Metastability and stochastic resonance in slow-fast systems with noise

Nils Berglund

Centre de Physique Théorique - CNRS Marseille Luminy http://berglund.univ-tln.fr

Joint work with Barbara Gentz, WIAS, Berlin

AIMS Conference, Poitiers, June 2006

Ice Ages

Milankovitch Factors Orbital Eccentricity

Croll 1875 Milankovitch 1930s

Ice Ages

Stochastic resonance

Energy-balance model: $x \sim$ temperature

$$\dot{x} = -\frac{\partial}{\partial x} V(x)$$

V(x) double-well potential, e.g. $V(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2$ With periodic forcing: $V(x) \mapsto V(x,t) = \frac{1}{4}x^4 - \frac{1}{2}x^2 - Ax \cos \varepsilon t$

Random influence of weather

(Benzi/Sutera/Vulpiani and Nicolis/Nicolis 1981):

$$\mathrm{d}x_t = -\frac{\partial}{\partial x} V(x_t, t) \,\mathrm{d}t + \sigma \,\mathrm{d}W_t$$

Stochastic resonance

$$dx_t = -\frac{\partial}{\partial x} \left[\frac{1}{4} x^4 - \frac{1}{2} x^2 - Ax \cos \varepsilon t \right] dt + \sigma dW_t$$
$$= \left[-x^3 + x + A \cos \varepsilon t \right] dt + \sigma dW_t$$

Sample paths $\{x_t\}_t$ for $\varepsilon = 0.001$:

Equilibrium branches

$$dx_t = \underbrace{\left[-x^3 + x + A\cos\varepsilon t\right]}_{f(x,\varepsilon t)} dt + \sigma \, dW_t$$

Time change $\varepsilon t \mapsto t$

$$\mathrm{d}x_t = \frac{1}{\varepsilon} f(x,t) \,\mathrm{d}t + \frac{\sigma}{\sqrt{\varepsilon}} \,\mathrm{d}W_t$$

Equilibrium branches: $f(x^{\star}(t), t) = 0$ $A < A_{c} = 2/3\sqrt{3} \approx 0.385$:

Dynamics near a stable branch

$$\mathrm{d}x_t = rac{1}{arepsilon} f(x_t, t) \; \mathrm{d}t + rac{\sigma}{\sqrt{arepsilon}} \; \mathrm{d}W_t$$

Stable equil. branch: $f(x^{\star}(t), t) = 0$, $a^{\star}(t) = \partial_x f(x^{\star}(t), t) \leq -a_0$ Adiabatic solution: $\bar{x}(t, \varepsilon) = x^{\star}(t) + \mathcal{O}(\varepsilon)$ $\mathcal{B}(h)$: strip of width $\simeq h/\sqrt{|a^{\star}(t)|}$ around $\bar{x}(t, \varepsilon)$.

Theorem: [B. & G., PTRF 2002]

$$\mathbb{P}\left\{\text{leaving }\mathcal{B}(h) \text{ before time } t\right\} \simeq \sqrt{\frac{2}{\pi}} \frac{1}{\varepsilon} \left| \int_0^t a^*(s) \, \mathrm{d}s \right| \frac{h}{\sigma} \, \mathrm{e}^{-h^2/2\sigma^2}$$

Case $A = A_{\rm C}$: Transcritical bifurcation locally $dx_t = \frac{1}{\varepsilon}(-x^2 + t^2 + ...) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$ Det. case $\sigma = 0$: Solutions stay $\varepsilon^{1/2}$ above bif. point

Theorem: [B. & G., Ann. App. Probab. 2002]

- 1. If $\sigma \ll \sigma_{\rm C}$: Paths likely to stay in $\mathcal{B}(h)$, transition probability $\leq e^{-c\sigma_{\rm C}^2/\sigma^2}$.
- 2. If $\sigma \gg \sigma_c$: Transition typically for $t \simeq -\sigma^{2/3}$ transition probability $\ge 1 - e^{-c\sigma^{4/3}/\varepsilon |\log \sigma|}$

Case $A = A_{\rm C} - \delta$: Avoided transcritical bifurcation locally $dx_t = \frac{1}{\varepsilon}(-x^2 + \delta + t^2 + ...) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$ Det. case $\sigma = 0$: Solutions stay $(\delta \lor \varepsilon)^{1/2}$ above bif. point

Theorem: [B. & G., Ann. App. Probab. 2002]

- 1. If $\sigma \ll \sigma_{\rm C}$: Paths likely to stay in $\mathcal{B}(h)$, transition probability $\leq e^{-c\sigma_{\rm C}^2/\sigma^2}$.
- 2. If $\sigma \gg \sigma_c$: Transition typically for $t \simeq -\sigma^{2/3}$ transition probability $\ge 1 - e^{-c\sigma^{4/3}/\varepsilon |\log \sigma|}$

Case $A > A_c$: Saddle-node bifurcation locally $dx_t = \frac{1}{\varepsilon}(-x^2 - t + ...) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t$ Det. case $\sigma = 0$: Solutions stay $\varepsilon^{1/3}$ above bif. point until $t \simeq \varepsilon^{2/3}$.

Theorem: [B. & G., Nonlinearity 2002]

If σ ≪ σ_c: Paths likely to stay in B(h) until time ε^{2/3} after bifurcation, maximal spreading σ/ε^{1/6}.
If σ ≫ σ_c: Transition typically for t ≍ -σ^{4/3} transition probability ≥ 1 - e^{-cσ²/ε|log σ|}

Global behaviour

Critical noise intensity: $\sigma_{\rm C} = (\delta \vee \varepsilon)^{3/4}$, $\delta = A_{\rm C} - A$

 $\sigma \ll \sigma_{\rm C}$: transitions unlikely

 $\sigma \gg \sigma_{\rm C}$: synchronisation

Residence-time distributions

Dansgaard–Oeschger events:

Model equation for A = 0.24, $\sigma = 0.2$:

Residence-time distribution

q(t): probability density of time between transitions Without forcing (A = 0): $q(t) \sim$ exponential. With forcing $(A \gg \sigma^2)$:

Theorem: [B. & G., Europhys Letters 2005]

$$q(t) \simeq f_{\text{trans}}(t) \frac{e^{-t/T_{\text{K}}}}{T_{\text{K}}} \frac{\lambda T}{2} \sum_{k=-\infty}^{\infty} \frac{1}{\cosh^2(\lambda(t+T/2-kT))}$$

T: forcing period T_{K} : Kramers' time, $T_{\mathsf{K}} \simeq \frac{1}{\sigma} e^{2H/\sigma^2}$ λ : Lyapunov exponent

References

- N. B. & B. G, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields 122, 341–388 (2002)
- _____, A sample-paths approach to noiseinduced synchronization: Stochastic resonance in a double-well potential, Ann. Appl. Probab. **12**, 1419-1470 (2002)
- _____, The effect of additive noise on dynamical hysteresis, Nonlinearity **15**, 605–632 (2002)
- _____, Universality of first-passage and residence-time distributions in non-adiabatic stochastic resonance, Europhys. Letters 70, 1–7 (2005)
- _____, Noise-Induced Phenomena in Slow-Fast Dynamical Systems. A Sample-Paths Approach. Springer, Probability and its Applications, 276+xvi pages (2005)

http://berglund.univ-tln.fr/poitiers.pdf

Appendix: Pitchfork bifurcation

Theorem [B. & G., PTRF 2002]

- Paths concentrated in $\mathcal{B}(h)$ up to time $\sqrt{\varepsilon}$ Typical spreading $\sigma \varepsilon^{-1/4}$
- Paths likely to leave ${\cal D}$ at time of order $\sqrt{arepsilon} |\log \sigma|$
- Paths likely to stay in $\mathcal{A}^{ au}(h)$ after leaving \mathcal{D}