paris, July 5, 2012

The Poisson hypothesis

\triangleright Interspike interval (ISI) statistics (under random stimulation)

The Poisson hypothesis

\triangleright Interspike interval (ISI) statistics (under random stimulation)
\triangleright Poisson hypothesis: ISI has exponential distribution Consequence: Markov property

The Poisson hypothesis

\triangleright Interspike interval (ISI) statistics (under random stimulation)
\triangleright Poisson hypothesis: ISI has exponential distribution Consequence: Markov property
\triangleright For which models is it a good approximation?
What ISI can we expect for other (stochastic, conductance-based) models?

The stochastic exit problem
Stochastic differential equation (SDE)

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma g\left(x_{t}\right) \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Exit problem:
Given $\mathcal{D} \subset \mathbb{R}^{n}$, characterise First-exit time (and location)
$\tau_{\mathcal{D}}=\inf \left\{t>0: x_{t} \notin \mathcal{D}\right\}$

The stochastic exit problem
Stochastic differential equation (SDE)

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma g\left(x_{t}\right) \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Exit problem:
Given $\mathcal{D} \subset \mathbb{R}^{n}$, characterise First-exit time (and location)
$\tau_{\mathcal{D}}=\inf \left\{t>0: x_{t} \notin \mathcal{D}\right\}$

When do we have $\lim _{\sigma \rightarrow 0} \mathbb{P}\left\{\tau_{\mathcal{D}}>s \mathbb{E}\left[\tau_{\mathcal{D}}\right]\right\}=\mathrm{e}^{-s}$?

The stochastic exit problem

Stochastic differential equation (SDE)

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma g\left(x_{t}\right) \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Exit problem:

Given $\mathcal{D} \subset \mathbb{R}^{n}$, characterise First-exit time (and location)
$\tau_{\mathcal{D}}=\inf \left\{t>0: x_{t} \notin \mathcal{D}\right\}$

When do we have $\lim _{\sigma \rightarrow 0} \mathbb{P}\left\{\tau_{\mathcal{D}}>s \mathbb{E}\left[\tau_{\mathcal{D}}\right]\right\}=\mathrm{e}^{-s}$?
\triangleright True if $n=1 \Rightarrow$ true for integrate-and-fire models
\triangleright True if $\mathcal{D} \subset$ basin of attraction [Day '83]
\triangleright True if $f(x)=-\nabla U(x)$ and $g(x)=1$ [Bovier et al '04]

The stochastic exit problem

Stochastic differential equation (SDE)

$$
\mathrm{d} x_{t}=f\left(x_{t}\right) \mathrm{d} t+\sigma g\left(x_{t}\right) \mathrm{d} W_{t} \quad x \in \mathbb{R}^{n}
$$

Exit problem:

Given $\mathcal{D} \subset \mathbb{R}^{n}$, characterise First-exit time (and location)
$\tau_{\mathcal{D}}=\inf \left\{t>0: x_{t} \notin \mathcal{D}\right\}$

When do we have $\lim _{\sigma \rightarrow 0} \mathbb{P}\left\{\tau_{\mathcal{D}}>s \mathbb{E}\left[\tau_{\mathcal{D}}\right]\right\}=\mathrm{e}^{-s}$?
\triangleright True if $n=1 \Rightarrow$ true for integrate-and-fire models
\triangleright True if $\mathcal{D} \subset$ basin of attraction [Day '83]
\triangleright True if $f(x)=-\nabla U(x)$ and $g(x)=1$ [Bovier et al '04]
\triangleright Not necessarily true if $n \geqslant 2$, curl $f \neq 0$ and $\partial \mathcal{D} \supset$ det orbit

Deterministic FitzHugh-Nagumo (FHN) equations

Consider the FHN equations in the form

$$
\begin{aligned}
\varepsilon \dot{x} & =x-x^{3}+y \\
\dot{y} & =a-x-b y
\end{aligned}
$$

$\triangleright x \propto$ membrane potential of neuron
$\triangleright y \propto$ proportion of open ion channels (recovery variable)
$\triangleright \varepsilon \ll 1 \Rightarrow$ fast-slow system
$\triangleright b=0$ in the following for simplicity

Deterministic FitzHugh-Nagumo (FHN) equations

Consider the FHN equations in the form

$$
\begin{aligned}
\varepsilon \dot{x} & =x-x^{3}+y \\
\dot{y} & =a-x-b y
\end{aligned}
$$

$\triangleright x \propto$ membrane potential of neuron
$\triangleright y \propto$ proportion of open ion channels (recovery variable)
$\triangleright \varepsilon \ll 1 \Rightarrow$ fast-slow system
$\triangleright b=0$ in the following for simplicity

Stationary point $P=\left(a, a^{3}-a\right)$
Linearisation has eigenvalues $\frac{-\delta \pm \sqrt{\delta^{2}-\varepsilon}}{\varepsilon}$ where $\delta=\frac{3 a^{2}-1}{2}$
$\triangleright \delta>0$: stable node $(\delta>\sqrt{\varepsilon})$ or focus $(0<\delta<\sqrt{\varepsilon})$
$\triangleright \delta=0$: singular Hopf bifurcation [Erneux \& Mandel '86]
$\triangleright \delta<0$: unstable focus $(-\sqrt{\varepsilon}<\delta<0)$ or node $(\delta<-\sqrt{\varepsilon})$

Deterministic FitzHugh-Nagumo (FHN) equations

$\delta>0$:
$\triangleright P$ is asymptotically stable
\triangleright the system is excitable
\triangleright one can define a separatrix

Deterministic FitzHugh-Nagumo (FHN) equations

$$
\delta>0:
$$

$\triangleright P$ is asymptotically stable
\triangleright the system is excitable
\triangleright one can define a separatrix

$\delta<0$:
$\triangleright P$ is unstable
$\triangleright \exists$ asympt. stable periodic orbit
\triangleright sensitive dependence on δ : canard (duck) phenomenon [Callot, Diener, Diener '78, Benoît '81, ...]

Deterministic FitzHugh-Nagumo (FHN) equations

$$
\delta>0:
$$

$\triangleright P$ is asymptotically stable
\triangleright the system is excitable
\triangleright one can define a separatrix

$\delta<0$:
$\triangleright P$ is unstable
$\triangleright \exists$ asympt. stable periodic orbit
\triangleright sensitive dependence on δ : canard (duck) phenomenon [Callot, Diener, Diener '78, Benoît '81, ...]

Stochastic FHN equations

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon}\left[x_{t}-x_{t}^{3}+y_{t}\right] \mathrm{d} t+\frac{\sigma_{1}}{\sqrt{\varepsilon}} \mathrm{~d} W_{t}^{(1)} \\
\mathrm{d} y_{t} & =\left[a-x_{t}\right] \mathrm{d} t+\sigma_{2} \mathrm{~d} W_{t}^{(2)}
\end{aligned}
$$

$\triangleright W_{t}^{(1)}, W_{t}^{(2)}$: independent Wiener processes
$\triangleright 0<\sigma_{1}, \sigma_{2} \ll 1, \sigma=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$

Stochastic FHN equations

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon}\left[x_{t}-x_{t}^{3}+y_{t}\right] \mathrm{d} t+\frac{\sigma_{1}}{\sqrt{\varepsilon}} \mathrm{~d} W_{t}^{(1)} \\
\mathrm{d} y_{t} & =\left[a-x_{t}\right] \mathrm{d} t+\sigma_{2} \mathrm{~d} W_{t}^{(2)}
\end{aligned}
$$

$\triangleright W_{t}^{(1)}, W_{t}^{(2)}$: independent Wiener processes
$\triangleright 0<\sigma_{1}, \sigma_{2} \ll 1, \sigma=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$

$$
\begin{aligned}
& \varepsilon=0.1 \\
& \delta=0.02 \\
& \sigma_{1}=\sigma_{2}=0.03
\end{aligned}
$$

Some previous work

\triangleright Numerical: Kosmidis \& Pakdaman '03, ..., Borowski et al '11
\triangleright Moment methods: Tanabe \& Pakdaman '01
\triangleright Approx. of Fokker-Planck equ: Lindner et al '99, Simpson \& Kuske '11
\triangleright Large deviations: Muratov \& Vanden Eijnden '05, Doss \& Thieullen '09
\triangleright Sample paths near canards: Sowers '08

Some previous work

\triangleright Numerical: Kosmidis \& Pakdaman '03, ..., Borowski et al '11
\triangleright Moment methods: Tanabe \& Pakdaman '01
\triangleright Approx. of Fokker-Planck equ: Lindner et al '99, Simpson \& Kuske '11
\triangleright Large deviations: Muratov \& Vanden Eijnden '05, Doss \& Thieullen '09
\triangleright Sample paths near canards: Sowers '08
Proposed "phase diagram" [Muratov \& Vanden Eijnden '08]

Intermediate regime: mixed-mode oscillations (MMOs)

Time series $t \mapsto-x_{t}$ for $\varepsilon=0.01, \delta=3 \cdot 10^{-3}, \sigma=1.46 \cdot 10^{-4}, \ldots, 3.65 \cdot 10^{-4}$

Precise analysis of sample paths

Precise analysis of sample paths

\triangleright Dynamics near stable branch, unstable branch and saddle-node bifurcation: already done in [B \& Gentz '05]

Precise analysis of sample paths

\triangleright Dynamics near stable branch, unstable branch and saddle-node bifurcation: already done in [B \& Gentz '05]
\triangleright Dynamics near singular Hopf bifurcation: To do

Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N :

Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N :

($R_{0}, R_{1}, \ldots, R_{N-1}$) substochastic Markov chain with kernel

$$
K\left(R_{0}, A\right)=\mathbb{P}^{R_{0}}\left\{R_{\tau} \in A\right\}
$$

$R \in \mathcal{F}, A \subset \mathcal{F}, \tau=$ first-hitting time of \mathcal{F} (after turning around P) $N=$ number of turns around P until leaving \mathcal{D}

General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]
Principal eigenvalue: eigenvalue λ_{0} of K of largest module. $\lambda_{0} \in \mathbb{R}$ Quasistationary distribution: prob. measure π_{0} s.t. $\pi_{0} K=\lambda_{0} \pi_{0}$

General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]
Principal eigenvalue: eigenvalue λ_{0} of K of largest module. $\lambda_{0} \in \mathbb{R}$
Quasistationary distribution: prob. measure π_{0} s.t. $\pi_{0} K=\lambda_{0} \pi_{0}$
Theorem 1: [$\mathrm{B} \&$ Landon, 2011] Assume $\sigma_{1}, \sigma_{2}>0$
$\triangleright \lambda_{0}<1$
$\triangleright K$ admits quasistationary distribution π_{0}
$\triangleright N$ is almost surely finite
$\triangleright N$ is asymptotically geometric:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\{N=n+1 \mid N>n\}=1-\lambda_{0}
$$

$\triangleright \mathbb{E}\left[r^{N}\right]<\infty$ for $r<1 / \lambda_{0}$, so all moments of N are finite

General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]
Principal eigenvalue: eigenvalue λ_{0} of K of largest module. $\lambda_{0} \in \mathbb{R}$
Quasistationary distribution: prob. measure π_{0} s.t. $\pi_{0} K=\lambda_{0} \pi_{0}$

Theorem 1: [B \& Landon, 2011] Assume $\sigma_{1}, \sigma_{2}>0$
$\triangleright \lambda_{0}<1$
$\triangleright K$ admits quasistationary distribution π_{0}
$\triangleright N$ is almost surely finite
$\triangleright N$ is asymptotically geometric:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\{N=n+1 \mid N>n\}=1-\lambda_{0}
$$

$\triangleright \mathbb{E}\left[r^{N}\right]<\infty$ for $r<1 / \lambda_{0}$, so all moments of N are finite

Proof:

\triangleright uses Frobenius-Perron-Jentzsch-Krein-Rutman-Birkhoff theorem
\triangleright [Ben Arous, Kusuoka, Stroock '84] implies uniform positivity of K
\triangleright which implies spectral gap

Histograms of distribution of SAO number N (1000 spikes)

 $\sigma=\varepsilon=10^{-4}, \delta=1.2 \cdot 10^{-3}, \ldots, 10^{-4}$

Change of variables:
\triangleright Translate to Hopf bif. point
\triangleright Scale space and time
\triangleright Straighten nullcline $\dot{x}=0$
\Rightarrow variables (ξ, z) where nullcline: $\left\{z=\frac{1}{2}\right\}$

$$
\begin{aligned}
\mathrm{d} \xi_{t} & =\left(\frac{1}{2}-z_{t}-\frac{\sqrt{\varepsilon}}{3} \xi_{t}^{3}\right) \mathrm{d} t \\
\mathrm{~d} z_{t} & =\left(\tilde{\mu}+2 \xi_{t} z_{t}+\frac{2 \sqrt{\varepsilon}}{3} \xi_{t}^{4}\right) \mathrm{d} t
\end{aligned}
$$

where

$$
\tilde{\mu}=\frac{\delta}{\sqrt{\varepsilon}}
$$

Change of variables:
\triangleright Translate to Hopf bif. point
\triangleright Scale space and time
\triangleright Straighten nullcline $\dot{x}=0$
\Rightarrow variables (ξ, z) where nullcline: $\left\{z=\frac{1}{2}\right\}$

$$
\begin{aligned}
\mathrm{d} \xi_{t} & =\left(\frac{1}{2}-z_{t}-\frac{\sqrt{\varepsilon}}{3} \xi_{t}^{3}\right) \mathrm{d} t+\tilde{\sigma}_{1} \mathrm{~d} W_{t}^{(1)} \\
\mathrm{d} z_{t} & =\left(\tilde{\mu}+2 \xi_{t} z_{t}+\frac{2 \sqrt{\varepsilon}}{3} \xi_{t}^{4}\right) \mathrm{d} t-2 \tilde{\sigma}_{1} \xi_{t} \mathrm{~d} W_{t}^{(1)}+\tilde{\sigma}_{2} \mathrm{~d} W_{t}^{(2)}
\end{aligned}
$$

where

$$
\tilde{\mu}=\frac{\delta}{\sqrt{\varepsilon}}-\tilde{\sigma}_{1}^{2} \quad \tilde{\sigma}_{1}=-\sqrt{3} \frac{\sigma_{1}}{\varepsilon^{3 / 4}} \quad \tilde{\sigma}_{2}=\sqrt{3} \frac{\sigma_{2}}{\varepsilon^{3 / 4}}
$$

Upward drift dominates if $\tilde{\mu}^{2} \gg \tilde{\sigma}_{1}^{2}+\tilde{\sigma}_{2}^{2} \Rightarrow\left(\varepsilon^{1 / 4} \delta\right)^{2} \gg \sigma_{1}^{2}+\sigma_{2}^{2}$
Rotation around P : use that $2 z \mathrm{e}^{-2 z-2 \xi^{2}+1}$ is constant for $\tilde{\mu}=\varepsilon=0$

Dynamics near the separatrix

(a)

(b)

(c)

(d)

Transition from weak to strong noise

Linear approximation:

$$
\begin{gathered}
\mathrm{d} z_{t}^{0}=\left(\tilde{\mu}+t z_{t}^{0}\right) \mathrm{d} t-\tilde{\sigma}_{1} t \mathrm{~d} W_{t}^{(1)}+\tilde{\sigma}_{2} \mathrm{~d} W_{t}^{(2)} \\
\Rightarrow \quad \mathbb{P}\{\mathrm{noSAO}\} \simeq \Phi\left(-\pi^{1 / 4} \frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_{1}^{2}+\tilde{\sigma}_{2}^{2}}}\right) \quad \Phi(x)=\int_{-\infty}^{x} \frac{\mathrm{e}^{-y^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} y
\end{gathered}
$$

Transition from weak to strong noise

Linear approximation:

$$
\mathrm{d} z_{t}^{0}=\left(\tilde{\mu}+t z_{t}^{0}\right) \mathrm{d} t-\tilde{\sigma}_{1} t \mathrm{~d} W_{t}^{(1)}+\tilde{\sigma}_{2} \mathrm{~d} W_{t}^{(2)}
$$

$\Rightarrow \quad \mathbb{P}\{$ no $S A O\} \simeq \Phi\left(-\pi^{1 / 4} \frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_{1}^{2}+\tilde{\sigma}_{2}^{2}}}\right) \quad \Phi(x)=\int_{-\infty}^{x} \frac{\mathrm{e}^{-y^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} y$

$$
\begin{aligned}
& *: \mathbb{P}\{\text { no } \mathrm{SAO}\} \\
& +: 1 / \mathbb{E}[N] \\
& \circ: 1-\lambda_{0} \\
& \text { curve: } x \mapsto \Phi\left(\pi^{1 / 4} x\right) \\
& \qquad x=-\frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_{1}^{2}+\tilde{\sigma}_{2}^{2}}}=-\frac{\varepsilon^{1 / 4}\left(\delta-\sigma_{1}^{2} / \varepsilon\right)}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}
\end{aligned}
$$

The weak-noise regime
Theorem 2: [B \& Landon 2011]
Assume ε and $\delta / \sqrt{\varepsilon}$ sufficiently small
There exists $\kappa>0$ s.t. for $\sigma^{2} \leqslant\left(\varepsilon^{1 / 4} \delta\right)^{2} / \log (\sqrt{\varepsilon} / \delta)$

The weak-noise regime

Theorem 2: [B \& Landon 2011]
Assume ε and $\delta / \sqrt{\varepsilon}$ sufficiently small
There exists $\kappa>0$ s.t. for $\sigma^{2} \leqslant\left(\varepsilon^{1 / 4} \delta\right)^{2} / \log (\sqrt{\varepsilon} / \delta)$
\triangleright Principal eigenvalue:

$$
1-\lambda_{0} \leqslant \exp \left\{-\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma^{2}}\right\}
$$

The weak-noise regime

Theorem 2: [B \& Landon 2011]
Assume ε and $\delta / \sqrt{\varepsilon}$ sufficiently small
There exists $\kappa>0$ s.t. for $\sigma^{2} \leqslant\left(\varepsilon^{1 / 4} \delta\right)^{2} / \log (\sqrt{\varepsilon} / \delta)$
\triangleright Principal eigenvalue:

$$
1-\lambda_{0} \leqslant \exp \left\{-\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma^{2}}\right\}
$$

\triangleright Expected number of SAOs:

$$
\mathbb{E}^{\mu_{0}}[N] \geqslant C\left(\mu_{0}\right) \exp \left\{\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma^{2}}\right\}
$$

where $C\left(\mu_{0}\right)=$ probability of starting on \mathcal{F} above separatrix

The weak-noise regime

Theorem 2: [B \& Landon 2011]
Assume ε and $\delta / \sqrt{\varepsilon}$ sufficiently small
There exists $\kappa>0$ s.t. for $\sigma^{2} \leqslant\left(\varepsilon^{1 / 4} \delta\right)^{2} / \log (\sqrt{\varepsilon} / \delta)$
\triangleright Principal eigenvalue:

$$
1-\lambda_{0} \leqslant \exp \left\{-\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma^{2}}\right\}
$$

\triangleright Expected number of SAOs:

$$
\mathbb{E}^{\mu_{0}}[N] \geqslant C\left(\mu_{0}\right) \exp \left\{\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma^{2}}\right\}
$$

where $C\left(\mu_{0}\right)=$ probability of starting on \mathcal{F} above separatrix

Proof:

\triangleright Construct $A \subset \mathcal{F}$ such that $K(x, A)$ exponentially close to 1 for all $x \in A$
\triangleright Use two different sets of coordinates to approximate K :
Near separatrix, and during SAO

The story so far

Three regimes for $\delta<\sqrt{\varepsilon}$:
$\triangleright \sigma \ll \varepsilon^{1 / 4} \delta$: rare isolated spikes interval $\simeq \mathcal{E x p}\left(\sqrt{\varepsilon} \mathrm{e}^{-\left(\varepsilon^{1 / 4} \delta\right)^{2} / \sigma^{2}}\right)$
$\triangleright \varepsilon^{1 / 4} \delta \ll \sigma \ll \varepsilon^{3 / 4}$: transition asympt geometric nb of SAOs $\sigma=(\delta \varepsilon)^{1 / 2}:$ geometric (1/2)
$\triangleright \sigma \gg \varepsilon^{3 / 4}$: repeated spikes

The story so far

Three regimes for $\delta<\sqrt{\varepsilon}$:
$\triangleright \sigma \ll \varepsilon^{1 / 4} \delta$: rare isolated spikes interval $\simeq \mathcal{E x p}\left(\sqrt{\varepsilon} \mathrm{e}^{-\left(\varepsilon^{1 / 4} \delta\right)^{2} / \sigma^{2}}\right)$
$\triangleright \varepsilon^{1 / 4} \delta \ll \sigma \ll \varepsilon^{3 / 4}$: transition asympt geometric nb of SAOs $\sigma=(\delta \varepsilon)^{1 / 2}:$ geometric $(1 / 2)$
$\triangleright \sigma \gg \varepsilon^{3 / 4}$: repeated spikes

Perspectives

\triangleright interspike interval distribution \simeq periodically modulated exponential - how is it modulated?
\triangleright transient effects are important - bias towards $N=1$ relation between $\mathbb{P}\{$ no $S A O\}, 1 / \mathbb{E}[N]$ and $1-\lambda_{0}$
\triangleright consequences of postspike distribution $\mu_{0} \neq \pi_{0}$
\triangleright sharper bounds on λ_{0} (and π_{0})

Higher dimensions

Systems with one fast and two slow variables

Folded node singularity

Normal form [Benoit, Lobry '82, Szmolyan, Wechselberger '01]:

$$
\begin{aligned}
\epsilon \dot{x} & =y-x^{2} \\
\dot{y} & =-(\mu+1) x-z \quad(+ \text { higher-order terms }) \\
\dot{z} & =\frac{\mu}{2}
\end{aligned}
$$

Folded node singularity

Normal form [Benoit, Lobry '82, Szmolyan, Wechselberger '01]:

$$
\begin{aligned}
\epsilon \dot{x} & =y-x^{2} \\
\dot{y} & =-(\mu+1) x-z \\
\dot{z} & =\frac{\mu}{2}
\end{aligned}
$$

Folded node singularity

Theorem [Benoît, Lobry '82, Szmolyan, Wechselberger '01]:
For $2 k+1<\mu^{-1}<2 k+3$, the system admits k canard solutions The $j^{\text {th }}$ canard makes $(2 j+1) / 2$ oscillations

Effect of noise

$$
\begin{aligned}
\mathrm{d} x_{t} & =\frac{1}{\varepsilon}\left(y_{t}-x_{t}^{2}\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}^{(1)} \\
\mathrm{d} y_{t} & =\left[-(\mu+1) x_{t}-z_{t}\right] \mathrm{d} t+\sigma \mathrm{d} W_{t}^{(2)} \quad+\text { h.o.t. } \\
\mathrm{d} z_{t} & =\frac{\mu}{2} \mathrm{~d} t
\end{aligned}
$$

- Noise smears out small amplitude oscillations
- Early transitions modify the mixed-mode pattern

Main results

Theorem 3: [B, Gentz, Kuehn 2010]
\triangleright For $z \leqslant 0$, paths stay with high probability in covariance tubes
\triangleright For $z=0$, section of tube is close to circular with radius $\mu^{-1 / 4} \sigma$
\triangleright Distance between $k^{\text {th }}$ and $k+1^{\text {st }}$ canard $\sim \mathrm{e}^{-(2 k+1)^{2} \mu}$

20-a

Main results

Theorem 3: [B, Gentz, Kuehn 2010]
\triangleright For $z \leqslant 0$, paths stay with high probability in covariance tubes
\triangleright For $z=0$, section of tube is close to circular with radius $\mu^{-1 / 4} \sigma$
\triangleright Distance between $k^{\text {th }}$ and $k+1^{\text {st }}$ canard $\sim \mathrm{e}^{-(2 k+1)^{2} \mu}$

Corollary:
 Let
 $\sigma_{k}(\mu)=\mu^{1 / 4} e^{-(2 k+1)^{2} \mu}$

Canards with $\frac{2 k+1}{4}$ oscillations become indistinguishable from noisy fluctuations for $\sigma>\sigma_{k}(\mu)$

Main results

Theorem 3: [B, Gentz, Kuehn 2010]
\triangleright For $z \leqslant 0$, paths stay with high probability in covariance tubes
\triangleright For $z=0$, section of tube is close to circular with radius $\mu^{-1 / 4} \sigma$
\triangleright Distance between $k^{\text {th }}$ and $k+1^{\text {st }}$ canard $\sim \mathrm{e}^{-(2 k+1)^{2} \mu}$
Theorem 4: [B, Gentz, Kuehn 2010]
For $z>0$, paths are likely to escape after time of order $\sqrt{\mu|\log \sigma|}$

What's next?

\triangleright Estimate global return map for stochastic system
\triangleright Analyse possible mixed-mode patterns
Possible scenario:
metastable transitions between regular patterns
\triangleright Comparison with real data

What's next?

\triangleright Estimate global return map for stochastic system
\triangleright Analyse possible mixed-mode patterns
Possible scenario:
metastable transitions between regular patterns
\triangleright Comparison with real data

Summary

\triangleright ISI distributions are not always exponential
\triangleright Transient effects are important (QSD, metastability)
\triangleright Precise sample path analysis is possible, useful tools exist (in some cases): singular perturbation theory, large deviations, martingales, substochastic Markov processes, ...
\triangleright Still many open problems: other bifurcations, better approximation of QSD, higher dimensions, other types of noise, ...

Further reading

N.B. and Barbara Gentz, Noise-induced phenomena in slow-fast dynamical systems, A sample-paths approach, Springer, Probability and its Applications (2006)
N.B. and Barbara Gentz, Stochastic dynamic bifurcations and excitability, in C. Laing and G. Lord, (Eds.), Stochastic methods in Neuroscience, p. 65-93, Oxford University Press (2009)

N.B., Stochastic dynamical systems in neuroscience, Oberwolfach Reports 8:2290-2293 (2011)
N.B., Barbara Gentz and Christian Kuehn, Hunting French Ducks in a Noisy Environment, J. Differential Equations 252:4786-4841 (2012)
N.B. and Damien Landon, Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model, Nonlinearity, at press (2012). arXiv:1105.1278

Www.univ-orleans.fr/mapmo/membres/berglund

Additional material

Covariance tubes

Linearized stochastic equation around a canard ($x_{t}^{\text {det }}, y_{t}^{\text {det }}, z_{t}^{\text {det }}$)

$$
\mathrm{d} \zeta_{t}=A(t) \zeta_{t} \mathrm{~d} t+\sigma \mathrm{d} W_{t} \quad A(t)=\left(\begin{array}{rr}
-2 x_{t}^{\mathrm{det}} & 1 \\
-(1+\mu) & 0
\end{array}\right)
$$

$\zeta_{t}=U(t) \zeta_{0}+\sigma \int_{0}^{t} U(t, s) \mathrm{d} W_{s} \quad(U(t, s)$: principal solution of $\dot{U}=A U)$
Gaussian process with covariance matrix
$\operatorname{Cov}\left(\zeta_{t}\right)=\sigma^{2} V(t) \quad V(t)=U(t) V(0) U(t)^{-1}+\int_{0}^{t} U(t, s) U(t, s)^{T} \mathrm{~d} s$

Covariance tubes

Linearized stochastic equation around a canard ($x_{t}^{\mathrm{det}}, y_{t}^{\mathrm{det}}, z_{t}^{\mathrm{det}}$)

$$
\mathrm{d} \zeta_{t}=A(t) \zeta_{t} \mathrm{~d} t+\sigma \mathrm{d} W_{t} \quad A(t)=\left(\begin{array}{rr}
-2 x_{t}^{\text {det }} & 1 \\
-(1+\mu) & 0
\end{array}\right)
$$

$\zeta_{t}=U(t) \zeta_{0}+\sigma \int_{0}^{t} U(t, s) \mathrm{d} W_{s} \quad(U(t, s)$: principal solution of $\dot{U}=A U)$
Gaussian process with covariance matrix

$$
\operatorname{Cov}\left(\zeta_{t}\right)=\sigma^{2} V(t) \quad V(t)=U(t) V(0) U(t)^{-1}+\int_{0}^{t} U(t, s) U(t, s)^{T} \mathrm{~d} s
$$

Covariance tube :

$$
\mathcal{B}(h)=\left\{\left\langle(x, y)-\left(x_{t}^{\mathrm{det}}, y_{t}^{\mathrm{det}}\right), V(t)^{-1}\left[(x, y)-\left(x_{t}^{\mathrm{det}}, y_{t}^{\mathrm{det}}\right)\right]\right\rangle<h^{2}\right\}
$$

Theorem 3: [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with $z_{t} \leqslant 0$):

$$
\mathbb{P}\left\{\tau_{\mathcal{B}(h)}<t\right\} \leqslant C(t) \mathrm{e}^{-\kappa h^{2} / 2 \sigma^{2}}
$$

Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with $z_{t} \leqslant 0$):

$$
\mathbb{P}\left\{\tau_{\mathcal{B}(h)}<t\right\} \leqslant C(t) \mathrm{e}^{-\kappa h^{2} / 2 \sigma^{2}}
$$

Sketch of proof :
$\triangleright($ Sub $)$ martingale : $\left\{M_{t}\right\}_{t \geqslant 0}, \mathbb{E}\left\{M_{t} \mid M_{s}\right\}=(\geqslant) M_{s}$ for $t \geqslant s \geqslant 0$
\triangleright Doob's submartingale inequality : $\mathbb{P}\left\{\sup _{0 \leqslant t \leqslant T} M_{t} \geqslant L\right\} \leqslant \frac{1}{L} \mathbb{E}\left[M_{T}\right]$

Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with $z_{t} \leqslant 0$) :

$$
\mathbb{P}\left\{\tau_{\mathcal{B}(h)}<t\right\} \leqslant C(t) \mathrm{e}^{-\kappa h^{2} / 2 \sigma^{2}}
$$

Sketch of proof :
$\triangleright($ Sub $)$ martingale : $\left\{M_{t}\right\}_{t \geqslant 0}, \mathbb{E}\left\{M_{t} \mid M_{s}\right\}=(\geqslant) M_{s}$ for $t \geqslant s \geqslant 0$
\triangleright Doob's submartingale inequality : $\mathbb{P}\left\{\sup _{0 \leqslant t \leqslant T} M_{t} \geqslant L\right\} \leqslant \frac{1}{L} \mathbb{E}\left[M_{T}\right]$
\triangleright Linear equation: $\zeta_{t}=\sigma \int_{0}^{t} U(t, s) \mathrm{d} W_{s}$ is no martingale but can be approximated by martingale on small time intervals
$\triangleright \exp \left\{\gamma\left\langle\zeta_{t}, V(t)^{-1} \zeta_{t}\right\rangle\right\}$ approximated by submartingale
\triangleright Doob's inequality yields bound on probability of leaving $\mathcal{B}(h)$ during small time intervals. Then sum over all time intervals

Covariance tubes

Theorem 3: [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with $z_{t} \leqslant 0$):

$$
\mathbb{P}\left\{\tau_{\mathcal{B}(h)}<t\right\} \leqslant C(t) \mathrm{e}^{-\kappa h^{2} / 2 \sigma^{2}}
$$

Sketch of proof :
$\triangleright($ Sub $)$ martingale : $\left\{M_{t}\right\}_{t \geqslant 0}, \mathbb{E}\left\{M_{t} \mid M_{s}\right\}=(\geqslant) M_{s}$ for $t \geqslant s \geqslant 0$
\triangleright Doob's submartingale inequality : $\mathbb{P}\left\{\sup _{0 \leqslant t \leqslant T} M_{t} \geqslant L\right\} \leqslant \frac{1}{L} \mathbb{E}\left[M_{T}\right]$
\triangleright Linear equation : $\zeta_{t}=\sigma \int_{0}^{t} U(t, s) \mathrm{d} W_{s}$ is no martingale
but can be approximated by martingale on small time intervals
$\triangleright \exp \left\{\gamma\left\langle\zeta_{t}, V(t)^{-1} \zeta_{t}\right\rangle\right\}$ approximated by submartingale
\triangleright Doob's inequality yields bound on probability of leaving $\mathcal{B}(h)$ during small time intervals. Then sum over all time intervals
\triangleright Nonlinear equation: $\mathrm{d} \zeta_{t}=A(t) \zeta_{t} \mathrm{~d} t+b\left(\zeta_{t}, t\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}$

$$
\zeta_{t}=\sigma \int_{0}^{t} U(t, s) \mathrm{d} W_{s}+\int_{0}^{t} U(t, s) b\left(\zeta_{s}, s\right) \mathrm{d} s
$$

Second integral can be treated as small perturbation for $t \leqslant \tau_{\mathcal{B}(h)}$

Early transitions

Let \mathcal{D} be neighbourhood of size \sqrt{z} of a canard for $z>0$ (unstable)
Theorem 4: [B, Gentz, Kuehn 2010]
$\exists \kappa, C, \gamma_{1}, \gamma_{2}>0$ such that for $\sigma|\log \sigma|^{\gamma_{1}} \leqslant \mu^{3 / 4}$ probability of leaving \mathcal{D} after $z_{t}=z$ satisfies

$$
\mathbb{P}\left\{z_{\tau_{\mathcal{D}}}>z\right\} \leqslant C|\log \sigma|^{\gamma_{2}} \mathrm{e}^{-\kappa\left(z^{2}-\mu\right) /(\mu|\log \sigma|)}
$$

Small for $z \gg \sqrt{\mu|\log \sigma| / \kappa}$
Sketch of proof :
\triangleright Escape from neighbourhood of size $\sigma|\log \sigma| / \sqrt{z}$: compare with linearized equation on small time intervals + Markov property
\triangleright Escape from annulus $\sigma|\log \sigma| / \sqrt{z} \leqslant\|\zeta\| \leqslant \sqrt{z}$: use polar coordinates and averaging
\triangleright To combine the two regimes : use Laplace transforms

