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Abstract

The slow drift (with speed ε) of a parameter through a pitchfork bifurcation point,
known as the dynamic pitchfork bifurcation, is characterized by a significant delay of
the transition from the unstable to the stable state. We describe the effect of an addi-
tive noise, of intensity σ, by giving precise estimates on the behaviour of the individual
paths. We show that until time

√
ε after the bifurcation, the paths are concentrated in

a region of size σ/ε1/4 around the bifurcating equilibrium. With high probability, they
leave a neighbourhood of this equilibrium during a time interval [

√
ε, c
√
ε|log σ| ], after

which they are likely to stay close to the corresponding deterministic solution. We
derive exponentially small upper bounds for the probability of the sets of exceptional
paths, with explicit values for the exponents.
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1 Introduction

Physical systems are often described by ordinary differential equations (ODEs) of the form

dx

ds
= f(x, λ), (1.1)

where x is the state of the system, λ a parameter, and s denotes time. The model (1.1)
may however be too crude, since it neglects all kinds of perturbations acting on the system.
We are interested here in the combined effect of two perturbations: a slow drift of the
parameter, and an additive noise.

A slowly drifting parameter λ = εs, (with ε� 1), may model the deterministic change
in time of some exterior influence, such as the climate acting on an ecosystem or a magnetic
field acting on a ferromagnet. Obviously, nontrivial dynamics can only be expected when
λ is allowed to vary by an amount of order 1, and thus the system has to be considered
on the time scale ε−1. This is usually done by introducing the slow time t = εs, which
transforms (1.1) into the singularly perturbed equation

ε
dx

dt
= f(x, t). (1.2)

It is known that solutions of this system tend to stay close to stable equilibrium branches
of f [Gr, Ti], see Fig. 1a. New, and sometimes surprising phenomena occur when such an
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Figure 1. Solutions of the slowly time-dependent equation (1.2) represented in the (t, x)-
plane. (a) Stable case: A stable equilibrium branch x?(t) attracts nearby solutions xdett .
Two solutions with different initial conditions are shown. They converge exponentially fast
to each other, as well as to a neighbourhood of order ε of x?(t). (b) Pitchfork bifurcation:
The stable equilibrium x = 0 becomes unstable at t = 0 (broken line) and expels two
stable equilibrium branches ±x?(t). A solution xdett is shown, which is attracted by x = 0,
and stays close to the origin for a finite time after the bifurcation. This phenomenon is
known as bifurcation delay.

equilibrium branch undergoes a bifurcation. These phenomena are usually called dynamic
bifurcations [Ben]1. In the case of the Hopf bifurcation, when the equilibrium gets unstable
while expelling a stable periodic orbit, the bifurcation is substantially delayed: solutions
of (1.2) track the unstable equilibrium (for a non-vanishing time interval in the limit
ε → 0) before jumping to the limit cycle [Sh, Ne]. A similar phenomenon exists for the
dynamic pitchfork bifurcation of an equilibrium without drift, the simplest example being
f(x, t) = tx − x3 (Fig. 1b). The delay has been observed experimentally, for instance, in
lasers [ME] and in a damped rotating pendulum [BK].

These phenomena have the advantage of providing a genuinely dynamic point of view
for the concept of a bifurcation. Although one often says that a bifurcation diagram (rep-
resenting the asymptotic states of the system as a function of the parameter) is obtained
by varying the control parameter λ, the impatient experimentalist taking this literally may
have the surprise to discover unstable stationary states of the system (s)he investigates.
The asymptotic state of the system (1.1) with slowly varying parameter λ(εs) = λ(t) may
depend not only on the initial condition (x0, t0), but also on the history of variation of the
parameter {λ(t)}t>t0 .

The perturbation of (1.1) by additive noise can be modeled by a stochastic differential
equation (SDE) of the form

dxs = f(xs, λ) ds+ σ dWs, (1.3)

where Ws denotes the standard Wiener process, and σ measures the noise intensity. A
widespread approach is to analyse the probability density of xs, which satisfies the Fokker–
Planck equation. In particular, if −f can be written as the gradient of a potential function
F , then there is a unique stationary density p(x, λ) = e−F (x,λ)/σ2

/N , where N is the
normalization. This formula shows that for small noise intensity, the stationary density is
sharply peaked around stable equilibria of f .

1Unfortunately, the term “dynamical bifurcation” is used in a different sense in the context of random
dynamical systems, namely to describe a bifurcation of the family of invariant measures as opposed to a
“phenomenological bifurcation”, see for instance [Ar].
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That method has, however, two major limitations. The first one is that the Fokker–
Planck equation is difficult to solve, except in the linear and in the gradient case. The
second limitation is more serious: the density gives no information on correlations in
time, and even when the density is strongly localized, individual paths can perform large
excursions. This is why other approaches are important. A classical one is based on the
computation of first exit times from the neighbourhood of stable equilibria [FW, FJ].

The effect of bifurcations has been studied more recently by methods based on the
concept of random attractors [CF94, Schm, Ar]. In particular, Crauel and Flandoli showed
that according to their definition, “Additive noise destroys a pitchfork bifurcation” [CF98].
The physical interpretation of random attractors is, however, not straightforward, and
alternative characterizations of stochastic bifurcations are desirable. In the same way a
slowly varying parameter helps our understanding of bifurcations in the deterministic case,
it can provide a new point of view in the case of random dynamical systems.

Let us consider the combined effect of a slowly drifting parameter and additive noise on
the ODE (1.1). We will focus on the case of a pitchfork bifurcation, where the questions
How does the additive noise affect the bifurcation delay? and Where does the path go
after crossing the bifurcation point? are of major physical interest. The situation of the
drift term f in (1.3) depending explicitly on time is considerably more difficult than the
autonomous case, and thus much less understood. One can expect, however, that a slow
time dependence makes the problem accessible to perturbation theory, and that one may
take advantage of techniques developed to study singularly perturbed equations such as
(1.2). With λ = εs, Equation (1.3) becomes

dxs = f(xs, εs) ds+ σ dWs. (1.4)

If we introduce again the slow time t = εs, the Brownian motion is rescaled, resulting in
the SDE

dxt =
1

ε
f(xt, t) dt+

σ√
ε

dWt. (1.5)

Our analysis of (1.5) is restricted to one-dimensional x. The noise intensity σ should be
considered as a function of ε. Indeed, since we now consider the equation on the time
scale ε−1, a constant noise intensity would lead to an infinite spreading of trajectories as
ε→ 0. In the case of the pitchfork bifurcation, we will need to assume that σ �

√
ε.

Various particular cases of equation (1.5) have been studied before, from a mathemat-
ically non-rigorous point of view. In the linear case f(x, λ) = λx, the distribution of first
exit times was investigated and compared with experiments in [TM, SMC, SHA], while
[JL] derived a formula for the last crossing of zero. In the case f(x, λ) = λx − x3, [Ga]
studied the dependence of the delay on ε and σ numerically, while [Ku] considered the
associated Fokker–Planck equation, the solution of which she approximated by a Gaussian
ansatz.

In the present work, we analyse (1.5) for a general class of odd functions f(x, λ) under-
going a pitchfork bifurcation. We use a different approach, based on a precise control of
the whole paths {xs}t06s6t of the process. The results thus contain much more information
than the probability density. It also turns out that the technique we use allows to deal
with nonlinearities in quite a natural way. Our results can be summarized in the following
way (see Fig. 2):

• Solutions of the deterministic equation (1.2) starting near a stable equilibrium branch
of f are known to reach a neighbourhood of order ε of that branch in a time of order
ε|log ε|. We show that the paths of the SDE (1.5) with the same initial condition
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Figure 2. A typical path xt of the stochastic differential equation (1.5) near a pitchfork
bifurcation. We prove that with probability exponentially close to 1, the path has the
following behaviour. For t0 6 t 6

√
ε, it stays in a strip B(h) constructed around the

deterministic solution with the same initial condition. After t =
√
ε, it leaves the domain

D at a random time τ = τD, which is typically of the order
√
ε|log σ|. Then it stays

(up to times of order 1 at least) in a strip Aτ (h) constructed around the deterministic
solution xdet,τt starting at time τ on the boundary of D. The widths of B(h) and Aτ (h)
are proportional to a parameter h satisfying σ � h�

√
ε.

are typically concentrated in a neighbourhood of order σ of the deterministic solution
(Theorem 2.4).

• A particular solution of the deterministic equation (1.2) is known to exist in a neigh-
bourhood of order ε of each unstable equilibrium branch of f . Paths that start in a
neighbourhood of order σ of this solution are likely to leave that neighbourhood in a
time of order ε|log ε| (Theorem 2.6).

• When a pitchfork bifurcation occurs at x = 0, t = 0, the typical paths are concentrated
in a neighbourhood of order σ/ε1/4 of the deterministic solution with the same initial
condition up to time

√
ε (Theorem 2.10).

• After the bifurcation point, the paths are likely to leave a neighbourhood of order
√
t

of the unstable equilibrium before a time of order
√
ε|log σ| (Theorem 2.11).

• Once they have left this neighbourhood, the paths remain with high probability in a
region of size σ/

√
t around the corresponding deterministic solution, which approaches

a stable equilibrium branch of f like ε/t3/2 (Theorem 2.12).

These results show that the bifurcation delay, which is observed in the dynamical sys-
tem (1.2), is destroyed by additive noise as soon as the noise is not exponentially small.
Do they mean that the dynamic bifurcation itself is destroyed by additive noise? This
is mainly a matter of definition. On the one hand, we will see that independently of
the initial condition, the probability of reaching the upper, rather than the lower branch
emerging from the bifurcation point, is close to 1

2 . The asymptotic state is thus selected
by the noise, and not by the initial condition. Hence, the bifurcation is destroyed in the
sense of [CF98]. On the other hand, individual paths are concentrated near the stable
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equilibrium branches of f , which means that the bifurcation diagram will be made visible
by the noise, much more so than in the deterministic case. So we do observe a qualitative
change in behaviour when λ changes its sign, which can be considered as a bifurcation.

The precise statements and a discussion of their consequences are given in Section 2.
In Section 2.2, we analyse the motion near equilibrium branches away from bifurcation
points. The actual pitchfork bifurcation is discussed in Section 2.3. A few consequences
are derived in Section 2.4. Section 3 contains the proofs of the first two theorems on the
motion near nonbifurcating equilibria, while the proofs of the last three theorems on the
pitchfork bifurcation are given in Section 4.
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2 Statement of results

2.1 Preliminaries

We consider nonlinear SDEs of the form

dxt =
1

ε
f(xt, t) dt+

σ√
ε

dWt, xt0 = x0, (2.1)

where {Wt}t>t0 is a standard Wiener process on some probability space (Ω,F ,P). Initial
conditions x0 are always assumed to be square-integrable with respect to P and inde-
pendent of {Wt}t>t0 . All stochastic integrals are considered as Itô integrals, but note
that Itô and Stratonovich integrals agree for integrands depending only on time and ω.
Without further mentioning we always assume that f satisfies the usual (local) Lipschitz
and bounded-growth conditions which guarantee existence and (pathwise) uniqueness of a
(strong) solution {xt}t of (2.1). Under these conditions, there exists a continuous version
of {xt}t. Therefore we may assume that the paths ω 7→ xt(ω) are continuous for P-almost
all ω ∈ Ω.

We introduce the notation Pt0,x0 for the law of the process {xt}t>t0 , starting in x0

at time t0, and use Et0,x0 to denote expectations with respect to Pt0,x0 . Note that the
stochastic process {xt}t>t0 is an (inhomogeneous) Markov process. We are interested in
first exit times of xt from space–time sets. Let A ⊂ R × [t0, t1] be Borel-measurable.
Assuming that A contains (x0, t0), we define the first exit time of (xt, t) from A by

τA = inf
{
t ∈ [t0, t1] : (xt, t) 6∈ A

}
, (2.2)

and agree to set τA(ω) =∞ for those ω ∈ Ω which satisfy (xt(ω), t) ∈ A for all t ∈ [t0, t1].
For convenience, we shall call τA the first exit time of xt from A. Typically, we will
consider sets of the form A = {(x, t) ∈ R × [t0, t1] : g1(t) < x < g2(t)} with continuous
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functions g1 < g2. Note that in this case, τA is a stopping time2 with respect to the
canonical filtration of (Ω,F ,P) generated by {xt}t>t0 .

Before turning to the precise statements of our results, let us introduce some notations.
We shall use

• dye for y > 0 to denote the smallest integer which is greater than or equal to y, and
• y∨ z and y∧ z to denote the maximum or minimum, respectively, of two real numbers
y and z.

• By g(u) = O(u) we indicate that there exist δ > 0 and K > 0 such that g(u) 6 Ku for
all u ∈ [0, δ], where δ and K of course do not depend on ε or σ. Similarly, g(u) = O(u)
is to be understood as limu→0 g(u)/u = 0. From time to time, we write g(u) = OT (1)
as a shorthand for limT→0 sup0≤u≤T |g(u)| = 0.

Finally, let us point out that most estimates hold for small enough ε only, and often only
for P-almost all ω ∈ Ω. We will stress these facts only when confusion might arise.

2.2 Nonbifurcating equilibria

We start by considering the nonlinear SDE (2.1) in the case of f admitting a nonbifurcating
equilibrium branch. We will make the following assumptions.

Assumption 2.1. There exist an interval I = [0, T ] or [0,∞) and a constant d > 0 such
that the following properties hold:

• there exists a function x? : I → R , called equilibrium branch, such that

f(x?(t), t) = 0 ∀t ∈ I; (2.3)

• f is twice continuously differentiable with respect to x and t for |x − x?(t)| 6 d and
t ∈ I, with uniformly bounded derivatives. In particular, there exists a constant
M > 0 such that |∂xxf(x, t)| 6 2M in that domain;

• the linearization of f at x?(t), defined as

a(t) = ∂xf(x?(t), t), (2.4)

is bounded away from zero, that is, there exists a constant a0 > 0 such that

|a(t)| > a0 ∀t ∈ I. (2.5)

We need no additional assumption on σ in this section. However, the results are only
of interest for σ = Oε(1).

In the deterministic case σ = 0, the following result is known (see Fig. 1a):

Theorem 2.2 (Deterministic case [Ti, Gr]). Consider the equation

ε
dxt
dt

= f(xt, t). (2.6)

There are constants ε0, c0, c1 > 0, depending only on f , such that for 0 < ε 6 ε0,

• (2.6) admits a particular solution x̂det
t such that

|x̂det
t − x?(t)| 6 c1ε ∀t ∈ I; (2.7)

2For a general Borel-measurable set A, the first exit time τA is still a stopping time with respect to the
canonical filtration, completed by the null sets.
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• if |x0 − x?(0)| 6 c0 and a(t) 6 −a0 for all t ∈ I (that is, when x?(t) is a stable
equilibrium branch), then the solution xdet

t of (2.6) with initial condition xdet
0 = x0

satisfies
|xdet
t − x̂det

t | 6 |x0 − x̂det
0 | e−a0t/2ε ∀t ∈ I. (2.8)

Remark 2.3. The particular solution x̂det is often called slow solution or adiabatic solution
of Equation (2.6). It is not unique in general, as suggested by (2.8).

We return now to the SDE (2.1) with σ > 0. Let us first consider the stable case, that
is, we assume that a(t) 6 −a0 < 0 for all t ∈ I. We assume that at t = 0, xt starts at some
(deterministic) x0 sufficiently close to x?(0). Theorem 2.2 shows that the deterministic
solution xdet

t with the same initial condition xdet
0 = x0 reaches a neighbourhood of order ε

of x?(t) exponentially fast.
We are interested in the stochastic process yt = xt−xdet

t , which describes the deviation
due to noise from the deterministic solution xdet

t . It obeys the SDE

dyt =
1

ε

[
f(xdet

t + yt, t)− f(xdet
t , t)

]
dt+

σ√
ε

dWt, y0 = 0. (2.9)

We will prove that yt remains in a neighbourhood of 0 with high probability. It is instruc-
tive to consider first the linearization of (2.9) around y = 0, which has the form

dy0
t =

1

ε
ā(t)y0

t dt+
σ√
ε

dWt, (2.10)

where
ā(t) = ∂xf(xdet

t , t) = a(t) +O(ε) +O
(
|x0 − x?(0)| e−a0t/2ε

)
. (2.11)

Taking ε and |x0 − x?(0)| sufficiently small, we may assume that ā(t) is negative and
bounded away from zero. The solution of (2.10) with arbitrary initial condition y0

0 is
given by

y0
t = y0

0 eα(t)/ε +
σ√
ε

∫ t

0
eα(t,s)/ε dWs, α(t, s) =

∫ t

s
ā(u) du, (2.12)

where we write α(t, 0) = α(t) for brevity. Note that α(t, s) 6 −const(t − s) whenever
t > s. If y0

0 has variance v0 > 0, then y0
t has variance

v(t) = v0 e2α(t)/ε +
σ2

ε

∫ t

0
e2α(t,s)/ε ds. (2.13)

Since the first term decreases exponentially fast, the initial variance v0 is “forgotten” as
soon as e2α(t)/ε is small enough, which happens already for t > O(ε|log ε|). For y0

0 = 0,
(2.12) implies in particular that for any δ > 0,

P0,0
{
|y0
t | > δ

}
6 e−δ

2/2v(t), (2.14)

and thus the probability of finding y0
t , at any given t ∈ I, outside a strip of width much

larger than
√

2v(t) is very small.
Our first main result states that the whole path {xs}06s6t of the solution of the non-

linear equation (2.1) lies with high probability in a similar strip, centred around xdet
t . We

only need to make one concession: the width of the strip has to be bounded away from
zero. Therefore, we define the strip as

Bs(h) =
{

(x, t) ∈ R × I : |x− xdet
t | < h

√
ζ(t)

}
, (2.15)
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where

ζ(t) =
1

2|ā(0)|
e2α(t)/ε +

1

ε

∫ t

0
e2α(t,s)/ε ds. (2.16)

Here σ2ζ(t) can be interpreted as the variance (2.13) at time t of the process (2.12) starting
with initial variance v0 = σ2/(2|ā(0)|). We shall show in Lemma 3.1 that

ζ(t) =
1

2|a(t)|
+O(ε) +O

(
|x0 − x?(0)| e−a0t/2ε

)
. (2.17)

Let τBs(h) denote the first exit time of xt from Bs(h).

Theorem 2.4 (Stable case). There exist ε0, d0 and h0, depending only on f , such that
for 0 < ε 6 ε0, h 6 h0 and |x0 − x?(0)| 6 d0,

P0,x0
{
τBs(h) < t

}
6 C(t, ε) exp

{
−1

2

h2

σ2

[
1−O(ε)−O(h)

]}
, (2.18)

where

C(t, ε) =
|α(t)|
ε2

+ 2, (2.19)

and O(ε) and O(h) do not depend on t.

The proof, given in Section 3.1, is divided into two main steps. First, we show that
an estimate of the form (2.18), but without the term O(h), holds for the solution of the
linearized equation (2.10). Then we show that whenever |y0

s | < h
√
ζ(s) for 0 6 s 6 t, the

bound |ys| < h(1 +O(h))
√
ζ(s) almost surely holds for 0 6 s 6 t.

Remark 2.5. The result of the preceding theorem remains true when 1/2|ā(0)| in the
definition (2.16) of ζ(t) is replaced be an arbitrary ζ0, provided ζ0 > 0. The terms O(·) may
then depend on ζ0. Note that ζ(t) and v(t)/σ2 are both solutions of the same differential
equation εz′ = 2ā(t)z + 1, with possibly different initial conditions. If x0 − x?(0) = O(ε),
ζ(t) is an adiabatic solution (in the sense of Theorem 2.2) of the differential equation,
staying close to the equilibrium branch z? = 1/|2ā(t)|.

The estimate (2.18) has been designed for situations where σ � 1, and is useful for
σ � h � 1. We expect the exponent to be optimal in this case, but did not attempt to
optimize the prefactor C(t, ε), which leads to subexponential corrections. If we assume,
for instance, that σ = εq, q > 0, and take h = εp with 0 < p < q, (2.18) can be written as

P0,x0
{
τBs(h) < t

}
6 (t+ε2) exp

{
− 1

2ε2(q−p)

[
1−O(ε)−O(εp)−O(ε2(q−p)|log ε|)

]}
. (2.20)

The t-dependence of the prefactor is to be expected. It is due to the fact that as time
increases, the probability of xt escaping from a neighbourhood of xdet

t also increases, but
very slowly if σ is small. The estimate (2.18) shows that for a fraction γ of trajectories to
leave the strip Bs(h), we have to wait at least for a time tγ given by

|α(tγ)| = γε2 exp
{1

2

h2

σ2

[
1−O(ε)−O(h)

]}
− 2ε2, (2.21)

which is compatible with results on the autonomous case.
Let us now consider the unstable case, that is, we now assume that the linearization

a(t) = ∂xf(x?(t), t) satisfies a(t) > a0 > 0 for all t ∈ I. Theorem 2.2 shows the existence of
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a particular solution x̂det
t of the deterministic equation (2.6) such that |x̂det

t −x?(t)| 6 c1ε
for all t ∈ I. We define ā(t) = ∂xf(x̂det

t , t) = a(t) +O(ε) > 0 and α(t) =
∫ t

0 ā(s) ds.
The linearization of (2.1) around x̂det

t again admits a solution y0
t of the form (2.12).

Unlike in the stable case, the variance (2.13) grows exponentially fast (at least with ea0t/ε),
and thus one expects the probability of xt remaining close to x̂det

t to be small. Indeed, if
ρ > |y0

0|, then we have

P0,y00
{

sup
06s6t

|y0
s | < ρ

}
6 P0,y00

{
|y0
t | < ρ

}
=

∫ ρ−y00 eα(t)/ε

−ρ−y00 eα(t)/ε

e−x
2/2v(t)√

2πv(t)
dx 6

2ρ√
2πv(t)

,

(2.22)

which goes to zero as ρσ−1 e−α(t)/ε for t → ∞. In this estimate, however, we neglect all
trajectories which leave the interval (−ρ, ρ) before time t and come back. We will derive
a more precise estimate for the general, nonlinear case. This is the contents of the second
main result of this section. Let

Bu(h) =

{
(x, t) ∈ R × I : |x− x̂det

t | <
h√

2ā(t)

}
(2.23)

and denote by τBu(h) the first exit time of xt from Bu(h).

Theorem 2.6 (Unstable case). There exist ε0 and h0, depending only on f , such that for
all h 6 σ ∧ h0, all ε 6 ε0 and all x0 satisfying (x0, 0) ∈ Bu(h), we have

P0,x0
{
τBu(h) > t

}
6
√

e exp
{
−κσ

2

h2

α(t)

ε

}
, (2.24)

where κ = π
2e

(
1−O(h)−O(ε)

)
does not depend on t.

The proof, given in Section 3.2, is based on a partition of the interval [0, t] into small
intervals, and a comparison of the nonlinear equation with its linearization on each interval.

The above result shows that xt is unlikely to remain in Bu(h) as soon as t� εh2/σ2.
A major limitation of (2.24) is that it requires h 6 σ. Obtaining an estimate for larger h
is possible, but requires considerably more work. We will provide such an estimate in the
more difficult, but also more interesting case of the pitchfork bifurcation, see Theorem 2.11
below.

2.3 Pitchfork bifurcation

We now consider the SDE (2.1) in the case of f undergoing a pitchfork bifurcation. We
will assume the following.

Assumption 2.7. There exists a neighbourhood N0 of the origin (0, 0) such that

• f is three times continuously differentiable with respect to x and t in N0, and there
exists a constant M > 0 such that |∂xxxf(x, t)| 6 6M for all (x, t) ∈ N0;

• f(x, t) = −f(−x, t) for all (x, t) ∈ N0;
• f exhibits a supercritical pitchfork bifurcation at the origin, i.e.,

∂xf(0, 0) = 0, ∂txf(0, 0) > 0 and ∂xxxf(0, 0) < 0. (2.25)
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By rescaling x and t, we may and will assume that

∂xf(0, 0) = 0, ∂txf(0, 0) = 1 and ∂xxxf(0, 0) = −6 (2.26)

as in the standard case f(x, t) = tx− x3.
Note that the assumption that f be odd is not necessary for the existence of a pitchfork

bifurcation. However, the deterministic system behaves very differently if x = 0 is not
always an equilibrium. The most natural situation in which f(0, t) = 0 for all t is the
one where f is odd. The proofs below can easily be extended to the case where f is not
necessarily odd—provided f exhibits a supercritical pitchfork bifurcation with x(t) ≡ 0
being the equilibrium branch which becomes unstable at the bifurcation point.

Using (2.26), we find that the linearization of f at x = 0 satisfies

a(t) = ∂xf(0, t) = t+O(t2). (2.27)

A standard result of bifurcation theory [GH, IJ] states that under these assumptions, there
exists a neighbourhood N ⊂ N0 of (0, 0) in which the only solutions of f(x, t) = 0 are the
line x = 0 and the curves

x = ±x?(t), x?(t) =
√
t
[
1 + Ot(1)

]
, t > 0. (2.28)

If N is small enough, the equilibrium x = 0 is stable for t < 0 and unstable for t > 0,
while x = ±x?(t) are stable equilibria with linearization

a?(t) = ∂xf(x?(t), t) = −2t
[
1 + Ot(1)

]
. (2.29)

The only solutions of ∂xf(x, t) = 0 in N are the curves

x = ±x̄(t), x̄(t) =
√
t/3
[
1 + Ot(1)

]
, t > 0. (2.30)

If f is four times continuously differentiable, the terms Ot(1) in the last three equations
can be replaced by O(t).

We briefly state what is known for the deterministic equation

ε
dxt
dt

= f(xt, t), (2.31)

where we take an initial condition (x0, t0) ∈ N with x0 > 0 and t0 < 0, see Fig. 1b.
Observe that α(t, t0) =

∫ t
t0
a(s) ds is decreasing for t0 < t < 0 and increasing for t > 0.

Definition 2.8. The bifurcation delay is defined as

Π(t0) = inf
{
t > 0: α(t, t0) > 0

}
, (2.32)

with the convention Π(t0) =∞ if α(t, t0) < 0 for all t > 0, for which α(t, t0) is defined.

One easily shows that Π(t0) is differentiable for t0 sufficiently close to 0, and satisfies
limt0→0−Π(t0) = 0 and limt0→0−Π′(t0) = −1.

Theorem 2.9 (Deterministic case). Let xdet
t be the solution of (2.31) with initial condition

xdet
t0 = x0. Then there exist constants ε0, c0, c1 depending only on f , and times

t1 = t0 +O(ε|log ε|)
t2 = Π(t1) = Π(t0)−O(ε|log ε|)
t3 = Π(t0) +O(ε|log ε|)

(2.33)
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such that, if 0 < x0 6 c0, 0 < ε 6 ε0 and (xdet
t , t) ∈ N ,{

0 < xdet
t 6 c1ε eα(t,t1)/ε for t1 6 t 6 t2

|xdet
t − x?(t)| 6 c1ε for t > t3.

(2.34)

The proof is a straightforward consequence of differential inequalities, see for instance
[Ber, Propositions 4.6 and 4.8].

We now consider the SDE (2.1) for σ > 0. The results in this section are only inter-
esting for σ = O(

√
ε), while one of them (Theorem 2.11) requires a condition of the form

σ|log σ|3/2 = O(
√
ε) (where we have not tried to optimize the exponent 3/2).

Let us fix an initial condition (xt0 , t0) ∈ N with t0 < 0. For any T ∈ (0, |t0|), we can
apply Theorem 2.4 on the interval [t0,−T ] to show that |x−T | is likely to be at most of
order σ1−δ + c1ε eα(−T,t1)/ε for any δ > 0. We can also apply the theorem for t > T to
show that the curves ±x?(t) attract nearby trajectories. Hence there is no limitation in
considering the SDE (2.1) in a domain of the form |x| 6 d, |t| 6 T where d and T can
be taken small (independently of ε and σ of course!), with an initial condition x−T = x0

satisfying |x0| 6 d. From now on, we will always assume that

N = {(x, t) ∈ R 2 : |x| 6 d, |t| 6 T} (2.35)

for some d, T > 0.
We first show that xt is likely to remain small for −T 6 t 6

√
ε. Actually, it turns

out to be convenient to show that xt remains close to the solution x0 eα(t,−T )/ε of the
linearization of (2.31). We define the “variance-like” function

ζ(t) =
1

2|a(−T )|
e2α(t,−T )/ε +

1

ε

∫ t

−T
e2α(t,s)/ε ds. (2.36)

We shall show in Lemma 4.2 that for sufficiently small ε, there exist constants c± such
that

c−
|t|

6 ζ(t) 6
c+

|t|
for −T 6 t 6 −

√
ε, (2.37)

c−√
ε
6 ζ(t) 6

c+√
ε

for −
√
ε 6 t 6

√
ε. (2.38)

The function ζ(t) is used to define the strip

B(h) =
{

(x, t) ∈ [−d, d ]× [−T,
√
ε ] : |x− x0 eα(t,−T )/ε| < h

√
ζ(t)

}
. (2.39)

Let τB(h) denote the first exit time of xt from B(h).

Theorem 2.10 (Behaviour for t 6
√
ε ). There exist constants ε0 and h0, depending only

on f , T and d, such that for 0 < ε 6 ε0, h 6 h0
√
ε, |x0| 6 h/ε1/4 and −T 6 t 6

√
ε,

P−T,x0
{
τB(h) < t

}
6 C(t, ε) exp

{
−1

2

h2

σ2

[
1− r(ε)−O

(
h2

ε

)]}
(2.40)

where

C(t, ε) =
|α(t,−T )|+O(ε)

ε2
(2.41)

and r(ε) = O(ε) for −T 6 t 6 −
√
ε, and r(ε) = O(

√
ε) for −

√
ε 6 t 6

√
ε.
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The proof (given in Section 4.2) and the interpretation of this result are very close in
spirit to those of Theorem 2.4. The only difference lies in the kind of ε-dependence of the
error terms. The estimate (2.40) is useful when σ � h�

√
ε, and shows that the typical

spreading of paths around the deterministic solution will slowly grow until t =
√
ε, where

it is of order σ/ε1/4, see Fig. 2.
Let us now examine what happens for t >

√
ε. We first show that xt is likely to leave

quite soon a suitably defined region D containing the line x = 0. We define D = D(κ) by

D(κ) =
{

(x, t) ∈ [−d, d ]× [
√
ε, T ] :

1

x
f(x, t) > κa(t)

}
, (2.42)

where κ ∈ (0, 1) is a free parameter. The upper and lower boundary of D(κ) are given by
±x̃(t), where x̃(t) satisfies

x̃(t) =
√

1− κ− OT (1)
√
a(t). (2.43)

Later, we will assume κ ∈ (1/2, 2/3). This will simplify the analysis of the dynamics after
xt has left D(κ). The upper bound on κ implies x̄(t) 6 x̃(t) 6 x?(t), while the lower
bound guarantees that the solution of the corresponding deterministic equation does not
return to D(κ) once it has left this set, cf. Proposition 4.11 below.

Let τD(κ) denote the first exit time of xt from D(κ). Then we have the following result.

Theorem 2.11 (Escape from D(κ)). Choose κ ∈ (0, 2/3) and let (x0, t0) ∈ D(κ). Assume
that σ|log σ|3/2 = O(

√
ε). Then for t0 6 t 6 T ,

Pt0,x0
{
τD(κ) > t

}
6 C0 x̃(t)

√
a(t)
|log σ|
σ

(
1 +

α(t, t0)

ε

)
e−κα(t,t0)/ε√

1− e−2κα(t,t0)/ε
, (2.44)

where C0 > 0 is a (numerical) constant.

The proof of this result (given in Section 4.3) is by far the most involved of the present
work. We start by estimating, in a similar way as in Theorem 2.6, the first exit time
from a strip S of width slightly larger than σ/

√
a(s). The probability of returning to zero

after leaving S can be estimated; it is small but not exponentially small. However, the
probability of neither leaving D(κ) nor returning to zero is exponentially small. This fact
can be used to devise an iterative scheme that leads to the exponential estimate (2.44).

We point out that for any subset D′ ⊂ D(κ), we have the trivial estimate Pt0,x0{τD′ >
t} 6 Pt0,x0{τD(κ) > t}, and thus (2.44) also provides an upper bound for the first exit time
from smaller sets.

Let us finally consider what happens after the path has left D(κ) at time τ = τD(κ)

(with κ ∈ (1/2, 2/3)). First note that (2.43) immediately implies that for
√
ε 6 t 6 T and

|x| > x̃(t),

∂xf(x, t) 6 ã(t) = ∂xf(x̃(t), t) 6 −ηa(t) provided η 6 2− 3κ− OT (1). (2.45)

Let xdet,τ
t denote the solution of the deterministic equation (2.31) starting in x̃(t) at

time τ (the case where one starts at −x̃(t) is obtained by symmetry). We shall show in

Proposition 4.11 that xdet,τ
t always remains between x̃(t) and x?(t), and approaches x?(t)

according to

xdet,τ
t = x?(t)−O

( ε

t3/2

)
−O

(√
τ e−ηα(t,τ)/ε

)
. (2.46)
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Moreover, deterministic solutions starting at different times approach each other like

0 6 x
det,
√
ε

t − xdet,τ
t 6

(
xdet,

√
ε

τ − x̃(τ)
)

e−ηα(t,τ)/ε ∀t ∈ [τ, T ]. (2.47)

The linearization of f at xdet,τ
t satisfies

aτ (t) = ∂xf(xdet,τ
t , t) = a?(t) +O

(ε
t

)
+O

(
t e−ηα(t,τ)/ε

)
. (2.48)

For given τ , we construct a strip Aτ (h) around xdet,τ of the form

Aτ (h) =
{

(x, t) : τ 6 t 6 T, |x− xdet,τ
t | < h

√
ζτ (t)

}
, (2.49)

where the function ζτ (t) is defined by

ζτ (t) =
1

2|ã(τ)|
e2ατ (t,τ)/ε +

1

ε

∫ t

τ
e2ατ (t,s)/ε ds, ατ (t, s) =

∫ t

s
aτ (u) du, (2.50)

and satisfies

ζτ (t) =
1

2|a?(t)|
+O

( ε
t3

)
+O

(1

t
e−ηα(t,τ)/ε

)
, (2.51)

cf. Lemma 4.12. Let τAτ (h) denote the first exit time of xt from Aτ (h).

Theorem 2.12 (Approach to x?). Let κ ∈ (1/2, 2/3). Then there exist constants ε0 and
h0, depending only on f , T and d, such that for 0 < ε 6 ε0, h < h0τ and τ 6 t 6 T ,

Pτ,x̃(τ)
{
τAτ (h) < t

}
6 Cτ (t, ε) exp

{
−1

2

h2

σ2

[
1−O(ε)−O

(h
τ

)]}
(2.52)

where

Cτ (t, ε) =
|ατ (t, τ)|

ε2
+ 2 6

1

ε2

∣∣∣∣∫ t

√
ε
a?(s) ds

∣∣∣∣+ 2. (2.53)

The proof is given in Section 4.4. This result is useful for σ � h� τ , and shows that
the typical spreading of paths around xdet,τ

t is of order σ/
√
t, see Fig. 2.

2.4 Discussion

Let us now examine some of the consequences of these results. First of all, they allow to
characterize the influence of additive noise on the bifurcation delay. In the deterministic
case, this delay is defined as the first exit time from a strip of width ε around x = 0,
see Theorem 2.9. A possible definition of the delay in the stochastic case is thus the first
exit time τdelay from a similar strip. An appropriate choice for the width of the strip is
x̃(
√
ε) = O(ε1/4), since such a strip will contain B(h) for every admissible h, and the part

of the strip with t >
√
ε will be contained in D(κ). Theorems 2.10 and 2.11 then imply

that if t >
√
ε,

P−T,x0
{
τdelay <

√
ε
}
6 C(

√
ε, ε) e−O(ε/σ2) (2.54)

P−T,x0
{
τdelay > t

}
6 C0 x̃(t)

√
a(t)
|log σ|
σ

(
1 +

α(t,
√
ε)

ε

)
e−κα(t,

√
ε)/ε√

1− e−2κα(t,
√
ε)/ε

. (2.55)

If we choose t in such a way that α(t,
√
ε) = cε|log σ| for some c > 0, the last expression

reduces to
P−T,x0

{
τdelay > t

}
= O

(
σκc−1|log σ|2

)
, (2.56)
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which becomes small as soon as c > 1/κ. The bifurcation delay will thus lie with over-
whelming probability in the interval[√

ε,O
(√

ε|log σ|
)]
. (2.57)

Theorem 2.12 implies that for times larger than O(
√
ε|log σ| ), the paths are unlikely to

return to zero in a time of order 1. The wildest behaviour of the paths is to be expected
in the interval (2.57), because a region of instability is crossed, where ∂xf > 0.

Our results on the pitchfork bifurcation require σ �
√
ε, while the estimate (2.57)

is useful as long as σ is not exponentially small. We can thus distinguish three regimes,
depending on the noise intensity:

• σ >
√
ε: A modification of Theorem 2.10 shows that for t < −σ, the typical spreading

of paths is of order σ/
√
|t|. Near the bifurcation point, the process is dominated

by noise, because the drift term f ∼ −x3 is too weak to counteract the diffusion.
Depending on the global structure of f , an appreciable fraction of the paths might
escape quite early from a neighbourhood of the bifurcation point. In that situation,
the notion of bifurcation delay becomes meaningless.

• e−1/εp 6 σ �
√
ε for some p < 1: The bifurcation delay lies in the interval (2.57) with

high probability, where
√
ε|log σ| 6 ε(1−p)/2 is still “microscopic”.

• σ 6 e−K/ε for some K > 0: The noise is so small that the paths remain concentrated
around the deterministic solution for a time interval of order 1. The typical spreading
is of order σ

√
ζ(t), which behaves like σ eα(t)/ε /ε1/4 for t >

√
ε, see Lemma 4.2. Thus

the paths remain close to the origin until α(t) ' ε|log σ| > K. If ε|log σ| > α(Π(t0)) =
|α(t0)|, they follow the deterministic solution which makes a quick transition to x?(t)
at t = Π(t0).

The expression (2.57) characterizing the delay is in accordance with experimental results
[TM, SMC], and with the approximate calculation of the last crossing of zero [JL]. The
numerical results in [Ga], which are fitted, at ε = 0.01, to τdelay ' σ0.105 for weak noise
and τdelay ' e−851σ for strong noise, seem rather mysterious. Finally, the results in [Ku],
who approximates the probability density by a Gaussian centered at the deterministic
solution, can obviously only apply to the regime of exponentially small noise.

Note that the estimate (2.57) suggests how to choose the speed ε at which the bifur-
cation parameter is swept when determining a bifurcation diagram experimentally: Since
we want the bifurcation delay to be microscopic, ε should not exceed a certain value de-
pending on the noise intensity σ. In fact, repeating the experiment for different values of
ε yields an estimate for |log σ|. On the other hand, increasing artificially the noise level σ
allows to work with larger sweeping rates ε, reducing the time cost of the experiment.

Another interesting question is how fast the paths concentrate near the equilibrium
branches ±x?(t). The deterministic solutions, starting at x̃(t0) at some time t0 > 0, all
track x?(t) at a distance which is asymptotically of order ε/t3/2. Therefore, we can choose
one of them, say x

det,
√
ε

t , and measure the distance of xt from that deterministic solution.
We restrict our attention to those paths which are still in a neighbourhood of the origin
at time

√
ε, as most paths are. We want to show that for suitably chosen t1 ∈ (

√
ε, t) and

∆ ∈ (0, t), most paths will leave D(κ) until time t1 and reach a δ-neighbourhood of x
det,
√
ε

t
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at time τD(κ) + ∆. Let us estimate

P
√
ε,x√ε

{(
τD(κ) < t1, sup

s∈[τD(κ)+∆,t]

∣∣∣|xs| − xdet,
√
ε

s

∣∣∣ < δ

)c}
6 P

√
ε,x√ε

{
τD(κ) > t1

}
+ E

√
ε,x√ε

{
1{τD(κ)<t1} P

τD(κ),x̃(τD(κ))

{
sup

s∈[τD(κ)+∆,t]
|xs − xdet,

√
ε

s | > δ

}}
. (2.58)

The first term decreases roughly like σ−1 e−κα(t1,
√
ε)/ε and becomes small as soon as

α(t1,
√
ε)� ε|log σ|. The second summand is bounded above by

const E
√
ε,x√ε

{
1{τD(κ)<t1} exp

{
− t

2

σ2

[
δ −O

(√
τD(κ) e−ηα(τD(κ)+∆,τD(κ))/ε

)2]}}
. (2.59)

Therefore, δ should be large compared to σ/t and we also need that ∆ is at least of order
O(
√
ε|log σ|). Then we see that after a time of order O(

√
ε|log σ|), the typical paths will

have left D(κ) and, after another time of the same order, will reach a neighbourhood of
x

det,
√
ε

t , which scales with σ/t.
Finally, we can also estimate the probability of reaching the positive rather than the

negative branch. Consider xs, starting in x0 at time t0 < 0, and let t > 0. Without loss
of generality, we may assume that x0 > 0. The symmetry of f implies

Pt0,x0
{
xt > 0

}
= 1− 1

2
Pt0,x0

{
∃ s ∈ [t0, t) : xs = 0

}
, (2.60)

and therefore it is sufficient to estimate the probability for xs to reach zero before time
zero, for instance. We linearize the SDE (2.1) and use the fact that the solution x0

s of the
linearized equation

dx0
s =

1

ε
a(s)x0

s ds+
σ√
ε

dWs, x0
t0 = x0 (2.61)

satisfies xs 6 x0
s as long as xs does not reach zero. For the Gaussian process x0

s we know

Pt0,x0
{
∃ s ∈ [t0, t) : x0

s = 0
}

= 2
(

1− Pt0,x0
{
x0
t > 0

})
= 1− 1√

2π

∫ u(t)

−u(t)
e−y

2/2 dy, (2.62)

where u(t) = x0 eα(t,t0)/ε /
√
v(t, t0) and v(t, t0) denotes the variance of x0

t . For t = 0,

u(0) is of order x0ε
1/4σ−1 e−const t

2
0/ε, see Lemma 4.2. Thus the probability in (2.62) is

exponentially close to one for small ε, and we conclude that the probability for xt to reach
the positive branch rather than the negative one is exponentially close to 1/2.

When the global behaviour of f is known, we can also investigate the long-time be-
haviour of the solutions xt. For instance, in the special case f(x, t) = tx − x3, under the
assumption σ2 6 const/|log ε|, it is unlikely that a path which is close to one of the stable
equilibrium branches ±

√
t at some time of order 1, will switch to the other equilibrium

branch again. This is a consequence of the fact that the distance between the equilibrium
branches increases while the branches become more and more attractive. Along the lines
of Section 3.1 it can be shown that the probability of ever reaching zero again decays like
e−const/σ

2
in that case.
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3 The motion near nonbifurcating equilibria

In this section we consider the nonlinear SDE (2.1) under Assumption 2.1 which guarantees
the existence of a hyperbolic equilibrium branch. Section 3.1 is devoted to the stable case,
while in Section 3.2, we consider the unstable case.

3.1 Stable case

We first consider the case of a stable equilibrium, that is, we assume that a(t) 6 −a0 for
all t ∈ I. We will start by analysing the linearization of (2.1) around a given deterministic
solution. Proposition 3.4 shows that the solutions of the linearized equation are likely to
remain in a strip of width h

√
ζ(t) around the deterministic solution. Here ζ(t) is related

to the variance and will be analysed in Lemma 3.1. Proposition 3.7 allows to compare
the trajectories of the linear and the nonlinear equation, and thus completes the proof of
Theorem 2.4.

By Theorem 2.2, there exists a c0 > 0 such that the deterministic solution xdet of (2.6)
with initial condition xdet

0 = x0 satisfies

|xdet
t − x?(t)| 6 2c1ε+ |x0 − x?(0)| e−a0t/2ε ∀t ∈ I, (3.1)

provided |x0 − x?(0)| 6 c0.
Let xt denote the solution of the SDE (2.1), starting at time t0 = 0 in some x0. We

are interested in the stochastic process yt = xt − xdet
t , which describes the deviation due

to noise from the deterministic solution xdet
t . It obeys an SDE of the form

dyt =
1

ε

[
ā(t)yt + b̄(yt, t)

]
dt+

σ√
ε

dWt, y0 = 0, (3.2)

where we have introduced the notations

ā(t) = āε(t) = ∂xf(xdet
t , t)

b̄(y, t) = b̄ε(y, t) = f(xdet
t + y, t)− f(xdet

t , t)− ā(t)y.
(3.3)

Taking ε and |x0 − x?(0)| sufficiently small, we may assume that there exists a constant
d̄ > 0 such that |xdet

t + y − x?(t)| 6 d whenever |y| 6 d̄. It follows from Taylor’s formula
that for all (y, t) ∈ [−d̄, d̄ ]× I,

|b̄(y, t)| 6My2 (3.4)

|ā(t)− a(t)| 6M
(
2c1ε+ |x0 − x?(0)| e−a0t/2ε

)
. (3.5)

We may further assume that there are constants ā+ > ā− > a0/4 such that

−ā+ 6 ā(t) 6 −ā− ∀t ∈ I. (3.6)

Finally, the relation ā′(t) = ∂xtf(xdet
t , t) + ∂xxf(xdet

t , t)1
εf(xdet

t , t) implies the existence of
a constant c2 > 0 such that

|ā′(t)| 6 c2

(
1 + |x0 − x?(0)|e

−a0t/2ε

ε

)
. (3.7)

Our analysis will be based on a comparison between solutions of (3.2) and those of the
linearized equation

dy0
t =

1

ε
ā(t)y0

t dt+
σ√
ε

dWt, y0
0 = 0. (3.8)
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Its solution y0
t at time t is a Gaussian random variable with mean zero and variance

v(t) =
σ2

ε

∫ t

0
e2α(t,s)/ε ds where α(t, s) =

∫ t

s
ā(u) du. (3.9)

Note that (3.6) implies that α(t, s) 6 −ā−(t − s) whenever t > s, which implies in
particular, that v(t) is not larger than σ2/2ā−. We can, however, derive a more precise
bound, which is useful when ε and e−a0t/2ε are small. To do so, we introduce the function

ζ(t) =
1

2|ā(0)|
e2α(t)/ε +

1

ε

∫ t

0
e2α(t,s)/ε ds, where α(t) = α(t, 0). (3.10)

Note that v(t) 6 σ2ζ(t), and that both functions differ by a term which becomes negligible
as soon as t > O(ε|log ε|). The behaviour of ζ(t) is characterized in the following lemma.

Lemma 3.1. The function ζ(t) satisfies the following relations for all t ∈ I.

ζ(t) =
1

2|ā(t)|
+O(ε) +O

(
|x0 − x?(0)| e−a0t/2ε

)
(3.11)

1

2ā+
6 ζ(t) 6

1

2ā−
(3.12)

ζ ′(t) 6
1

ε
(3.13)

Proof: By integration by parts, we obtain that

ζ(t) =
1

−2ā(t)
− 1

2

∫ t

0

ā′(s)

ā(s)2
e2α(t,s)/ε ds. (3.14)

Using (3.6) and (3.7) we get∣∣∣∫ t

0

ā′(s)

ā(s)2
e2α(t,s)/ε ds

∣∣∣
6

c2

ā2
−

∫ t

0
e−2ā−(t−s)/ε ds+

c2

ā2
−

|x0 − x?(0)|
ε

∫ t

0
e[−2ā−(t−s)−a0s/2]/ε ds

6
c2

2ā3
−
ε+

c2

ā2
−

|x0 − x?(0)|
2ā− − a0/2

e−a0t/2ε, (3.15)

which proves (3.11). We now observe that ζ(t) is a solution of the linear ODE

dζ

dt
=

1

ε

(
2ā(t)ζ + 1

)
, ζ(0) =

1

2|ā(0)|
. (3.16)

Since ζ(t) > 0 and ā(t) < 0, we have ζ ′(t) 6 1/ε. We also see that ζ ′(t) > 0 whenever
ζ(t) 6 1/2ā+ and ζ ′(t) 6 0 whenever ζ(t) > 1/2ā−. Since ζ(0) belongs to the interval
[1/2ā+, 1/2ā−], ζ(t) must remain in this interval for all t.

As we have already seen in (2.14), the probability of finding y0
t outside a strip of width

much larger than
√

2v(t) is very small. By Lemma 3.1, we now know that
√

2v(t) behaves
approximately like σ|a(t)|−1/2. One of the key points of the present work is to show that
the whole path {ys}06s6t remains in a strip of similar width with high probability. The
strip will be defined with the help of ζ(t) instead of v(t), because we need the width to be
bounded away from zero, even for small t.
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To investigate y0
t we need to estimate the stochastic integral

∫ t
0 eα(t,u)/ε dWu. To do

so, we would like to use the Bernstein-type inequality

P
{

sup
06s6t

∫ s

0
ϕ(u) dWu > δ

}
6 exp

{
− δ2

2
∫ t

0 ϕ(u)2 du

}
, (3.17)

valid for Borel-measurable deterministic functions ϕ(u). Unfortunately, this estimate can-
not be applied directly, because in our case, the integrand depends explicitly on the upper
integration limit. This is why we introduce a partition of the interval [0, t].

Lemma 3.2. Let ρ : I → R+ be a measurable, strictly positive function. Fix K ∈ N , and
let 0 = u0 6 u1 < · · · < uK = t be a partition of the interval [0, t]. Then

P0,0
{

sup
06s6t

1

ρ(s)

∣∣∣∣ σ√ε
∫ s

0
eα(s,u)/ε dWu

∣∣∣∣ > h
}
6 2

K∑
k=1

Pk, (3.18)

where

Pk = exp

{
−1

2

h2

σ2

(
inf

uk−16s6uk
ρ(s)2 e2α(uk,s)/ε

)(1

ε

∫ uk

0
e2α(uk,s)/ε ds

)−1
}
. (3.19)

Proof: We have

P0,0
{

sup
06s6t

1

ρ(s)

∣∣∣ σ√
ε

∫ s

0
eα(s,u)/ε dWu

∣∣∣ > h
}

(3.20)

= P0,0
{
∃k ∈ {1, . . . ,K} : sup

uk−16s6uk

1

ρ(s)

∣∣∣∫ s

0
eα(s,u)/ε dWu

∣∣∣ > h
√
ε

σ

}
6 2

K∑
k=1

P0,0
{

sup
uk−16s6uk

∫ s

0
e−α(u)/ε dWu >

h
√
ε

σ
inf

uk−16s6uk
ρ(s) e−α(s)/ε

}
.

Applying the Bernstein inequality (3.17) to the last expression, we obtain (3.18).

Remark 3.3. Note that in the proof of Lemma 3.2 we have not used the monotonicity of
s 7→ α(t, s) so that the estimate (3.18) can also be applied in the case where ā(s) changes
sign.

We are now ready to derive an upper bound for the probability that y0
s leaves a strip

of appropriate width hρ(s) before time t. Taking ρ(s) =
√
ζ(s) will be a good choice since

it leads to approximately constant Pk in (3.18).

Proposition 3.4. There exists an r = r(ā+, ā−) such that

P0,0
{

sup
06s6t

|y0
s |√
ζ(s)

> h
}
6 C(t, ε) exp

{
−1

2

h2

σ2
(1− rε)

}
, (3.21)

where

C(t, ε) =
|α(t)|
ε2

+ 2. (3.22)
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Proof: Let

K =

⌈
|α(t)|
2ε2

⌉
. (3.23)

For k = 1, . . . ,K − 1, we define the partition times uk by the relation

|α(uk)| = 2ε2k, (3.24)

which is possible since α(t) is continuous and decreasing. This definition implies in partic-
ular that α(uk, uk−1) = −2ε2 and, therefore, uk − uk−1 6 2ε2/ā−. Bounding the integral
in (3.19) by ζ(uk), we obtain

Pk 6 exp
{
−1

2

h2

σ2
inf

uk−16s6uk

ζ(s)

ζ(uk)
e2α(uk,s)/ε

}
. (3.25)

We have e2α(uk,s)/ε > e−4ε and

ζ(s)− ζ(uk) = −
∫ uk

s
ζ ′(u) du > −uk − s

ε
. (3.26)

Since ζ(uk) > 1/2ā+, this implies

Pk 6 exp
{
−1

2

h2

σ2

(
1− 4

ā+

ā−
ε
)

e−4ε
}
, (3.27)

and the result follows from Lemma 3.2.

Remark 3.5. If we only assume that ā is Borel-measurable with ā(t) 6 −ā− for all t ∈ I,
we still have

P0,0
{

sup
06s6t

|y0
s | > h/

√
2ā−

}
6 C(t, ε) exp

{
−1

2

h2

σ2
e−4ε

}
. (3.28)

To prove this, we choose the same partition as before and bound the integral in (3.19) by
ε/2ā−.

We now return to the nonlinear equation (3.2), the solutions of which we want to
compare to those of its linearization (3.8). To this end, we introduce the events

Ωt(h) =
{
ω :
∣∣ys(ω)

∣∣ < h
√
ζ(s) ∀s ∈ [0, t]

}
(3.29)

Ω0
t (h) =

{
ω :
∣∣y0
s(ω)

∣∣ < h
√
ζ(s) ∀s ∈ [0, t]

}
. (3.30)

Proposition 3.4 gives us an upper bound on the probability of the complement of Ω0
t (h).

The key point to control the nonlinear case is a relation between the sets Ωt and Ω0
t (for

slightly different values of h). This is done in Proposition 3.7 below.

Notation 3.6. For two events Ω1 and Ω2, we write Ω1
a.s.
⊂ Ω2 if P-almost all ω ∈ Ω1

belong to Ω2.

Proposition 3.7. Let γ = 2
√

2ā+M/ā2
− and assume that h < d̄

√
ā−/2 ∧ γ−1. Then

Ωt(h)
a.s.
⊂ Ω0

t

([
1 +

γ

4
h
]
h
)

(3.31)

Ω0
t (h)

a.s.
⊂ Ωt

([
1 + γh

]
h
)
. (3.32)
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Proof:

1. The difference zs = ys − y0
s satisfies

dzs
ds

=
1

ε

[
ā(s)zs + b̄(y0

s + zs, s)
]

(3.33)

with z0 = 0 P-a.s. Now,

zs =
1

ε

∫ s

0
eα(s,u)/ε b̄(y0

u + zu, u) du, (3.34)

which implies

|zs| 6
1

ε

∫ s

0
eα(s,u)/ε|b̄(yu, u)|du (3.35)

for all s ∈ [0, t].
2. Let us assume that ω ∈ Ωt(h). Then we have for all s ∈ [0, t]

|ys(ω)| 6 h
√
ζ(s) 6

h√
2ā−

6
d̄

2
, (3.36)

and thus by (3.35),

|zs(ω)| 6 1

ε

∫ s

0
eα(s,u)/ε Mh2

2ā−
du. (3.37)

The integral on the right-hand side can be estimated by (3.12), yielding

1

ε

∫ s

0
eα(s,u)/ε du 6 2ζ2ε(s) 6

1

ā−
. (3.38)

Therefore,

|zs(ω)| 6 Mh2

2ā2
−

6
M
√
ā+ h√

2ā2
−

h
√
ζ(s), (3.39)

which proves (3.31) because |y0
s(ω)| 6 |ys(ω)|+ |zs(ω)|.

3. Let us now assume that ω ∈ Ω0
t (h). Then we have |y0

s(ω)| 6 d̄/2 for all s ∈ [0, t] as
in (3.36). For δ = γh, we have δ < 1 by assumption. We consider the first exit time

τ = inf
{
s ∈ [0, t] : |zs| > δh

√
ζ(s)

}
∈ [0, t] ∪ {∞} (3.40)

and the event
A = Ω0

t (h) ∩
{
ω : τ(ω) <∞

}
. (3.41)

If ω ∈ A, then for all s ∈ [0, τ(ω)], we have |ys(ω)| 6 (1 + δ)h
√
ζ(s) 6 d̄, and thus by

(3.35) and (3.38),

|zs(ω)| 6 1

ε

∫ s

0
eα(s,u)/ε M(1 + δ)2h2

2ā−
du 6

M(1 + δ)2h2

2ā2
−

< δh
√
ζ(s). (3.42)

However, by the definition of τ , we have |zτ(ω)(ω)| = δh
√
ζ(τ(ω)), which contradicts

(3.42) for s = τ(ω). Therefore P{A} = 0, which implies that for almost all ω ∈ Ω0
t ,

we have |zs(ω)| < δh
√
ζ(s) for all s ∈ [0, t], and hence

|ys(ω)| < (1 + δ)h
√
ζ(s) ∀s ∈ [0, t] (3.43)

for these ω, which proves (3.32).
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We close this subsection with a corollary which is Theorem 2.4, restated in terms of
the process yt. It is a direct consequence of Propositions 3.7 and 3.4.

Corollary 3.8. There exist h0 and ε0, depending only on f , such that for ε < ε0 and
h < h0,

P0,0
{

sup
06s6t

|ys|√
ζ(s)

> h
}
6 C(t, ε) exp

{
−1

2

h2

σ2

[
1−O(ε)−O(h)

]}
. (3.44)

3.2 Unstable case

We now consider a similar situation as in Section 3.1, but with an unstable equilibrium
branch, that is, we assume that a(t) > a0 > 0 for all t ∈ I. Our aim is to prove Theorem 2.6
which is equivalent to Proposition 3.10 below. The proof is again based on a comparison of
solutions of the nonlinear equation (2.1) and its linearization around a given deterministic
solution.

Theorem 2.2 shows the existence of a particular solution x̂det
t of the deterministic

equation (2.6) such that |x̂det
t − x?(t)| 6 c1ε for all t ∈ I. We are interested in the

stochastic process yt = xt − x̂det
t , which describes the deviation due to noise from this

deterministic solution x̂det. It obeys the SDE

dyt =
1

ε

[
ā(t)yt + b̄(yt, t)

]
dt+

σ√
ε

dWt, (3.45)

where

ā(t) = āε(t) = ∂xf(x̂det
t , t)

b̄(y, t) = b̄ε(y, t) = f(x̂det
t + y, t)− f(x̂det

t , t)− ā(t)y
(3.46)

are the analogs of ā and b̄ defined in (3.3). Taking ε sufficiently small, we may assume
that there exist constants ā0, ā1, d̄ > 0, such that the following estimates hold for all t ∈ I
and all y such that |y| 6 d̄:

ā(t) > ā0, |ā′(t)| 6 ā1, |b̄(y, t)| 6My2. (3.47)

The bound on |ā′(t)| is a consequence of the analog of (3.7) together with the fact that
|x̂det

0 − x?(0)| = O(ε).
We first consider the linear equation

dy0
t =

1

ε
ā(t)y0

t dt+
σ√
ε

dWt. (3.48)

Given the initial value y0
0, the solution y0

t at time t is a Gaussian random variable with
mean y0

0 eα(t)/ε and variance

v(t) =
σ2

ε

∫ t

0
e2α(t,s)/ε ds, (3.49)

where α(t, s) =
∫ t
s ā(u) du > ā0(t− s) for t > s. The variance, which is growing exponen-

tially fast, can be estimated with the help of the following lemma.

Lemma 3.9. For 0 < ε < 2ā2
0/ā1, one has

1

ε

∫ t

0
e2α(t,s)/ε ds =

[e2α(t)/ε

2ā(0)
− 1

2ā(t)

][
1 +O(ε)

]
. (3.50)
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Proof: By integration by parts, we obtain that∫ t

0
e2α(t,s)/ε ds =

ε

2ā(0)
e2α(t)/ε− ε

2ā(t)
− ε

2

∫ t

0

ā′(s)

ā(s)2
e2α(t,s)/ε ds, (3.51)

which implies that[
1− ε

2

ā1

ā2
0

] ∫ t

0
e2α(t,s)/ε ds 6

ε

2ā(0)
e2α(t)/ε− ε

2ā(t)
6
[
1 +

ε

2

ā1

ā2
0

] ∫ t

0
e2α(t,s)/ε ds. (3.52)

By our hypothesis on ε, the first term in brackets is positive.

The following proposition, which restates Theorem 2.6 in terms of yt, is the main result
of this subsection.

Proposition 3.10. There exist constants ε0, h0 > 0 such that for all h 6 σ∧h0, all ε 6 ε0

and for any given y0 with |y0|
√

2ā(0) < h, we have

P0,y0
{

sup
06s6t

|ys|
√

2ā(s) < h
}
6
√

e exp
{
−κσ

2

h2

α(t)

ε

}
, (3.53)

where κ = π
2e

(
1−O(h)−O(ε)

)
.

Proof:

1. Let K ∈ N and let 0 = u0 < u1 < · · · < uK = t be any partition of the interval [0, t].
We define the events

Ak =
{
ω : sup

uk6s6uk+1

|ys|
√

2ā(s) < h
}

Bk =
{
ω : |yuk |

√
2ā(uk) < h

}
⊃ Ak−1.

(3.54)

Let qk be a deterministic upper bound on Pk = Puk,yuk{Ak}, valid on Bk. Then we
have by the Markov property

P0,y0
{

sup
06s6t

|ys|
√

2ā(s) < h
}

= P0,y0
{K−1⋂
k=0

Ak

}
= E0,y0

{
1⋂K−2

k=0 Ak
E0,y0

{
1AK

∣∣ {ys}06s6uK−1

}}
= E0,y0

{
1⋂K−2

k=0 Ak
PK−1

}
6 qK−1P0,y0

{K−2⋂
k=0

Ak

}
6 · · · 6

K−1∏
k=0

qk. (3.55)

2. To define the partition, we set

K =
⌈1

γ

α(t)

ε

σ2

h2

⌉
(3.56)

for some γ ∈ (0, 1] to be chosen later, and

α(uk+1, uk) = γε
h2

σ2
, k = 0, . . . ,K − 2. (3.57)
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Since α(uk+1, uk) > ā0(uk+1 − uk), we have uk+1 − uk 6 h2

σ2
γ
ā0
ε, and using Taylor’s

formula, we find for all s ∈ [uk, uk+1] and all k = 0, . . . ,K − 1

1− h2

σ2

ā1

ā2
0

γε 6
ā(s)

ā(uk)
6 1 +

h2

σ2

ā1

ā2
0

γε, (3.58)

where ā1 is the upper bound on |ā′|, see (3.47). In order to estimate Pk, we introduce

linear approximations (y
(k)
t )t∈[uk,uk+1] for k ∈ {0, . . . ,K − 2}, defined by

dy
(k)
t =

1

ε
ā(t)y

(k)
t +

σ√
ε

dW
(k)
t , y(k)

uk
= yuk , (3.59)

where W
(k)
t = Wt −Wuk is a Brownian motion with W

(k)
uk = 0 which is independent

of {Ws : 0 6 s 6 uk}. If ω ∈ Ak, we have for all s ∈ [uk, uk+1]

|ys(ω)− y(k)
s (ω)| 6 1

ε

∫ s

uk

eα(s,u)/ε|b̄(yu, u)| du

6
Mh2

2ā0

eα(uk+1,uk)/ε

ā(uk)

[
1 +O(ε)

]
6 r0

h2√
2ā(s)

,

(3.60)

where r0 = M e(2ā3
0)−1/2 +O(ε). This shows that on Ak,

|y(k)
s (ω)| 6

[
1 + r0h

] h√
2ā(s)

∀s ∈ [uk, uk+1]. (3.61)

3. We are now ready to estimate Pk. (3.61) shows that on Bk,

Pk 6 Puk,yuk
{

sup
uk6s6uk+1

|y(k)
s |
√

2ā(s) < h(1 + r0h)
}

6 Puk,yuk
{
|y(k)
uk+1
|
√

2ā(uk+1) < h(1 + r0h)
}

6
1√

2πv
(k)
uk+1

2h(1 + r0h)√
2ā(uk+1)

,

(3.62)

where v
(k)
uk+1 denotes the conditional variance of y

(k)
uk+1 , given yuk . As in (3.50),

v(k)
uk+1

=
σ2

ε

∫ uk+1

uk

e2α(uk+1,s)/ε ds =
σ2

2

[
e2α(uk+1,uk)/ε

ā(uk)
− 1

ā(uk+1)

][
1 +O(ε)

]
. (3.63)

It follows that

ā(uk+1)v(k)
uk+1

>
σ2

2

[
e2γh2/σ2 ā(uk+1)

ā(uk)
− 1
][

1−O(ε)
]

>
σ2

2

[(
1 + 2γ

h2

σ2

)(
1− ā1

ā2
0

h2

σ2
γε
)
− 1
][

1−O(ε)
]

> γh2
[
1− ā1

2ā2
0

(
1 + 2γ

)
ε
][

1−O(ε)
]

> γh2
[
1−O(ε)

]
.

(3.64)

Inserting this into (3.62), we obtain for each k = 0, . . . ,K − 2 on Bk the estimate

Pk 6
2h(1 + r0h)√

2π

1√
2γh2

[
1 +O(ε)

]
=

1
√
πγ

[
1 +O(ε) +O(h)

]
=: q. (3.65)

23



Note that for any γ ∈ (1/π, 1], there exist h0 > 0 and ε0 > 0 such that q < 1 for all
h 6 h0 and all ε 6 ε0. Since qK−1 = 1 is an obvious bound, we obtain from (3.55)

P0,y0
{

sup
06s6t

|ys|
√

2ā(s) < h
}
6 qK−1 6

1

q
exp
{
−α(t)

ε

σ2

h2

1

2γq2
q2 log

(
1/q2

)}
. (3.66)

Choosing γ so that q2 = 1/ e holds, yields almost the optimal exponent, and we obtain

P0,y0
{

sup
06s6t

|ys|
√

2ā(s) < h
}
6
√

e exp
{
−κα(t)

ε

σ2

h2

}
. (3.67)

4 Pitchfork bifurcation

4.1 Preliminaries

In this section, we consider the nonlinear SDE (2.1) in the case where f undergoes a
supercritical pitchfork bifurcation, i.e., we require Assumption 2.7 to hold in a region
N = {(x, t) ∈ R 2 : |x| 6 d, |t| 6 T} ⊂ N0. The noise intensity σ is assumed to satisfy
σ = O(

√
ε) throughout Section 4. Only in Subsection 4.3, this condition will be slightly

strengthened to σ|log σ|3/2 = O(
√
ε).

Recall that we rescaled space and time in order to obtain (2.26). Using Taylor series
and the symmetry assumptions, we may write for all (x, t) ∈ N

f(x, t) = a(t)x+ b(x, t) = x
[
a(t) + g0(x, t)

]
∂xf(x, t) = a(t) + g1(x, t)

(4.1)

where a(t), g0(x, t), g1(x, t) are twice continuously differentiable functions satisfying

a(t) = ∂xf(0, t) = t+O(t2)

g0(x, t) =
[
−1 + γ0(x, t)

]
x2 |g0(x, t)| 6Mx2 (4.2)

g1(x, t) =
[
−3 + γ1(x, t)

]
x2 |g1(x, t)| 6 3Mx2,

with γ0, γ1 some continuous functions such that γ0(0, 0) = γ1(0, 0) = 0. The following
standard result from bifurcation theory is easily obtained by applying the implicit function
theorem, see [GH, p. 150] or [IJ, Section II.4] for instance. We state it without proof.

Proposition 4.1. If T and d are sufficiently small, there exist twice continuously differ-
entiable functions x?, x̄ : (0, T ]→ R+ of the form

x?(t) =
√
t
[
1 + OT (1)

]
x̄(t) =

√
t/3
[
1 + OT (1)

] (4.3)

with the following properties:

• the only solutions of f(x, t) = 0 in N are either of the form (0, t), or of the form
(±x?(t), t) with t > 0;

• the only solutions of ∂xf(x, t) = 0 in N are of the form (±x̄(t), t) with t > 0;
• the derivative of f at ±x?(t) is

a?(t) = ∂xf(x?(t), t) = −2t
[
1 + OT (1)

]
. (4.4)
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• the derivatives of x?(t) and x̄(t) satisfy

dx?

dt
=

1

2
√
t
[1 + OT (1)],

dx̄

dt
=

1

2
√

3t
[1 + OT (1)]. (4.5)

As already pointed out in Section 2.3, there is no restriction in assuming T and d to
be small. Thus we may assume that the terms OT (1) are sufficiently small to do no harm.
For instance, we may and will always assume that a?(t) < 0.

In the following subsections, we are going to analyse the dynamics in three different
regions of the (t, x)-plane: near x = 0 for t 6

√
ε, near x = 0 for t >

√
ε, and near

x = x?(t) for t >
√
ε.

First, in Subsection 4.2, we analyse the behaviour for t 6
√
ε. Theorem 2.10 is proved

in the same way as Theorem 2.4, the main difference lying in the behaviour of the variance
which is investigated in Lemma 4.2.

Subsection 4.3 is devoted to the rather involved proof of Theorem 2.11. We start by
giving some preparatory results. Proposition 4.7 estimates the probability of remaining in
a smaller strip S in a similar way as Proposition 3.10. We then show in Lemma 4.8 that
the paths are likely to leave D(κ) as well, unless the solution of a suitably chosen linear
SDE returns to zero. The probability of such a return to zero is studied in Lemma 4.9.
Finally, Theorem 2.11 is proved, the proof being based on an iterative scheme.

The last subsection analyses the motion after τD(κ). Here, the main difficulty is to
control the behaviour of the deterministic solutions, which are shown to approach x?(t),
cf. Proposition 4.11. We then prove that the paths of the random process are likely
to stay in a neighbourhood of the deterministic solutions. The proof is similar to the
corresponding proof in Section 3.1.

4.2 The behaviour for t 6
√
ε

We begin by considering the linear SDE

dx0
t =

1

ε
a(t)x0

t dt+
σ√
ε

dWt (4.6)

with initial condition x0
t0 = x0 at time t0 ∈ [−T, 0). Let

v(t, t0) =
σ2

ε

∫ t

t0

e2α(t,s)/ε ds (4.7)

denote the variance of x0
t . As before, we now introduce a function ζ(t) which will allow us

to define a strip that the process xt is unlikely to leave before time
√
ε, see Corollary 4.5

below. Let

ζ(t) =
1

2|a(t0)|
e2α(t,t0)/ε +

1

ε

∫ t

t0

e2α(t,s)/ε ds. (4.8)

The following lemma describes the behaviour of ζ(t).

Lemma 4.2. There exist constants c± > 0 such that

c−
|t|

6 ζ(t) 6
c+

|t|
for t0 6 t 6 −

√
ε

c−√
ε
6 ζ(t) 6

c+√
ε

for −
√
ε 6 t 6

√
ε (4.9)

c−√
ε

e2α(t)/ε 6 ζ(t) 6
c+√
ε

e2α(t)/ε for
√
ε 6 t 6 T .

If, moreover, a′(t) > 0 on [t0, t], then ζ(t) is increasing on [t0, t].
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Proof: First note that Equation (4.2) implies the existence of constants a+ > a− > 0
such that

a+t 6 a(t) 6 a−t for −T 6 t 6 0

a−t 6 a(t) 6 a+t for 0 6 t 6 T .
(4.10)

For s 6 t 6 0, this implies −a+(s2 − t2) 6 2α(t, s) 6 −a−(s2 − t2). Integration by parts
yields the relation

1

ε

∫ t

t0

e−a±(s2−t2)/ε ds =
1

2a±|t|
− e−a±(t20−t2)/ε

2a±|t0|
−
∫ t

t0

e−a±(s2−t2)/ε

2a±s2
ds. (4.11)

Since the last two terms on the right-hand side are negative, the upper bound for t 6 −
√
ε

is immediate. For the corresponding lower bound, we use

ζ(t)− e2α(t,t0)/ε

2|a(t0)|
>

1

ε

∫ t

t0∨2t
e−a+(s2−t2)/ε ds >

1− e−a+((t0∨2t)2−t2)/ε

2a+|t0 ∨ 2t|
, (4.12)

where the last inequality is obtained by replacing e−a+(s2−t2)/ε by 1 on the right-hand side
of (4.11). For t 6 t0/2, we thus get ζ(t) > 1/(4a+|t|), while for t0/2 < t 6 −

√
ε, we find

ζ(t) > (1− e−3a+)/(4a+|t|).
In the case |t| 6

√
ε, we use the relation

ζ(t) = ζ(−
√
ε) e2α(t,−

√
ε)/ε +

1

ε

∫ t

−
√
ε

e2α(t,s)/ε ds. (4.13)

Since |α(t, s)| = O(ε) for |t|, |s| 6
√
ε, we conclude that ζ(t) remains of order 1/

√
ε for

|t| 6
√
ε. For t >

√
ε, we have

e−2α(t)/ε ζ(t) = ζ(
√
ε) e−2α(

√
ε)/ε +

1

ε

∫ t

√
ε

e−2α(s)/ε ds. (4.14)

Now, 2α(s) > −a−s2 for s > 0 implies that the right-hand side remains of order 1/
√
ε for

all t.
Finally, assume that a′(t) > 0 for all t, and recall that ζ(t) is the solution of the initial

value problem
dζ

dt
=

2a(t)

ε
ζ +

1

ε
, ζ(t0) =

1

2|a(t0)|
. (4.15)

Since ζ(t) > 0, ζ ′ > 0 for all positive t. For negative t, ζ ′ is positive whenever the function
V (t) = ζ(t) + 1/2a(t) is negative. We have V (t0) = 0 and

dV

dt
=

2a(t)

ε
V − a′(t)

2a(t)2
. (4.16)

Since V ′ < 0 whenever V = 0, V can never become positive. This implies ζ ′ > 0.

The following proposition shows that the solution x0
t of the linearized equation (4.6)

is likely to track the solution of the corresponding deterministic equation.
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Proposition 4.3. Assume that −T 6 t0 < t 6
√
ε. For sufficiently small ε,

Pt0,x0
{

sup
t06s6t

|x0
s − x0 eα(s,t0)/ε|√

ζ(s)
> h

}
6 C(t, ε) exp

{
−1

2

h2

σ2

[
1− r(ε)

]}
, (4.17)

where

C(t, ε) =
|α(t, t0)|

ε2
+
a+ + 4

√
ε+ 4

ε
(4.18)

and where r(ε) = O(ε) for t0 6 t 6 −
√
ε, and r(ε) = O(

√
ε) for −

√
ε 6 t 6

√
ε.

Proof: We will only give the proof in the case −
√
ε 6 t 6

√
ε as this is the more

interesting part. By Lemma 3.2, the probability in (4.17) is bounded by 2
∑K

k=1 Pk, where

Pk = exp
{
−1

2

h2

σ2

1

ζ(uk)
inf

uk−16u6uk
ζ(u) e2α(uk,u)/ε

}
(4.19)

for any partition t0 = u0 < · · · < uK = t of the interval [t0, t]. The choice of the partition
should reflect the different behaviour of x0

s for s 6 −
√
ε and for −

√
ε 6 s 6

√
ε. We set

K0 =

⌈
−α(−

√
ε, t0)

2ε2

⌉
, K = K0 +

⌈
t+
√
ε

ε

⌉
(4.20)

and define the partition times by

−α(uk, t0) = 2ε2k for 0 6 k 6 K0 − 1,

uk = −
√
ε+ ε(k −K0) for K0 6 k 6 K − 1. (4.21)

Estimating Pk as in the proof of Proposition 3.4, we obtain

Pk 6 exp
{
−1

2

h2

σ2

(
1− 2ε

a−c−

)
e−4ε

}
for 0 6 k 6 K0 − 1, (4.22)

Pk 6 exp
{
−1

2

h2

σ2

(
1−
√
ε

c−
[1 + 2a+c+]

)
e−a+ε

}
for K0 6 k 6 K − 1. (4.23)

Finally, let us note that

2K 6
|α(−

√
ε, t0)|

ε2
+

2

ε
(t+
√
ε) + 4 6

|α(t, t0)|
ε2

+
a+

ε
+

4√
ε

+ 4, (4.24)

which concludes the proof of the proposition.

Let us now compare solutions of the two SDEs

dx0
t =

1

ε
a(t)x0

t dt+
σ√
ε

dWt x0
t0 = x0 (4.25)

dxt =
1

ε
f(xt, t) dt+

σ√
ε

dWt xt0 = x0, (4.26)

where t0 ∈ [−T, 0). We define the events

Ω0
t (h) =

{
ω :
∣∣x0
s(ω)− x0 eα(s,t0)/ε

∣∣ 6 h
√
ζ(s) ∀s ∈ [t0, t]

}
(4.27)

Ωt(h) =
{
ω :
∣∣xs(ω)− x0 eα(s,t0)/ε

∣∣ 6 h
√
ζ(s) ∀s ∈ [t0, t]

}
. (4.28)

Proposition 4.3 gives us an upper bound on the probability of the complement of Ω0
t (h).

We now give relations between these events.
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Proposition 4.4. Let t ∈ [t0,
√
ε ] and |x0| 6 h/ε1/4, where we assume h2 < ε/γ for

γ = M(1 + 2
√
c+)3c+/

√
c− and h2 6 d2√ε/(1 + 2

√
c+)2. Then

Ωt(h)
a.s.
⊂ Ω0

t

([
1 + γ

h2

ε

]
h
)

(4.29)

Ω0
t (h)

a.s.
⊂ Ωt

([
1 + γ

h2

ε

]
h
)
. (4.30)

The proof follows along the lines of the proof of the corresponding Proposition 3.7 in
the case of nonbifurcating equilibria and we skip it here.

The two preceding propositions immediately imply the main result on the behaviour
of the solution of the nonlinear equation (4.26) for t 6

√
ε, i.e., Theorem 2.10, which we

restate here for an arbitrary initial time t0 ∈ [−T,
√
ε ].

Corollary 4.5. Assume that −T 6 t0 < t 6
√
ε. Then there exists an h0 > 0 such that

for all h 6 h0
√
ε and all initial conditions x0 with |x0| 6 h/ε1/4, the following estimate

holds:

Pt0,x0
{

sup
t06s6t

|xs − x0 eα(s,t0)/ε|√
ζ(s)

> h
}
6 C(t, ε) exp

{
−1

2

h2

σ2

[
1− r(ε)−O(h2/ε)

]}
, (4.31)

where C(t, ε) and r(ε) are given in Proposition 4.3.

4.3 Escape from the origin

We now consider the SDE (2.1), written in the form

dxt =
1

ε

[
a(t)xt + b(xt, t)

]
dt+

σ√
ε

dWt, (4.32)

for t > t0 >
√
ε, where we assume that |xt0 | 6 x̃(t0). Our aim is to estimate for κ ∈ (0, 2/3)

the first exit time τD(κ) of xt from D(κ). Recall that a(t) + 1
xb(x, t) > κa(t) holds in D(κ)

by the definition of D(κ). Moreover, we have a−t 6 a(t) 6 a+t, 0 6 a′(t) 6 a1, and
|b(x, t)| 6M |x|3 in D(κ).

We first state a result allowing to estimate the variance of the linearization of (4.32).

Lemma 4.6. Let a(t) be any continuously differentiable, strictly positive, increasing func-
tion, and set α(t, s) =

∫ t
s a(u) du. Then the integral

v(t, s) =
σ2

ε

∫ t

s
e2α(t,u)/ε du (4.33)

satisfies the inequalities

σ2

2a(t)

[
e2α(t,s)/ε−1

]
6 v(t, s) 6

σ2

2a(s)
e2α(t,s)/ε . (4.34)

Proof: Using integration by parts, we have

e−2α(t,s)/ε v(t, s) = σ2
[ 1

2a(s)
− 1

2a(t)
e−2α(t,s)/ε−

∫ t

s

a′(u)

2a(u)2
e−2α(u,s)/ε du

]
. (4.35)

The upper bound follows immediately, and the lower bound is obtained by bounding the
exponential in the last integral by 1.
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Our first step towards estimating τD(κ) is to estimate the first exit time τS from a
smaller strip S, defined as

S =

{
(x, t) :

√
ε 6 t 6 T, |x| < h√

a(t)

}
, (4.36)

where we will choose

h =

√
2

κ
σ
√
|log σ|. (4.37)

Proposition 4.7. Assume h > σ and let t0 >
√
ε and |x0| 6 h/

√
a(t0). Then, for any

µ > 0, we have

Pt0,x0
{
τS > t

}
6
(h
σ

)µ
exp

{
− µ

1 + µ

α(t, t0)

ε

[
1−O

( 1

µ log(h/σ)

)]}
(4.38)

under the condition (h
σ

)3+µ(
1 + (1 + µ)

ε

t20
log

h

σ

)
6 O

( t20
σ2

)
. (4.39)

Proof: We introduce a partition t0 = u0 < · · · < uK = t of the interval [t0, t] via the
relations

α(uk, uk−1) = (1 + µ)ε log
h

σ
for 1 6 k < K =

⌈
α(t, t0)

(1 + µ)ε log(h/σ)

⌉
, (4.40)

and for each k, we define a linear approximation (x
(k)
t )t∈[uk,uk+1] by

dx
(k)
t =

1

ε
a(t)x

(k)
t dt+

σ√
ε

dW
(k)
t x(k)

uk
= xuk , (4.41)

where W
(k)
t = Wt −Wuk . Assume that |xs|

√
a(s) 6 h for all s ∈ [uk, uk+1]. Then by

Lemma 4.6

|xs − x(k)
s | 6

1

ε

∫ s

uk

|b(xu, u)| eα(s,u)/ε du

6M
h3

a(uk)3/2

1

a(uk)
eα(uk+1,uk)/ε 6

h√
a(s)

(4.42)

for s ∈ [uk, uk+1], provided our partition is chosen in such a way that for all k

h2 6
a2
−
M

√
a(uk)

a(uk+1)
e−α(uk+1,uk)/ε t20. (4.43)

Since the partition satisfies√
a(uk+1)

a(uk)
6

(
1 +

a1

a(uk)
(uk+1 − uk)

)1/2

6 1 +
a1

2a2
−

(1 + µ)
ε

t20
log

h

σ
, (4.44)

we see that Condition (4.43) is satisfied whenever (4.39) holds.
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Now, if |xuk |
√
a(uk) 6 h, then we have

Puk,xuk
{

sup
uk6s6uk+1

|xs|
√
a(s) 6 h

}
6 Puk,xuk

{
|x(k)
uk+1
|
√
a(uk+1) 6 2h

}
6

4h√
2πv

(k)
uk+1a(uk+1)

, (4.45)

where the variance

v(k)
uk+1

=
σ2

ε

∫ uk+1

uk

e2α(uk+1,s)/ε ds (4.46)

can be estimated by Lemma 4.6. We thus have by the Markov property

P = Pt0,x0
{

sup
t06s6t

|xs|
√
a(s) 6 h

}
6

K−1∏
k=0

(
4√
2π

h√
v

(k)
uk+1a(uk+1)

∧ 1

)
, (4.47)

which immediately implies (4.38).

We want to choose µ in such a way that Pt0,x0{τS > t} 6 (h/σ)µ e−κα(t,t0)/ε holds
with the same κ as in the definition of D(κ). We opt for µ = 2, because this choice
guarantees the above estimate for all κ < 2/3 without choosing a κ-dependent µ. For
h = (2/κ)1/2σ

√
|log σ| and small enough ε, Condition (4.39) becomes a consequence of

the following slightly stronger condition

σ|log σ|3/2 = O(
√
ε), (4.48)

which we will assume to be satisfied from now on for the rest of this subsection.
The second step is to control the probability that xt returns to zero after it has left

the strip S. To do so, we will compare solutions of (4.32) with those of the linear equation

dx0
t =

1

ε
a0(t)x0

t dt+
σ√
ε

dWt, (4.49)

where a0(t) = κa(t) satisfies a0(t) 6 f(x, t)/x in D(κ). The following lemma shows that
this choice of a0(s) implies that |xs| > |x0

s| holds as long as xs does not return to zero
(Fig. 3). This implies that if x0

s does not return to zero before time t, then xs is likely to
leave D(κ) before time t without returning to zero.

Lemma 4.8. Let t0 >
√
ε and assume that 0 < x0 < x̃(t0). We define

D+(κ) =
{

(x, s) :
√
ε 6 s 6 t and 0 < x < x̃(s)

}
(4.50)

and denote by τD+(κ) the first exit time of xs from D+(κ). Let τ0 be the time of first return
to zero of x0

s in [t0, t], where we set τ0 =∞ if x0
s > 0 for all s ∈ [t0, t]. Then xs > x0

s for
all s 6 τD+(κ) ∧ t and

Pt0,x0
{

0 < xs < x̃(s) ∀s ∈ [t0, t], τ
0 =∞

}
6 Pt0,x0

{
0 < x0

s < x̃(s) ∀s ∈ [t0, t]
}

6
x̃(t)

√
a0(t)√
πσ

e−κα(t,t0)/ε√
1− e−2κα(t,t0)/ε

.
(4.51)
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1

Figure 3. Assume the path xt exits the region S at time τS , say by passing through the
upper boundary of S. We introduce a process x0t , starting on the same boundary at time
τS , which obeys the linear SDE (4.49). Let τ0 be the time of first return to zero of x0t .
Then xt lies above x0t for τS < t 6 τ0. In case xt also becomes negative, the two processes
may cross each other. The probability of x0t ever returning to zero is bounded by σ2. If
x0t does not return to zero, xt is likely to leave D = D(κ).

Proof:

1. Let g(x, s) = f(x, s) − a0(s)x. By assumption, g(x, s) is non-negative for (x, s) ∈
D+(κ). The difference zs = xs − x0

s satisfies the equation

zs = zt0 +
1

ε

∫ s

t0

[
g(xu, u) + a0(u)zu

]
du (4.52)

with zt0 = 0. Since g(xs, s) > 0 for t0 6 s 6 τD+(κ) ∧ t,

zs > zt0 +
1

ε

∫ s

0
a0(u)zu du, (4.53)

follows for all such s and, therefore, Gronwall’s lemma yields

zs > zt0 eκα(s,t0)/ε = 0 for all s ∈ [t0, τD+(κ) ∧ t]. (4.54)

This shows xs > x0
s for those s. Now assume τD+(κ) = ∞ and τ0 = ∞. Then, (4.54)

implies that 0 < x0
s 6 xs < x̃(s) for all s 6 t, which shows the first inequality in

(4.51).
2. x0

s being distributed according to a normal law, we have

Pt0,x0
{

0 < x0
s < x̃(s) ∀s ∈ [t0, t]

}
6 Pt0,x0

{
0 < x0

t < x̃(t)
}

6
x̃(t)√

2πv0(t, t0)
,

(4.55)

where the variance v0(t, t0) of x0
t can be estimated by Lemma 4.6. This proves the

second inequality in (4.51).

The previous lemma is useful only if we can control the probability that the solution x0
t

of the linearized equation returns to zero. The following result estimates this probability
and its density.
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Lemma 4.9. Let t0 >
√
ε and assume that x0

t0 = ρ > σ/
√
a0(t0). Denote by τ0 the time

of the first return of x0
t to zero. Then we have

Pt0,ρ{τ0 < t} 6 Pt0,ρ{τ0 <∞} 6 e−a0(t0)ρ2/σ2
(4.56)

d

dt
Pt0,ρ{τ0 < t} 6 2√

π

√
a0(t0)

ρ

σ
e−a0(t0)ρ2/σ2 1

ε

√
a0(t)a0(t0)

e−2κα(t,t0)/ε√
1− e−2κα(t,t0)/ε

. (4.57)

Proof:

1. Since by symmetry, Pτ0,0{x0
t > 0} = 1

2 on {τ0 < t}, we have by the strong Markov
property

Pt0,ρ{x0
t > 0|τ0 < t} =

1

2
. (4.58)

We now observe that

Pt0,ρ{x0
t > 0} = Pt0,ρ{x0

t > 0, τ0 > t}+ Pt0,ρ{x0
t > 0, τ0 < t}

= Pt0,ρ{τ0 > t}+ Pt0,ρ{x0
t > 0|τ0 < t}Pt0,ρ{τ0 < t}

= 1− Pt0,ρ{τ0 < t}+ 1
2P

t0,ρ{τ0 < t}
= 1− 1

2P
t0,ρ{τ0 < t},

(4.59)

which implies

Pt0,ρ{τ0 < t} = 2
[
1− Pt0,ρ{x0

t > 0}
]

= 2Pt0,ρ{x0
t < 0}. (4.60)

2. By Lemma 4.6, the variance v0(t, t0) of x0
t satisfies

Ξ =
ρ2 e2κα(t,t0)/ε

2v0(t, t0)
> a0(t0)

ρ2

σ2
, (4.61)

and we thus have

Pt0,ρ{x0
t < 0} =

1√
2πv0(t, t0)

∫ 0

−∞
exp
{
−(x− ρ eκα(t,t0)/ε)2

2v0(t, t0)

}
dx

=
1√
2π

∫ − ρ eκα(t,t0)/ε√
v0(t,t0)

−∞
e−y

2/2 dy 6
1

2
e−Ξ, (4.62)

which proves (4.56), using (4.60) and (4.61).
3. In order to compute the derivative of Pt0,ρ{x0

t < 0}, we first note that

d

dt
v0(t, t0) =

σ2

ε
+

2a0(t)

ε
v0(t, t0). (4.63)

Differentiating the second line of (4.62), we get

d

dt
Pt0,ρ{x0

t < 0} =
1√
2π

exp

{
−ρ

2 e2κα(t,t0)/ε

2v0(t, t0)

}
d

dt

[
−ρ eκα(t,t0)/ε√

v0(t, t0)

]
=

1√
2π

e−Ξ ρ

2

σ2

ε

eκα(t,t0)/ε

v0(t, t0)3/2

=
1√
2π

1

ρ

σ2

ε

e−κα(t,t0)/ε√
v0(t, t0)

Ξ e−Ξ . (4.64)

Since Ξ > a0(t0)ρ2/σ2 > 1 and Ξ e−Ξ is decreasing for Ξ > 1, we obtain the second
bound (4.57) by using again (4.60) and Lemma 4.6.
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Assume for the moment that x0
t starts “on the border” of S, i.e. in ρ(t0) = h/

√
a(t0) =√

κh/
√
a0(t0). Then, by our choice h = (2/κ)1/2σ

√
|log σ|, Estimate (4.56) shows that

the probability for x0
t to return to zero cannot exceed e−a0(t0)ρ2/σ2

= σ2.
We are now ready to prove the main estimate on the first exit time τD(κ), which is the

most important of our results. Since the proof is rather involved, we restate Theorem 2.11
here for convenience.

Proposition 4.10 (Theorem 2.11). Let t0 >
√
ε and |x0| 6 x̃(t0). Then

Pt0,x0
{
τD(κ) > t

}
6 C0 x̃(t)

√
a(t)
|log σ|
σ

(
1 +

α(t, t0)

ε

)
e−κα(t,t0)/ε√

1− e−2κα(t,t0)/ε
, (4.65)

where C0 > 0 is a (numerical) constant.

The strategy of the proof can be summarized as follows. The paths are likely to leave
S after a short time. Then there are two possibilities. Either the solution x0

t of the
linear equation (4.49) does not return to zero, and Lemma 4.8 shows that xt is likely to
leave D(κ) as well. Or x0

t does return to zero. Using the (strong) Markov property and
integrating over the distribution of the time of such a (first) return to zero, we obtain an
integral equation for an upper bound on the probability of remaining in D(κ). Finally,
this integral equation is solved by iterations.

Proof of Proposition 4.10.

1. We first introduce some notations. Let

Φt(s, x) = Ps,x
{
τD(κ) > t

}
= Ps,x

{
sup
s6u6t

|xu|
x̃(u)

< 1
}
, (4.66)

and define ρ(t) = h/
√
a(t). We may assume that ρ(t) 6 x̃(t) for all t (otherwise we

replace x̃ by its maximum with ρ). For t > s >
√
ε we define the quantities

qt(s) = sup
|x|6ρ(s)

Φt(s, x), (4.67)

Qt(s) = sup
ρ(s)6|x|6x̃(s)

Φt(s, x). (4.68)

2. Let us first consider the case |x| 6 ρ(s). Recall that S = {(x, t) : |x| < ρ(t)}. By
Proposition 4.7 and the strong Markov property, we have the estimate

Φt(s, x) = Ps,x
{
τS > t

}
+ Ps,x

{
τS < t, sup

τS6u6t

|xu|
x̃(u)

< 1
}

6
(h
σ

)2
e−κα(t,s)/ε +Es,x

{
1{τS<t}P

τS ,xτS

{
sup

τS6u6t

|xu|
x̃(u)

< 1
}}

6
(h
σ

)2
e−κα(t,s)/ε +Es,x

{
1[s,t)(τS)Qt(τS)

}
. (4.69)

The second term can be estimated by integration by parts, see Lemma A.1. Let
Qt(u) be any upper bound on Qt(u) satisfying the hypotheses on g in that lemma.
Since Qt(u) 6 Qt(t) = 1, we may assume that Qt(t) = 1. Application of (A.1) with
G(u) = 1− (h/σ)2 e−κα(u,s)/ε shows that the second term in (4.69) is bounded by(h

σ

)2
e−κα(t,s)/ε +κ

(h
σ

)2
∫ t

s
Qt(u)

a(u)

ε
e−κα(u,s)/ε du. (4.70)
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We have thus obtained the inequality

qt(s) 6 2
(h
σ

)2
e−κα(t,s)/ε +κ

(h
σ

)2
∫ t

s
Qt(u)

a(u)

ε
e−κα(u,s)/ε du. (4.71)

3. Consider now the case |x| ∈ [ρ(s), x̃(s)]. Since x 7→ f(x, t) is an odd function,
Φt(s, x) = Φt(s,−x) follows. Hence we may assume that x > 0. We consider the
linear SDE (4.49) with initial condition x0

s = x, and denote by τ0 the time of the first
return of x0

t to zero. Then we have

Φt(s, x) = Ps,x
{
τ0 > t, sup

s6u6t

|xu|
x̃(u)

< 1
}

+ Ps,x
{
τ0 < t, sup

s6u6t

|xu|
x̃(u)

< 1
}
, (4.72)

and Lemma 4.8 yields

Ps,x
{
τ0 > t, sup

s6u6t

|xu|
x̃(u)

< 1
}
6
x̃(t)

√
κa(t)√
πσ

e−κα(t,s)/ε√
1− e−2κα(t,s)/ε

. (4.73)

The second term in (4.72) can be estimated using the density of the random variable
τ0, for which Lemma 4.9 gives the bound

ψτ0(u) =
d

du
Ps,x

{
τ0 < u

}
6

2κ3/2

√
π

h

σ
e−κh

2/σ2 a(u)

ε

e−2κα(u,s)/ε√
1− e−2κα(u,s)/ε

. (4.74)

We obtain

Ps,x
{
τ0 < t, sup

s6u6t

|xu|
x̃(u)

< 1
}
6 Es,x

{
1{τ0<t}Pτ

0,xτ0
{

sup
τ06u6t

|xu|
x̃(u)

< 1
}}

=

∫ t

s
ψτ0(u)Φt(u, xu) du

6
∫ t

s
ψτ0(u)

[
qt(u) +Qt(u)

]
du. (4.75)

4. Before inserting the estimate (4.71) for qt(u), we shall introduce some notations and
provide bounds for certain integrals needed in the sequel. Let

g(t, s) =
e−κα(t,s)/ε√

1− e−2κα(t,s)/ε
(4.76)

and φ = e−κα(t,s)/ε. Then∫ t

s

a(u)

ε
e−κα(u,s)/ε g(u, s) du 6

∫ t

s

a(u)

ε
g(u, s) du 6

π

2κ
6

2

κ
(4.77)∫ t

s

a(u)

ε
e−κα(u,s)/ε g(t, u)g(u, s) du =

φ

2κ

∫ 1

0

dx√
x(1− x)

=
π

2κ
φ <

2

κ
φ (4.78)

∫ t

s

a(u)

ε
e−κα(u,s)/ε g(t, u) du 6

φ

κ

∫ √1−φ2

0

1

1− x2
dx =

φ

κ

1

2
log

1 +
√

1− φ2

1−
√

1− φ2

6
φ

κ
log

2

φ
6
[1

κ
+
α(t, s)

ε

]
e−κα(t,s)/ε, (4.79)

where we used the changes of variables e−2κα(u,s)/ε = x(1 − φ2) + φ2 in (4.78) and
x2 = 1− e−2κα(t,u)/ε in (4.79).
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5. Now we are ready to return to our estimate on
∫ t
s ψτ0(u)qt(u) du, compare (4.75).

Inserting the bound (4.71) on qt(u) yields two summands, the first one being

2
(h
σ

)2
∫ t

s
ψτ0(u) e−κα(t,u)/ε du

6
4κ3/2

√
π

(h
σ

)3
e−κh

2/σ2

∫ t

s

a(u)

ε

e−2κα(u,s)/ε√
1− e−2κα(u,s)/ε

e−κα(t,u)/ε du

6 2
√
πκ
(h
σ

)3
e−κh

2/σ2
e−κα(t,s)/ε, (4.80)

where we used (4.77) to bound the integral. The second summand is

κ
(h
σ

)2
∫ t

s
ψτ0(u)

∫ t

u
Qt(v)

a(v)

ε
e−κα(v,u)/ε dv du

6 κ
√
πκ
(h
σ

)3
e−κh

2/σ2

∫ t

s
Qt(v)

a(v)

ε
e−κα(v,s)/ε dv, (4.81)

where we used (4.77) again.
We can now collect terms. Introducing the abbreviations

C = max
{ x̃(t)

√
κa(t)√
πσ

, 1
}

and c =
√
πκ
(h
σ

)3
e−κh

2/σ2
, (4.82)

the previous inequalities imply that

Qt(s) 6 Cg(t, s) + c e−κα(t,s)/ε +c

∫ t

s
Qt(u)

a(u)

ε
e−κα(u,s)/ε

[
1 + g(u, s)

]
du. (4.83)

6. We will now iterate the bounds on Qt(s). This will show the existence of two series
{an}n>1 and {bn}n>1 such that

Qt(s) 6 Cg(t, s) + an e−κα(t,s)/ε +bn ∀n. (4.84)

To do so, we need to assume that

c
(α(T, t0)

ε
+

2

κ

)
=
√
πκ
(α(T, t0)

ε
+

2

κ

)(h
σ

)3
e−κh

2/σ2
6

1

2
. (4.85)

By our choice (4.37) of h, this condition reduces to

1

κ
σ|log σ|3/4 = O(

√
ε), (4.86)

which is satisfied for small enough ε by our assumption (4.48) on σ.
Using the trivial bound Qt(u) = 1 in (4.83), we find that (4.84) holds with a1 = c and
b1 = 3c/κ. Inserting (4.84) into (4.83) again, we get

Qt(s) 6 Cg(t, s) + c e−κα(t,s)/ε

+ c

∫ t

s

[
Cg(t, u) + an e−κα(t,u)/ε +bn

]a(u)

ε
e−κα(u,s)/ε

[
1 + g(u, s)

]
du

6 Cg(t, s) + c

[
1 + C

(α(t, s)

ε
+

3

κ

)
+ an

(α(t, s)

ε
+

2

κ

)]
e−κα(t,s)/ε +

3c

κ
bn.

(4.87)
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By induction, we find

an+1 = c
[
1 + C

(α(t, s)

ε
+

3

κ

)] n−1∑
j=0

[
c
(α(t, s)

ε
+

2

κ

)]j
+ c
[
c
(α(t, s)

ε
+

2

κ

)]n
6
[
1 + C

(α(t, s)

ε
+

3

κ

)] c

1− c
(α(t,s)

ε + 2
κ

) (4.88)

bn+1 =
(3c

κ

)n+1
(4.89)

as a possible choice, where we have used the fact that c(α(t, s)/ε + 2/κ) 6 1
2 by the

hypothesis (4.85). Taking the limit n→∞, and using c 6 κ
4 6 1

4 , we obtain

Qt(s) 6 Cg(t, s) +
1

2

(
1 + 3C

)
e−κα(t,s)/ε 6 3Cg(t, s). (4.90)

In order to obtain also a bound on qt(s), we insert the above bound on Qt(s) into
(4.71), which yields

qt(s) 6 2
(h
σ

)2
e−κα(t,s)/ε +3κC

(h
σ

)2
∫ t

s

a(u)

ε
e−κα(u,s)/ε g(t, u) du

6
[
2 + 3κC

(1

κ
+
α(t, s)

ε

)](h
σ

)2
e−κα(t,s)/ε (4.91)

by (4.79). This proves the proposition, and therefore Theorem 2.11, by taking the
sum of the above estimates on qt(s) and Qt(s).

4.4 Approach to x?(t)

We finally turn to the behaviour after the time τ = τD(κ) >
√
ε, when xt leaves the set

D(κ). By symmetry, we can restrict the analysis to the case xτ = x̃(τ). Our aim is to
prove that with high probability, xt soon reaches a neighbourhood of x?(t). From now on,
we always assume κ ∈ (1/2, 2/3).

We start by analysing the solution xdet,τ
t of the deterministic equation

ε
dx

dt
= f(x, t) (4.92)

with initial condition xdet,τ
τ = x̃(τ). Recall from (2.45) that ã(t) = ∂xf(x̃(t), t) 6 −ηa(t),

for any constant η satisfying η 6 2− 3κ− OT (1).

Proposition 4.11. For sufficiently small ε and T ,

x̃(t) 6 xdet,τ
t 6 x?(t) (4.93)

0 6 x?(t)− xdet,τ
t 6 C

[
ε

t3/2
+
(
x?(τ)− x̃(τ)

)
e−ηα(t,τ)/ε

]
(4.94)

0 6 x
det,
√
ε

t − xdet,τ
t 6

(
xdet,

√
ε

τ − x̃(τ)
)

e−ηα(t,τ)/ε (4.95)

for all t ∈ [τ, T ] and all τ ∈ [
√
ε, T ], where C > 0 is a constant depending only on f .
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Proof:

1. Whenever xdet,τ
t = x?(t), we have

ε
d

dt

(
x?(t)− xdet,τ

t

)
= ε

dx?(t)

dt
− f(x?(t), t) = ε

dx?(t)

dt
> 0, (4.96)

which shows that xdet,τ
t can never become larger than x?(t). Similarly, whenever

xdet,τ
t = x̃(t), we get

ε
d

dt

(
xdet,τ
t − x̃(t)

)
= f(x̃(t), t)− εdx̃(t)

dt

= κx̃(t)t
[
1 + OT (1)

]
− εx̃(t)

2t

[
1 + OT (1)

]
> 0

(4.97)

provided κ > 1
2 [1 + OT (1)], which shows that xdet,τ

t can never become smaller than
x̃(t). This completes the proof of (4.93).

2. We now introduce the difference ydet,τ
t = x?(t) − xdet,τ

t . Using Taylor’s formula, one

immediately obtains that ydet,τ
t satisfies the ODE

ε
dy

dt
= a?(t)y + b?(y, t) + εx?′(t) (4.98)

where

a?(t) 6 −a?0t
0 6 b?(y, t) 6M?

√
t y2

x?′(t) 6
K?

√
t
,

(4.99)

with a?0 = 2[1 + OT (1)], M? = 3[1 + OT (1)] and K? = 1
2 [1 + OT (1)]. We first consider

the particular solution ŷdet
t of (4.98) starting at time 4

√
ε in ŷdet

4
√
ε

= 0. By (4.96), we
know that ŷdet

t > 0 for all t > 4
√
ε. We will use the fact that∫ t

τ

1√
s

e−a
?
0(t2−s2)/4ε ds 6

∫ t

τ

1√
s

e−a
?
0t(t−s)/4ε ds

6
4ε

a?0t
3/2

∫ ξ

0

e−u√
1− u/ξ

du < c0
ε

t3/2
,

(4.100)

where c0 = 8/a?0. We have used the transformation s = t − 4εu/(a?0t), introduced
ξ = a?0t

2/4ε and bounded the last integral by 2. We now introduce the first exit time
τ̂ = inf{t > 4

√
ε : ŷdet

t > c0εt
−3/2}. For 4

√
ε 6 t 6 τ̂ , we have

a?(t)y + b?(y, t) 6
(
−a?0 t+M?

√
t c0

ε

t3/2

)
y 6 −a?0

(
1− c0M

?

16a?0

)
ty. (4.101)

Since M?/(a?0)2 = 3
4 [1+OT (1)], the term in brackets can be assumed to be larger than

1
2 . Hence (4.98) shows that

ε
dŷdet

dt
6 −a

?
0

2
tŷdet + ε

K?

√
t
, (4.102)
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which implies

ŷdet
t 6 K?

∫ t

τ

e−a
?
0(t2−s2)/4ε

√
s

ds < K?c0
ε

t3/2
. (4.103)

Since K? = 1
2 [1 + OT (1)], we obtain ŷdet

t < c0εt
−3/2, and thus τ̂ =∞. This shows

0 6 ŷdet
t 6 K?c0

ε

t3/2
for 4

√
ε 6 t 6 T . (4.104)

3. Let τ >
√
ε and 0 6 y1 < y2 6 x?(τ)− x̃(τ) be given. Let y

(1)
t and y

(2)
t be solutions of

(4.98) with initial conditions y
(1)
τ = y1 and y

(2)
τ = y2, respectively. Then there exists

a θ ∈ [0, 1] such that the difference zt = y
(2)
t − y

(1)
t satisfies

ε
dz

dt
= −∂xf(x?(t)− y(1)

t − θz, t) 6 −ηa(t)z, (4.105)

where we have used (4.93) and the definition of η in (2.45). It follows that

0 6 y
(2)
t − y

(1)
t 6 (y2 − y1) e−ηα(t,τ)/ε, (4.106)

which proves (4.95) in particular. If τ > 4
√
ε, we can use the relation x?(t)− xdet,τ

t =

ŷdet
t + (ydet,τ

t − ŷdet
t ) to show that

x?(t)− xdet,τ
t 6 K?c0

ε

t3/2
+
(
x?(τ)− x̃(τ)

)
e−ηα(t,τ)/ε, (4.107)

which proves (4.94) for τ > 4
√
ε. Finally, if

√
ε 6 τ 6 4

√
ε, we can use the fact that

x?(t)−xdet,τ
t 6 x?(t)−xdet,4

√
ε

t to prove that (4.94) holds for some constant C > 0.

Let us now consider the process yt = yτt = xt−xdet,τ
t , starting at time τ in yτ = 0, which

describes the deviation due to noise from the deterministic solution xdet,τ
t . It satisfies the

SDE

dyt =
1

ε

[
aτ (t)yt + bτ (yt, t)

]
dt+

σ√
ε

dWt, (4.108)

where we have introduced

aτ (t) = ∂xf(xdet,τ
t , t)

bτ (y, t) = f(xdet,τ
t + y, t)− f(xdet,τ

t )− aτ (t)y.
(4.109)

The following bounds are direct consequences of Taylor’s formula and Proposition 4.11:

a?(t) 6 aτ (t) 6 ã(t) (4.110)

aτ (t) = a?(t) +O
(ε
t

)
+O(t e−ηα(t,τ)/ε) (4.111)

(aτ )′(t) = O
(

1 +
t2

ε
e−ηα(t,τ)/ε

)
(4.112)

|bτ (y, t)| 6 3My2
(
x?(t) + |y|

)
, valid for x?(t) + |y| 6 d. (4.113)

For comparison, we will also consider the linear SDE

dy0
t =

1

ε
aτ (t)y0

t dt+
σ√
ε

dWt. (4.114)
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Let ατ (t, s) =
∫ t
s a

τ (u) du and denote by

vτ (t) =
σ2

ε

∫ t

τ
e2ατ (t,s)/ε ds (4.115)

the variance of y0
t . Again we introduce and investigate a function

ζτ (t) =
1

2|ã(τ)|
e2ατ (t,τ)/ε +

1

ε

∫ t

τ
e2ατ (t,s)/ε ds. (4.116)

Lemma 4.12. The function ζτ (t) satisfies the following relations for τ 6 t 6 T :

ζτ (t) =
1

2|ã(t)|
+O

( ε
t3

)
+O

(1

t
e−ηα(t,τ)/ε

)
(4.117)

1

2|a?(t)|
6 ζτ (t) 6

1

2|ã(τ)|
(4.118)

(ζτ )′(t) 6
1

ε
. (4.119)

Proof:

1. By integration by parts, we find

ζτ (t) =
1

2|ã(t)|
− 1

2

∫ t

τ

(aτ )′(s)

aτ (s)2
e2ατ (t,s)/ε ds. (4.120)

The relation |aτ (s)| > |ã(s)| > η|a(s)| together with (4.112) yields∣∣∣∣∫ t

τ

(aτ )′(s)

aτ (s)2
e2ατ (t,s)/ε ds

∣∣∣∣ 6 const

∫ t

τ

( 1

s2
+

1

ε
e−ηα(s,τ)/ε

)
e−2ηα(t,s)/ε ds. (4.121)

The second term in brackets gives a contribution of order 1
t e−ηα(t,τ)/ε. In order to

estimate the contribution of the first term, we perform the change of variables u =
η(t2 − s2)/2ε, thereby obtaining∫ t

τ

1

s2
e−η(t2−s2)/2ε ds =

ε

ηt3

∫ ξ−ξ0

0

e−u

(1− u/ξ)3/2
du 6

ε

ηt3

[
23/2 + 2

ξ3/2 e−ξ/2√
ξ0

]
,

(4.122)
where ξ = ηt2/2ε and ξ0 = ητ2/2ε. The last inequality is obtained by splitting the
integral at ξ/2. Using the fact that t3 e−ηt

2/4ε 6 (6ε/η)3/2 e−3/2 for all t > 0, we reach
the conclusion that this integral is bounded by a constant times ε/t3, which completes
the proof of (4.117).

2. We now use the fact that ζτ (t) solves the ODE

dζτ

dt
=

1

ε

(
2aτ (t)ζτ + 1

)
, ζτ (τ) =

1

2|ã(τ)|
. (4.123)

Then, (4.119) is an immediate consequence of this relation, and (4.118) is obtained
from the fact that

dζτ (t)

dt
=

1

ε

(
−|a

τ (t)|
|ã(τ)|

+ 1
)
6 0, (4.124)

whenever ζτ (t) = 1/2|ã(τ)|, and

d

dt

(
ζτ (t)− 1

2|a?(t)|

)
=

1

ε

(
−|a

τ (t)|
|a?(t)|

+ 1
)
− a?′(t)

2a?(t)2
> 0, (4.125)

whenever ζτ (t) = 1/2|a?(τ)|. Here we used (4.110) and the monotonicity of ã(t) for
small t.
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We note that Lemma 4.12 and the bounds (4.110) on aτ imply the existence of constants
c+ > c− > 0, depending only on f and T , such that

c−
t

6 ζτ (t) 6
c+

t
∀t ∈ [τ, T ]. (4.126)

We can now easily prove that y0
t remains in a strip of width h

√
ζτ with high probability,

in much the same way as in Proposition 3.4.

Proposition 4.13. For sufficiently small T and ε, and all t ∈ [τ, T ],

Pτ,0
{

sup
τ6s6t

|y0
s |√
ζτ (s)

> h
}
6 Cτ (t, ε) exp

{
−1

2

h2

σ2

[
1− r(ε)

]}
, (4.127)

where r(ε) = O(ε) and

Cτ (t, ε) =
|ατ (t, τ)|

ε2
+ 2. (4.128)

Proof: Let K = d|ατ (t, τ)|/2ε2e and define a partition τ = u0 < · · · < uK = t of [τ, t] by

|ατ (uk, τ)| = 2ε2k, k = 1, . . . ,K − 1. (4.129)

Since aτ (s) 6 ã(s) 6 −ηs/2, we obtain uk − uk−1 6 4ε2/(ηuk−1) for all k. Now we can
proceed as in the proof of Proposition 3.4.

We can now compare the solutions of the linear and the nonlinear equation. To do so,
we define the events

Ωt(h) =
{
ω : |yτs | < h

√
ζτ (s) ∀s ∈ [τ, t]

}
(4.130)

Ω0
t (h) =

{
ω : |y0

s | < h
√
ζτ (s) ∀s ∈ [τ, t]

}
. (4.131)

The following proposition shows that yτt and y0
t differ only slightly.

Proposition 4.14. Let γ = 1 ∨ 48M(2 +
√
c+)c2

+/
√
c− and assume h < τ/γ as well as

h 6 [d− x?(t)]
√
τ/(2
√
c+). Then

Ωt(h)
a.s.
⊂ Ω0

t

([
1 + γ

h

τ

]
h
)

(4.132)

Ω0
t (h)

a.s.
⊂ Ωt

([
1 + γ

h

τ

]
h
)
. (4.133)

The proof is similar to the one of the corresponding result in the case of nonbifurcating
equilibria, cf. Proposition 3.7.

Now, the following corollary is a direct consequence of the two preceding propositions.

Corollary 4.15. There exists h0 such that if h < h0τ , then

Pτ,x̃(τ)

{
sup
τ6s6t

|xs − xdet,τ
s |√

ζτ (s)
> h

}
6 Cτ (t, ε) exp

{
−1

2

h2

σ2

[
1−O(ε)−O

(h
τ

)]}
, (4.134)

where Cτ (t, ε) is given by (4.128).
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Appendix

The following lemma provides an estimate on expectation values, as used in Subsection 4.3.
It is based on integration by parts.

Lemma A.1. Let τ > s0 be a random variable satisfying Fτ (s) = P{τ < s} > G(s) for
some continuously differentiable function G. Then

E
{

1[s0,t)(τ)g(τ)
}
6 g(t)

[
Fτ (t)−G(t)

]
+

∫ t

s0

g(s)G′(s) ds (A.1)

holds for all t > s0 and all functions 0 6 g 6 1 satisfying the two conditions

• there exists an s1 ∈ (s0,∞] such that g is continuously differentiable and increasing
on (s0, s1);

• g(s) = 1 for all s > s1.

Proof: First note that for all t 6 s1,∫ t

s0

g′(s)P{τ > s} ds = E
{∫ t∧τ

s0

g′(s) ds
}

= E{g(t ∧ τ)} − g(s0)

= E{1[s0,t)(τ)g(τ)}+ g(t)P{τ > t} − g(s0) (A.2)

which implies, by integration by parts,

E{1[s0,t)(τ)g(τ)} =

∫ t

s0

g′(s)
[
1− Fτ (s)

]
ds− g(t)

[
1− Fτ (t)

]
+ g(s0)

6
∫ t

s0

g(s)G′(s) ds+ g(t)
[
Fτ (t)−G(t)

]
, (A.3)

where we have used Fτ (s) > G(s) and G(s0) 6 F (s0) = 0. This proves the assertion in
the case t 6 s1. In the case t > s1, we have

E{1[s0,t)(τ)g(τ)} = E{1[s0,s1)(τ)g(τ)}+ P{τ ∈ [s1, t)}

6
∫ s1

s0

g(s)G′(s) ds+ g(s1)
[
Fτ (s1)−G(s1)

]
+
[
Fτ (t)− Fτ (s1)

]
=

∫ t

s0

g(s)G′(s) ds−
[
G(t)−G(s1)

]
+
[
Fτ (t)−G(s1)

]
, (A.4)

where we have used that g(s) = 1 holds for all s ∈ [s1, t]. This proves the assertion for
t > s1.
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