Scaling limit for a stochastic Lokta-Volterra process

Grégoire Panel

Institut Denis Poisson - Université d'Orléans

22 mai 2022

Motivation

• Stochastic cyclic Lokta-Volterra system with *N* particles distributed over 3 species : hen-fox-viper, which are prey/predators of one another.

Motivation

- Stochastic cyclic Lokta-Volterra system with *N* particles distributed over 3 species : hen-fox-viper, which are prey/predators of one another.
- $N \longrightarrow +\infty$: what happens on $\begin{cases} \text{finite time scales?} \\ \text{long time scales?} \end{cases}$

Modelling

N indiscernable particles moving over a network of 3 sites in a circular way. Let x_i =proportion of particules on the site i, and $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$. So $\mathbf{x} \in \Sigma$ (simplex of \mathbb{R}^3).

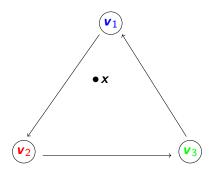


FIGURE - Representation of the composition of the system

- $(\boldsymbol{X}_t^N)_{t\geq 0}$ is a Markov jump process on a finite set.
- ullet Jump of a particle from i to i+1 with the following jump rate :

$$au_{\{i
ightarrow i+1\}}^{N} = N x_i^{N} ig(a + N x_{i+1}^{N} ig), ext{ where } a \geq 0.$$

- $(\boldsymbol{X}_t^N)_{t\geq 0}$ is a Markov jump process on a finite set.
- ullet Jump of a particle from i to i+1 with the following jump rate :

$$au_{\{i
ightarrow i+1\}}^{N} = N x_i^{N} ig(a + N x_{i+1}^{N} ig), ext{ where } a \geq 0.$$

Case a = 0: Interaction between particles

$$\tau_{\{i \to i+1\}}^{N} = N^2 x_i^N x_{i+1}^{N}.$$

If $x_i(t_0) = 0$: then for $t \ge t_0$ the site j is no longer filled.

- $(\boldsymbol{X}_t^N)_{t\geq 0}$ is a Markov jump process on a finite set.
- Jump of a particle from i to i + 1 with the following jump rate :

$$au_{\{i
ightarrow i+1\}}^{N} = N x_i^{N} ig(a + N x_{i+1}^{N} ig), ext{ where } a \geq 0.$$

Case a = 0: Interaction between particles

$$\tau^{N}_{\{i \to i+1\}} = N^2 x^{N}_{i} x^{N}_{i+1}.$$

If $x_i(t_0) = 0$: then for $t \ge t_0$ the site j is no longer filled.

Consequence: $\mathbf{X}_t^N \xrightarrow[t \to +\infty]{} \mathbf{v}_i$ a.s. for a certain i.

Simulation for a = 0

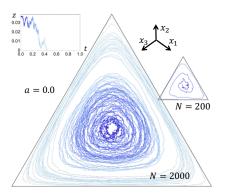


FIGURE – Trajectory (\boldsymbol{X}_t^N) for a = 0.

- $(X_t^N)_{t\geq 0}$ is a Markov jump process.
- ullet Jump of a particle from i to i+1 with the following jump rate :

$$au_{\{i
ightarrow i+1\}}^{ extsf{N}} = extsf{N} x_i^{ extsf{N}} ig(extsf{a} + extsf{N} x_{i+1}^{ extsf{N}} ig), ext{ where } extsf{a} \geq 0.$$

Case $a \gg 1$: No interaction between particles

$$\tau^{N}_{\{i\rightarrow i+1\}}=a(Nx^{N}_{i}).$$

In this case, the particles are moving independantly, each one juming at rate : a.

- $(X_t^N)_{t>0}$ is a Markov jump process.
- Jump of a particle from i to i + 1 with the following jump rate :

$$au_{\{i
ightarrow i+1\}}^{ extit{N}} = extit{N} x_i^{ extit{N}} ig(extit{a} + extit{N} x_{i+1}^{ extit{N}} ig), ext{ where } extit{a} \geq 0.$$

Case $a \gg 1$: No interaction between particles

$$\tau_{\{i\to i+1\}}^N=a(Nx_i^N).$$

In this case, the particles are moving independantly, each one juming at rate : a.

Large numbers law : $m{X}_t^N \underset{t \to +\infty}{\longrightarrow} \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ a.s.

Simulation for a > 0

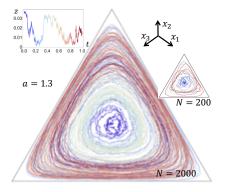


FIGURE – Trajectory (\boldsymbol{X}_{t}^{N}) for a = 1.3.

Asymptotic behaviour

 L_N is the Markov generator of the process with N particles. For $g \in \mathcal{C}^2(S)$:

$$L_{N}g \underset{N \to +\infty}{\approx} N \mathcal{L}_{0}g + \mathcal{L}_{1}g.$$

- ullet $\mathcal{L}_0 = oldsymbol{v}_0 \cdot
 abla$, with $oldsymbol{v}_0 \in \mathcal{C}^1(\Sigma, \mathbb{R}^3)$.
- \mathcal{L}_1 : 2-order elliptic operator (drift+diffusion).

• For (x_s) satisfying $\dot{x}_s = v_0(x_s) : z(x) = 27(x_1x_2x_3)$ is constant.

- For (x_s) satisfying $\dot{x}_s = v_0(x_s)$: $z(x) = 27(x_1x_2x_3)$ is constant.
- $z(x) \in [0,1]$: parameter of homogeneity.

- For (x_s) satisfying $\dot{x}_s = v_0(x_s)$: $z(x) = 27(x_1x_2x_3)$ is constant.
- $z(x) \in [0,1]$: parameter of homogeneity.

FIGURE – Level lines of z on Σ .

- For (x_s) satisfying $\dot{x}_s = \mathbf{v}_0(x_s)$: $z(\mathbf{x}) = 27(x_1x_2x_3)$ is constant.
- $z(x) \in [0,1]$: parameter of homogeneity.

FIGURE – Level lines of z on Σ .

• 4 stationnary points : $\{\boldsymbol{v}_1, \, \boldsymbol{v}_2, \, \boldsymbol{v}_3\}$, and $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

The averaged operator $\overline{\mathcal{L}}_1$

For $T(z_0)$ the period of rotation of (x_t) over $\{z(x) = z_0\}$

$$(\overline{\mathcal{L}}_1 f) \circ z(\mathbf{x}_0) = \frac{1}{T(z_0)} \int_0^{T(z_0)} \mathcal{L}_1(f \circ z)(\mathbf{x}_s) ds.$$

The averaged operator $\overline{\mathcal{L}}_1$

For $T(z_0)$ the period of rotation of (x_t) over $\{z(x) = z_0\}$

$$(\overline{\mathcal{L}}_1 f) \circ z(\mathbf{x}_0) = \frac{1}{T(z_0)} \int_0^{T(z_0)} \mathcal{L}_1(f \circ z)(\mathbf{x}_s) ds.$$

We obtain $\overline{\mathcal{L}}_1 = \frac{b}{b} \partial_z + \frac{\sigma^2}{2} \partial_z^2$, where $b, \sigma \in \mathcal{C}([0,1])$.

The averaged operator $\overline{\mathcal{L}}_1$

For $T(z_0)$ the period of rotation of (x_t) over $\{z(x) = z_0\}$

$$(\overline{\mathcal{L}}_1 f) \circ z(\mathbf{x}_0) = \frac{1}{T(z_0)} \int_0^{T(z_0)} \mathcal{L}_1(f \circ z)(\mathbf{x}_s) ds.$$

We obtain $\overline{\mathcal{L}}_1 = \frac{b}{\partial_z} + \frac{\sigma^2}{2} \partial_z^2$, where $\frac{b}{\partial_z}$, $\sigma \in \mathcal{C}([0,1])$.

Our aim : prove, in a certain meaning, that for $f \in \mathcal{C}^2([0,1])$

$$L_{N}(f \circ z) \underset{N \to \infty}{\approx} (\overline{\mathcal{L}}_{1}f) \circ z,$$

• Consider the process $Z_t^N = z(\boldsymbol{X}_t^N)$ for $t \in [0, \tau]$.

- Consider the process $Z_t^N = z(\boldsymbol{X}_t^N)$ for $t \in [0, \tau]$.
- $\mathbb{D}([0,\tau],[0,1])$: endowed with Skorokhod metric.

- Consider the process $Z_t^N = z(\boldsymbol{X}_t^N)$ for $t \in [0, \tau]$.
- $\mathbb{D}([0,\tau],[0,1])$: endowed with Skorokhod metric.
- Recall $\overline{\mathcal{L}}_1 = \frac{b}{b} \partial_z + \frac{\sigma^2}{2} \partial_z^2$.

- Consider the process $Z_t^N = z(\boldsymbol{X}_t^N)$ for $t \in [0, \tau]$.
- $\mathbb{D}([0,\tau],[0,1])$: endowed with Skorokhod metric.
- ullet Recall $\overline{\mathcal{L}}_1 = {\color{red} b}\,\partial_z + {\color{red} rac{\sigma^2}{2}}\,\partial_z^2.$

Theorem

If $Z_0^N \Longrightarrow_{N \to \infty} z_0 \in [0,1]$, then $\mathbb{P}_{Z^N} \Longrightarrow_{N \to \infty} \mathbb{P}_Z$, satisfying $Z_0 = z_0$ a.s and the SDE

$$dZ_t = \frac{b}{(Z_t)} dt + \frac{\sigma(Z_t)}{dW_t},$$

where W is a Wiener process.

Relative compactness of (Z^N)

$$Z_t^N = A_t^N + M_t^N$$

where (A^N) is a finite variation process and (M^N) is a martingale.

Theorem: $(A^N)/(M^N)$ is relatively compact if $(A^N)/(\langle M^N \rangle)$ satisfy the Aldous criterion: $\forall \, \varepsilon > 0, \forall \, \eta > 0, \exists \, \delta > 0, \, N_0 \in \mathbb{N}$,

$$\sup_{N\geq N_0}\sup_{S,S'\text{ stopping times}\,;\,S\leq S'\leq \delta}\mathbb{P}\big(|A_{S'}^N-A_S^N|>\varepsilon\big)\leq \eta.$$

Relative compactness of (Z^N)

$$Z_t^N = A_t^N + M_t^N$$

where (A^N) is a finite variation process and (M^N) is a martingale.

Theorem: $(A^N)/(M^N)$ is relatively compact if $(A^N)/(\langle M^N \rangle)$ satisfy the Aldous criterion: $\forall \, \varepsilon > 0, \forall \, \eta > 0, \exists \, \delta > 0, \, N_0 \in \mathbb{N}$,

$$\sup_{\mathit{N} \geq \mathit{N}_0} \sup_{\mathit{S},\mathit{S}'} \sup_{\mathit{stopping times}} \mathbb{P} \big(|\mathit{A}_{\mathit{S}'}^{\mathit{N}} - \mathit{A}_{\mathit{S}}^{\mathit{N}}| > \varepsilon \big) \leq \eta.$$

 \Longrightarrow For (\mathbb{P}_{Z^N}) : existence of a limit point \mathbb{P}_Z .

Relative compactness of (Z^N)

$$Z_t^N = A_t^N + M_t^N$$

where (A^N) is a finite variation process and (M^N) is a martingale.

Theorem: $(A^N)/(M^N)$ is relatively compact if $(A^N)/(\langle M^N \rangle)$ satisfy the Aldous criterion: $\forall \varepsilon > 0, \forall \eta > 0, \exists \delta > 0, N_0 \in \mathbb{N}$,

$$\sup_{\mathit{N} \geq \mathit{N}_0} \sup_{\mathit{S},\mathit{S}'} \sup_{\mathit{stopping times}} \mathbb{P} \big(|\mathit{A}_{\mathit{S}'}^{\mathit{N}} - \mathit{A}_{\mathit{S}}^{\mathit{N}}| > \varepsilon \big) \leq \eta.$$

 \Longrightarrow For (\mathbb{P}_{Z^N}) : existence of a limit point \mathbb{P}_Z .

Question: How to identify \mathbb{P}_Z ?

Identification of the limit

For $g \in \mathcal{C}^2(\Sigma)$, the following is a martingale for $\mathbb{P}_{\boldsymbol{X}^N}$:

$$M_t^{N,g}: \boldsymbol{x} \in \mathbb{D}\big([0,\tau],\Sigma\big) \longmapsto g(\boldsymbol{x}_t) - \int_0^t L_N g(\boldsymbol{x}_s) \,\mathrm{d}s.$$

Identification of the limit

For $g \in \mathcal{C}^2(\Sigma)$, the following is a martingale for $\mathbb{P}_{\boldsymbol{X}^N}$:

$$M_t^{N,g}: \boldsymbol{x} \in \mathbb{D}\big([0,\tau],\Sigma\big) \longmapsto g(\boldsymbol{x}_t) - \int_0^t L_N g(\boldsymbol{x}_s) \,\mathrm{d}s.$$

Question : For $f \in \mathcal{C}^2([0,1])$, is the following a martingale for \mathbb{P}_Z ?

$$M_t^f: z \in \mathbb{D}([0, \tau], [0, 1]) \longmapsto f(z_t) - \int_0^t \bar{\mathcal{L}}_1 f(z_s) \, \mathrm{d}s.$$

Convergence

• Consider $(\Omega, \mathcal{T}, \mathbb{P})$ on which \boldsymbol{X}^N and Z are defined and

$$Z^N \xrightarrow[N \to \infty]{} Z_t$$
 a.s.

If we prove that $\forall t \in [0, \tau]$,

$$\mathbb{E}\Big|M_t^{N,(f\circ z)}(\boldsymbol{X}^N)-M_t^f(Z)\Big|\underset{N\to+\infty}{\longrightarrow}0,$$

then (M^f) is a martingale for \mathbb{P}_Z .

Two lemmas

- $(\mathbf{x}_t)_{t\geq 0}$ trajectory over Σ satisfying $\dot{\mathbf{x}}_t = \mathbf{v}_0(\mathbf{x}_t)$ for $t\geq 0$.
- $T_N = \ln \circ \ln N$, satisfying : $\frac{1}{N} \ll \frac{T_N}{N} \ll 1$.

Two lemmas

- $(\mathbf{x}_t)_{t\geq 0}$ trajectory over Σ satisfying $\dot{\mathbf{x}}_t = \mathbf{v}_0(\mathbf{x}_t)$ for $t\geq 0$.
- $T_N = \text{In} \circ \text{In } N$, satisfying : $\frac{1}{N} \ll \frac{T_N}{N} \ll 1$.

Lemma

For $(\boldsymbol{X}_t^N)_{t\geq 0}$ with generator L_N , satisfying $\boldsymbol{X}_0^N=\boldsymbol{x}_0$ a.s

$$\sup_{\boldsymbol{x}_0 \in \boldsymbol{\Sigma}} \sup_{t \in [0,T_N]} \mathbb{E} \big\| \boldsymbol{X}_{t/N}^N - \boldsymbol{x}_t \big\| \underset{N \to \infty}{\longrightarrow} 0.$$

Two lemmas

- $(\mathbf{x}_t)_{t\geq 0}$ trajectory over Σ satisfying $\dot{\mathbf{x}}_t = \mathbf{v}_0(\mathbf{x}_t)$ for $t\geq 0$.
- $T_N = \text{In} \circ \text{In } N$, satisfying : $\frac{1}{N} \ll \frac{T_N}{N} \ll 1$.

Lemma

For $(\boldsymbol{X}_t^N)_{t\geq 0}$ with generator L_N , satisfying $\boldsymbol{X}_0^N=\boldsymbol{x}_0$ a.s

$$\sup_{\boldsymbol{x}_0 \in \boldsymbol{\Sigma}} \sup_{t \in [0,T_N]} \mathbb{E} \big\| \boldsymbol{X}_{t/N}^N - \boldsymbol{x}_t \big\| \underset{N \to \infty}{\longrightarrow} 0.$$

Lemma

$$\sup_{\mathbf{x}_0 \in \Sigma} \left| \frac{1}{T_N} \int_0^{T_N} \mathcal{L}_1(f \circ z)(\mathbf{x}_s) \, \mathrm{d}s - \left(\overline{\mathcal{L}}_1 f \right) \circ z(\mathbf{x}_0) \right| \underset{N \to \infty}{\longrightarrow} 0.$$

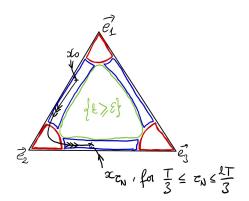
Second lemma : idea of the proof

• $T(z_0) = 3|\ln z_0|$ as $z_0 \to 0^+$: the apparent mixing time diverges.

Second lemma: idea of the proof

- $T(z_0) = 3|\ln z_0|$ as $z_0 \to 0^+$: the apparent mixing time diverges.
- $T(z_0)$ diverges "because" e_1, e_2, e_3 are stationnary for \mathbf{v}_0 , but $T_i^{i+1}(z_0)$ =time spent in corridor between \mathbf{e}_i and \mathbf{e}_{i+1} is bounded.

Second lemma: idea of the proof



- · Time in blue area: bounded
- . Time in red area: -> +00 as &> 0

Second lemma: idea of the proof

- $T(z_0) = 3|\ln z_0|$ as $z_0 \to 0^+$: the apparent mixing time diverges.
- $T(z_0)$ diverges "because" e_1, e_2, e_3 are stationnary for \mathbf{v}_0 , but $T_i^{i+1}(z_0)$ =time spent in corridor between \mathbf{e}_i and \mathbf{e}_{i+1} is bounded.
- In particular

$$\frac{1}{T(Z_0)} \int_0^{T(z_0)} h(\boldsymbol{x}_s) \, \mathrm{d}s \underset{z_0 \to 0^+}{\longrightarrow} \frac{1}{3} \sum_{i=1,2,3} h(\boldsymbol{e}_i).$$

For $h = \mathcal{L}_1(f \circ z) : h(\boldsymbol{e}_i) = 0$: does not depend on i.

 T_i^{i+1} corresponds to the mixing time for z_0 small.

SDE and boundary points

$$ig(M_t^fig)$$
 being a martingale for $f\in\mathcal{C}^2ig([0,1]ig)$,

$$dZ_t = b(Z_t) dt + \sigma(Z_t) dW_t.$$

SDE and boundary points

 $ig(M_t^fig)$ being a martingale for $f\in\mathcal{C}^2ig([0,1]ig)$,

$$dZ_t = b(Z_t) dt + \sigma(Z_t) dW_t.$$

 \Longrightarrow Uniqueness of the solution as long as $Z_t \in]0,1[$.

SDE and boundary points

 $ig(M_t^fig)$ being a martingale for $f\in\mathcal{C}^2ig([0,1]ig)$,

$$dZ_t = b(Z_t) dt + \sigma(Z_t) dW_t.$$

 \implies Uniqueness of the solution as long as $Z_t \in]0,1[$.

Further questions:

- How do (Z_t) behaves at the points $\{0,1\}$?
- Is (Z_t) a Feller process?

Operator $\mathcal{L}f = b \partial_z f + \frac{\sigma^2}{2} \partial_z^2 f$, where $b, \sigma \in \mathcal{C}(]0,1[)$ and $\sigma > 0$, defined over

$$\mathcal{D}(\mathcal{L}) = \big\{ f \in \mathcal{C}(\, [0,1] \,) \cap \mathcal{C}^2(\,]0,1[\,),\, \mathcal{L}f \in \mathcal{C}(\, [0,1] \,) \big\}.$$

Operator $\mathcal{L}f = b\,\partial_z f + \frac{\sigma^2}{2}\,\partial_z^2 f$, where $b, \sigma \in \mathcal{C}(]0,1[)$ and $\sigma > 0$, defined over

$$\mathcal{D}(\mathcal{L}) = \big\{ f \in \mathcal{C}([0,1]) \cap \mathcal{C}^2(]0,1[), \, \mathcal{L}f \in \mathcal{C}([0,1]) \big\}.$$

Then

$$\mathcal{L} = \frac{\mathrm{d}}{\mathrm{d}m} \frac{\mathrm{d}}{\mathrm{d}p},$$

where $m, p \in \mathcal{C}([0, 1])$.

For $r \in [0, 1[, x \in \{0, 1\}, let]]$

$$\tau_{\rm in} = \int_r^{\mathsf{x}} p \, \mathrm{d}m, \quad \tau_{\rm out} = \int_r^{\mathsf{x}} m \, \mathrm{d}p.$$

For $r \in]0,1[, x \in \{0,1\}, let$

$$\tau_{\rm in} = \int_r^{\mathsf{x}} p \, \mathrm{d}m, \quad \tau_{\rm out} = \int_r^{\mathsf{x}} m \, \mathrm{d}p.$$

Then the boundary x is said to be

$$\begin{array}{ll} \textbf{regular} & \text{if } \tau_{\rm in} < \infty \text{ and } \tau_{\rm out} < \infty \\ & \textbf{exit} & \text{if } \tau_{\rm in} < \infty \text{ and } \tau_{\rm out} = \infty \\ \\ \textbf{entrance} & \text{if } \tau_{\rm in} = \infty \text{ and } \tau_{\rm out} < \infty \\ \\ \textbf{(natural } & \text{if } \tau_{\rm in} = \infty \text{ and } \tau_{\rm out} = \infty.) \\ \end{array}$$

• If \mathbf{x} is **regular**, for $q \in [0,1]$:

$$\mathcal{D}_{\mathbf{x}}(\mathcal{L}) = \left\{ f \in \mathcal{D}(\mathcal{L}), \ q \, \mathcal{L}f(\mathbf{x}) = (-1)^{\mathbf{x}} (1-q) \frac{\mathrm{d}f}{\mathrm{d}\mathbf{p}}(\mathbf{x}) \right\}.$$

• If x is exit :

$$\mathcal{D}_{\mathbf{x}}(\mathcal{L}) = \{ f \in \mathcal{D}(\mathcal{L}), \, \mathcal{L}f(\mathbf{x}) = 0 \}.$$

• If x is entrance/(natural) :

$$\mathcal{D}_{\mathbf{v}}(\mathcal{L}) = \mathcal{D}(\mathcal{L}).$$

Theorem: $(\mathcal{L}, \mathcal{D}_0(\mathcal{L}) \cap \mathcal{D}_1(\mathcal{L}))$ generates Feller process over [0, 1].

Boundary points for the SDE associated with $\bar{\mathcal{L}}_1$

For the SDE satisfied by (Z_t) :

• z = 1 is **entrance** for all $a \ge 0$.

```
• z = 0 is \begin{cases} \mathbf{exit} \text{ for } a = 0 \\ \mathbf{regular} \text{ for } a \in ]0,1[ \ (*) \\ \mathbf{entrance} \text{ for } a \geq 1 \ (*). \end{cases}
```

Boundary points for the SDE associated with $\bar{\mathcal{L}}_1$

For the SDE satisfied by (Z_t) :

• z = 1 is **entrance** for all $a \ge 0$.

•
$$z = 0$$
 is
$$\begin{cases} \mathbf{exit} \text{ for } a = 0 \\ \mathbf{regular} \text{ for } a \in]0,1[\ (*) \\ \mathbf{entrance} \text{ for } a \geq 1 \ (*). \end{cases}$$

Problem: If a > 0, then for $f \in C^2([0,1])$:

$$\bar{\mathcal{L}}_1 f(z=0) = \mathbf{0}$$
, and $\frac{\mathrm{d}f}{\mathrm{d}p}(z=0) = \mathbf{0}$,

so $C^2([0,1])$ is not a core for $\bar{\mathcal{L}}_1$.

• For $1 \ll a_N \ll N$, averaged operator :

$$\bar{\mathcal{L}}_1 f = v(z) \partial_z f$$
,

where $v \in \mathcal{C}^1(\]0,1]$).

• For $1 \ll a_N \ll N$, averaged operator :

$$\bar{\mathcal{L}}_1 f = v(z) \partial_z f$$
,

where $v \in \mathcal{C}^1(\]0,1]$).

ullet Then $\mathbb{P}_{Z^N}\Longrightarrow \mathbb{P}_Z$ which satisfies $\dot{Z}_t=v(Z_t)$.

• For $1 \ll a_N \ll N$, averaged operator :

$$\bar{\mathcal{L}}_1 f = v(z) \partial_z f$$
,

where $v \in \mathcal{C}^1(\]0,1]$).

ullet Then $\mathbb{P}_{Z^N}\Longrightarrow \mathbb{P}_Z$ which satisfies $\dot{Z}_t=v(Z_t)$.

Problem: Solution of this ODE not unique.

• For $1 \ll a_N \ll N$, averaged operator :

$$\bar{\mathcal{L}}_1 f = v(z) \partial_z f$$
,

where $v \in \mathcal{C}^1(\]0,1]$).

• Then $\mathbb{P}_{Z^N} \Longrightarrow \mathbb{P}_Z$ which satisfies $\dot{Z}_t = v(Z_t)$.

Problem: Solution of this ODE not unique.

Interpretation : If $L_Ng(\mathbf{v}_i) := 0$, this modification is not detected for $g = f \circ z$ with $f \in \mathcal{C}^2([0,1])$.

An attempt

- For $g \in \mathcal{C}^2(\Sigma)$, the sequence of laws of $M^{N,g}(\boldsymbol{X}^N)$ is relatively compact.
- On $(\Omega, \mathcal{T}, \mathbb{P})$ where $(Z_t^N) \underset{N \to \infty}{\longrightarrow} (Z_t)$ a.s, does $M^{N,g}(\boldsymbol{X}^N)$ converge in L^1 ?

$$M_t^{N,g}(\boldsymbol{X}^N) = \left(g(\boldsymbol{X}_t^N) - \int_0^t N\mathcal{L}_0 g(\boldsymbol{X}_s^N) \, \mathrm{d}s\right) - \int_0^t \left(L_N - N\mathcal{L}_0 g\right)(\boldsymbol{X}_s^N) \, \mathrm{d}s$$

$$\begin{split} g(\boldsymbol{X}_t^N) - \int_0^t N \mathcal{L}_0 g(\boldsymbol{X}_s^N) \, \mathrm{d}s &\underset{N \to \infty}{\longrightarrow} \bar{g}(Z_t) \text{ in } L^1 \boldsymbol{?} \\ \int_0^t \big(L_N - N \mathcal{L}_0 g \big)(\boldsymbol{X}_s^N) \, \mathrm{d}s &\underset{N \to \infty}{\longrightarrow} \int_0^t \overline{\mathcal{L}_1 g} \left(Z_s \right) \mathrm{d}s \text{ in } L^1. \end{split}$$

An attempt

If the previous is justified : $\bar{g}(Z_t) - \int_0^t \overline{\mathcal{L}_1 g}(Z_s) ds$ is a martingale.

Question : for $f \in \mathcal{D}(\overline{\mathcal{L}}_1)$ existence of $g \in \mathcal{C}^2(\Sigma)$ satisfying

$$egin{aligned} ar{g} &= f \ \overline{\mathcal{L}}_1 g &= \overline{\mathcal{L}}_1 f \ ? \end{aligned}$$

Advantage : $\overline{\mathcal{L}_1g}(z=0)\neq 0$.

Conclusion

- Scaling limit = slow/fast dynamics.
- Other scalings : $a_N \ll 1$ and $a_N \gg 1$.
- ullet Dynamics generalized : $D \geq 1$ sites, and jump rate

$$\tau_{i\to j}^{N}(\mathbf{x})=c_{ij}\,\eta(x_i)\big(a_j+N\eta(x_j)\big),$$

where $\eta \in \mathcal{C}^1([0,1])$ such that $\eta(0)=0$ and $\eta'>0$, and $c_{ij}\geq 0,\ a_j\geq 0.$