Theta functions in enumerative combinatorics Week 2: Quadrant walks

Andrew Elvey Price

Université de Bordeaux

September 2019

STRATEGY: RECURSIVE METHOD

- **Step 1:** Find a recursive decomposition of each object in your class
- Step 2: Write functional equations which characterise the generating function F(t)
- Step 3: Solve the functional equations

STRATEGY: THETA FUNCTION METHOD

- **Step 1:** Find a recursive decomposition of each object in your class
- Step 2: Write functional equations which characterise the generating function F(t)
- Step 3: Solve the functional equations using theta functions!

PROBLEMS SOLVABLE WITH THETA FUNCTIONS

- Quadrant walk models with small steps (all D-algebraic cases)
 (Bernardi, Bousquet-Mélou, Raschel)
- Square lattice walks weighted by winding number (Budd)
- Six vertex model on 4-valent maps (Kostov/Bousquet-Mélou, E.P., Zinn-Justin)
- height functions on quadrangulations NEW!
- Properly coloured triangulations NEW! (Previously shown to be D-algebraic by Tutte)
- Triangular lattice walks by winding number NEW!

LAST TIME: THE THETA FUNCTION

Definition: For $\tau, z \in \mathbb{C}$, $\operatorname{im}(\tau) > 0$,

$$\vartheta(z,\tau) = \sum_{n=-\infty}^{\infty} (-1)^n e^{\left(\frac{2n+1}{2}\right)^2 i\pi\tau + (2n+1)iz}$$

$$= 2\sum_{n=0}^{\infty} (-i)^{2n+1} e^{\left(\frac{2n+1}{2}\right)^2 i\pi\tau} \sin\left((2n+1)z\right)$$

$$= e^{\frac{\pi\tau i}{4}} \left(e^{iz} - e^{-iz}\right) \prod_{n=1}^{\infty} \left(1 - e^{2\pi\tau ni + 2iz}\right) \left(1 - e^{2\pi\tau ni - 2iz}\right) \left(1 - e^{2\pi\tau ni}\right)$$

Useful facts for fixed τ :

- $\vartheta(-z,\tau) = -\vartheta(z,\tau)$
- $\vartheta(z+\pi,\tau) = -\vartheta(z,\tau)$
- $\vartheta(z + \pi \tau, \tau) = -e^{-2iz i\pi \tau} \vartheta(z, \tau)$
- Roots of $\vartheta(z,\tau)$ form the lattice $\pi\mathbb{Z} + \pi\tau\mathbb{Z}$
- All elliptic functions f(z) with periods π and $\pi\tau$ can be written as

LAST TIME: THE THETA FUNCTION

Useful facts for fixed τ :

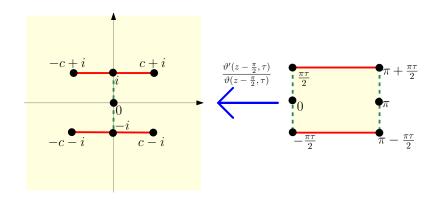
- $\bullet \ \vartheta(-z,\tau) = -\vartheta(z,\tau)$
- $\vartheta(z+\pi,\tau) = -\vartheta(z,\tau)$
- $\bullet \ \vartheta(z + \pi\tau, \tau) = -e^{-2iz i\pi\tau} \vartheta(z, \tau)$
- Roots of $\vartheta(z,\tau)$ form the lattice $\pi\mathbb{Z} + \pi\tau\mathbb{Z}$
- All elliptic functions f(z) with periods π and $\pi\tau$ can be written as

$$f(z) = c \prod_{j=1}^{k} \frac{\vartheta(z + \alpha_j, \tau)}{\vartheta(z + \beta_j, \tau)}.$$

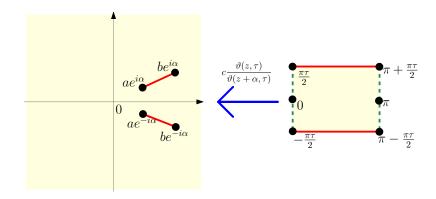
Other useful facts:

- $\bullet \ \frac{4i}{\pi} \frac{\partial}{\partial \tau} \vartheta(z,\tau) = \vartheta''(z,\tau)$
- $\vartheta(z,\tau)$ is differentially algebraic (in both variables)

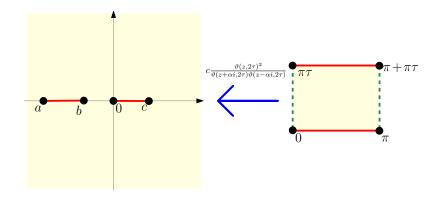
LAST TIME: CONFORMAL PARAMETRIZATIONS



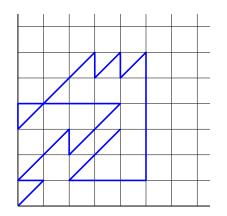
LAST TIME: CONFORMAL PARAMETRIZATIONS



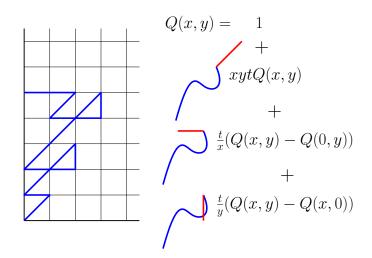
LAST TIME: CONFORMAL PARAMETRIZATIONS



Today (Part 2): Quadrant walks with small steps



$$Q(x,y) \equiv Q(t,x,y) := \sum_{a,b=0}^{\infty} \sum_{\substack{\text{paths from} \\ (0,0) \text{ to } (a,b)}} t^{\text{\#steps}} x^a y^b.$$



The generating function $Q(t, x, y) \equiv Q(x, y)$ is characterised by

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Aim: Solve this equation

The generating function $Q(t, x, y) \equiv Q(x, y)$ is characterised by

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x} \left(Q(x,y) - Q(0,y) \right) + \frac{t}{y} \left(Q(x,y) - Q(x,0) \right).$$

Aim: Solve this equation using theta functions!

QUADRANT WALKS

More generally: Take a step set $S \subset \{-1, 0, 1\}^2$ and write

$$P_S(x, y) = \sum_{(i,j) \in S} x^{i+1} y^{j+1}.$$

The generating function $Q_S(t, x, y) \equiv Q(x, y)$ is characterised by

$$xyQ(x,y) = xy + tP_S(x,y)Q(x,y) - tP_S(0,y)Q(0,y) - tP_S(x,0)Q(x,0) + tP_S(0,0)Q(0,0).$$

QUADRANT WALKS

More generally: Take a step set $S \subset \{-1,0,1\}^2$ and write

$$P_S(x, y) = \sum_{(i,j) \in S} x^{i+1} y^{j+1}.$$

The generating function $Q_S(t, x, y) \equiv Q(x, y)$ is characterised by

$$xyQ(x,y) = xy + tP_S(x,y)Q(x,y) - tP_S(0,y)Q(0,y) - tP_S(x,0)Q(x,0) + tP_S(0,0)Q(0,0).$$

Solving:

- Fix t < 1/9 and think of Q(x, y) as an analytic function of x, y (the series converges for |x|, |y| < 1).
- **Kernel method:** write K(x, y)Q(x, y) + R(x, y) = 0. Then whenever K(x, y) = 0, we have R(x, y) = 0.

$$K(x,y) = xy - tP_S(x,y),$$

$$R(x,y) = xy - tP_S(0,y)Q(0,y) - tP_S(x,0)Q(x,0) + tP_S(0,0)Q(0,0).$$

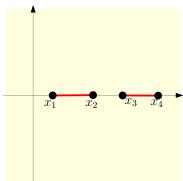
Part 2a: Elliptic parameterisation of K(x, y) = 0

Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then
$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

parameterizes K(x, Y(x)) = 0. Typically, $Y_{+}(x)$ is meromorphic on:

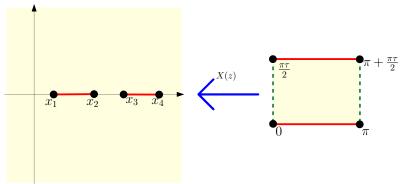
Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then
$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

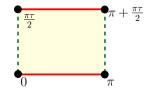
parameterizes K(x, Y(x)) = 0. Typically, $Y_{+}(x)$ is meromorphic on:

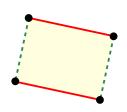


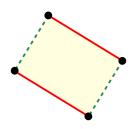
Write
$$K(x, y) = A(x)y^2 + B(x)y + C(x)$$
, then
$$Y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}$$

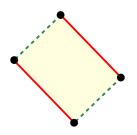
parameterizes K(x, Y(x)) = 0. Typically, $Y_{+}(x)$ is meromorphic on:

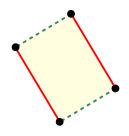


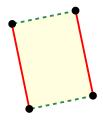


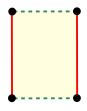


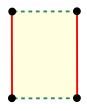


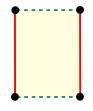


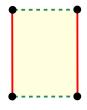


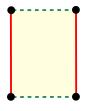


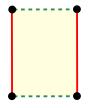


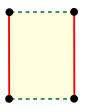


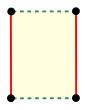


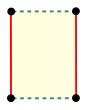


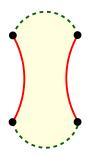


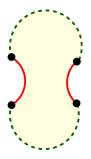


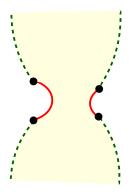


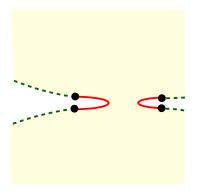


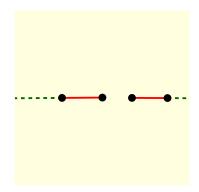


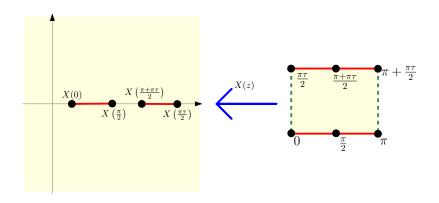


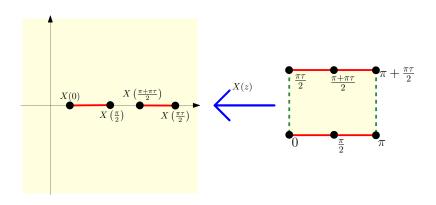








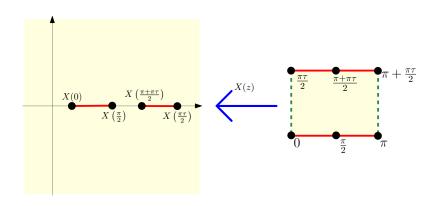




By symmetry, for $r \in \mathbb{R}$:

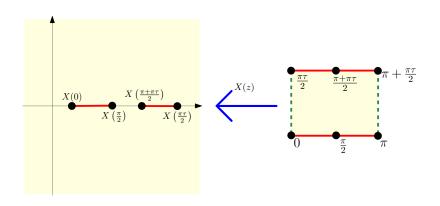
•
$$X(r) = X(\pi - r) = X(-r)$$

$$X(\frac{\pi\tau}{2} + r) = X(\frac{\pi\tau}{2} - r)$$



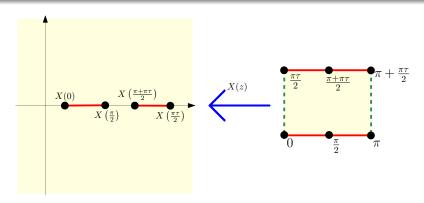
•
$$X(z) = X(\pi - z) = X(-z)$$

•
$$X(z) = X(\pi\tau - z)$$



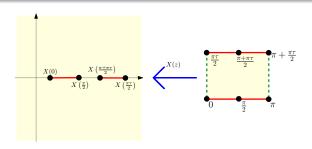
•
$$X(z) = X(\pi - z) = X(-z) = X(\pi \tau + z)$$

•
$$X(z) = X(\pi\tau - z)$$



•
$$X(z) = X(\pi - z) = X(-z) = X(\pi \tau + z)$$

$$X(z) = c \frac{\vartheta(z - \alpha)\vartheta(z + \alpha)}{\vartheta(z - \beta)\vartheta(z + \beta)}$$



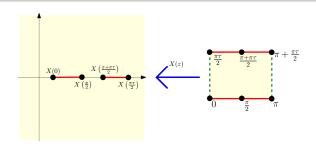
Recall:

$$y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}.$$

Consider Y(z) = y(X(z)). By symmetry, for $r \in \mathbb{R}$:

•
$$X(r) = X(-r)$$
, so $Y(r) + Y(-r) = -\frac{B(X(r))}{A(X(r))}$.

• Similarly,
$$Y\left(\frac{\pi\tau}{2}+r\right)+Y\left(\frac{\pi\tau}{2}-r\right)=-\frac{B\left(X\left(\frac{\pi\tau}{2}+r\right)\right)}{A\left(X\left(\frac{\pi\tau}{2}+r\right)\right)}.$$



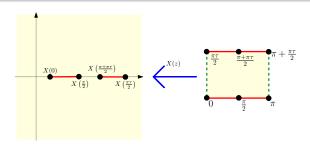
Recall:

$$y(x) = \frac{-B(x) \pm \sqrt{B(x)^2 - 4A(x)C(x)}}{2A(x)}.$$

Consider Y(z) = y(X(z)). For $z \in \mathbb{C}$:

•
$$Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}$$

•
$$Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}$$
.
• $Y(z) + Y(\pi\tau - z) = -\frac{B(X(z))}{A(X(z))}$.



•
$$Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}$$

$$Y(z) + Y(-z) = -\frac{B(X(z))}{A(X(z))}.$$

$$Y(z) + Y(\pi\tau - z) = -\frac{B(X(z))}{A(X(z))}.$$

So
$$Y(z) = Y(z + \pi \tau) = Y(z + \pi)$$

$$\Rightarrow Y(z) = c \frac{\vartheta(z - \gamma)\vartheta(z - \delta)}{\vartheta(z - \epsilon)\vartheta(z - \gamma - \delta + \epsilon)}.$$

PARAMETERIZATION OF K(x, y)

Equation characterising $Q(x, y) \equiv Q(t, x, y)$ for quadrant walks:

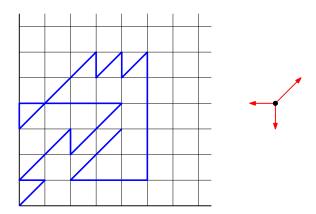
$$K(x,y)Q(x,y) + R(x,y) = 0.$$

K(x, y) = 0 is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

where the constants satisfy $\alpha_j + \beta_j = \gamma_j + \delta_j$ for j = 1, 2. So, R(X(z), Y(z)) = 0.

Part 2b: Solution for Kreweras paths



In general: K(x, y) = 0 is parameterised by

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$
 with $\alpha_i + \beta_i = \gamma_i + \delta_i$ for $i = 1, 2$.

Theta functions in enumerative combinatorics Week 2: Quadrant walks

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

with
$$\alpha_j + \beta_j = \gamma_j + \delta_j$$
 for $j = 1, 2$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)},$$

with
$$\alpha_j + \beta_j = \gamma_j + \delta_j$$
 for $j = 1, 2$.

•
$$K(0,0) = 0$$
, so WLOG $\alpha_1 = \alpha_2 = 0$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\gamma_2)\vartheta(z-\delta_2)},$$

with
$$\alpha_j + \beta_j = \gamma_j + \delta_j$$
 for $j = 1, 2$.

•
$$K(0,0) = 0$$
, so WLOG $\alpha_1 = \alpha_2 = 0$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\gamma_2)\vartheta(z-\delta_2)},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-\beta_2)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z-\gamma_1)\vartheta(z-\delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z+\beta_1)\vartheta(z-2\beta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta(z-\beta_1)}{\vartheta(z+\beta_1)\vartheta(z-2\beta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta(z-2\beta_1)}{\vartheta(z-\beta_1)^2},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

$$X(z) = c_1 \frac{\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z)\vartheta\left(z - \frac{2\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)^2},$$

with
$$\alpha_j + \beta_j = \gamma_j + \delta_j$$
 for $j = 1, 2$.

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = c_1 \frac{\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \text{ and } Y(z) = c_2 \frac{\vartheta(z)\vartheta\left(z + \frac{\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)\left(z + \frac{2\pi\tau}{3}\right)},$$

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

$$X(z) = \frac{c_1}{\vartheta\left(z\right)\vartheta\left(z - \frac{\pi\tau}{3}\right)} \quad \text{and} \quad Y(z) = \frac{c_2}{\vartheta\left(z\right)\vartheta\left(z + \frac{\pi\tau}{3}\right)} \left(z + \frac{2\pi\tau}{3}\right),$$

with
$$\alpha_j + \beta_j = \gamma_j + \delta_j$$
 for $j = 1, 2$.

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

For Kreweras paths:

$$Q(x,y) = 1 + xytQ(x,y) + \frac{t}{x}(Q(x,y) - Q(0,y)) + \frac{t}{y}(Q(x,y) - Q(x,0)).$$

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{9}}\vartheta(z)\vartheta\left(z - \frac{\pi\tau}{3}\right)}{\vartheta\left(z + \frac{\pi\tau}{3}\right)\vartheta\left(z - \frac{2\pi\tau}{3}\right)} \quad \text{and} \quad Y(z) = \frac{e^{-\frac{4\pi\tau i}{9}}\vartheta(z)\vartheta\left(z + \frac{\pi\tau}{3}\right)}{\vartheta\left(z - \frac{\pi\tau}{3}\right)\left(z + \frac{2\pi\tau}{3}\right)},$$

with
$$\alpha_j + \beta_j = \gamma_j + \delta_j$$
 for $j = 1, 2$.

- K(0,0) = 0, so WLOG $\alpha_1 = \alpha_2 = 0$.
- as $x \to 0$, we have $y(x) \sim -x$ or $y(x) \sim -\frac{1}{x^2}$, so Y(z) has a double pole at $z = \beta_1$.
- Similarly: X(z) has a double pole at $z = \beta_2 = 2\beta_1$.
- So $3\beta_1 = \pi \tau$.

CHANGE OF VARIABLES

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)} \text{ and } Y(z) = X(z+\pi\tau),$$

where

$$t = \frac{1}{X(z)Y(z) + X(z)^{-1} + Y(z)^{-1}}.$$

CHANGE OF VARIABLES

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta\left(z-\pi\tau,3\tau\right)}{\vartheta\left(z+\pi\tau,3\tau\right)\vartheta\left(z-2\pi\tau,3\tau\right)} \quad \text{and} \quad Y(z) = X(z+\pi\tau),$$

where

$$t = e^{-\frac{\pi\tau i}{3}} \frac{\vartheta'(0,3\tau)}{4i\vartheta(\pi\tau,3\tau) + 6\vartheta'(\pi\tau,3\tau)}.$$

CHANGE OF VARIABLES

Then $K(x, y) = xy - tx^2y^2 - tx - ty = 0$ is parameterised by

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta\left(z-\pi\tau,3\tau\right)}{\vartheta\left(z+\pi\tau,3\tau\right)\vartheta\left(z-2\pi\tau,3\tau\right)} \quad \text{and} \quad Y(z) = X(z+\pi\tau),$$

where

$$t = e^{-\frac{\pi\tau i}{3}} \frac{\vartheta'(0,3\tau)}{4i\vartheta(\pi\tau,3\tau) + 6\vartheta'(\pi\tau,3\tau)}.$$

Now: As $t \to 0$, we have $\tau \to i\infty$.

Recall: Q(x, y) is characterised by

$$K(x,y)Q(x,y) = R(x,y),$$

where

$$K(x, y) = xy - tx^2y^2 - tx - ty$$

 $R(x, y) = xy - tyQ(0, y) - txQ(x, 0).$

Since K(X(z), Y(z)) = 0,

$$R(X(z), Y(z)) = X(z)Y(z) - tY(z)Q(0, Y(z)) - tX(z)Q(X(z), 0) = 0.$$

Recall:

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)} \quad \text{and} \quad Y(z) = X(z+\pi\tau)$$

Aim: Solve for Q(x, 0) and Q(0, y) using

$$X(z)Y(z) - tY(z)Q(0, Y(z)) - tX(z)Q(X(z), 0) = 0.$$

Recall:

$$X(z) = \frac{e^{-\frac{4\pi\tau t}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)} \quad \text{and} \quad Y(z) = X(z+\pi\tau)$$

Aim: Solve for Q(x, 0) and Q(0, y) using

$$X(z)Y(z) - tY(z)Q(0, Y(z)) - tX(z)Q(X(z), 0) = 0.$$

But what does Q(X(z), 0) mean?

Recall:

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)} \quad \text{and} \quad Y(z) = X(z+\pi\tau)$$

Aim: Solve for Q(x, 0) and Q(0, y) using

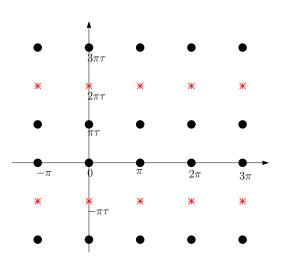
$$X(z)Y(z) - tY(z)Q(0, Y(z)) - tX(z)Q(X(z), 0) = 0.$$

But what does Q(X(z), 0) mean?

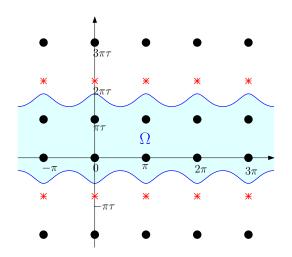
Recall: Q(x,0) converges for |x| < 1.

Understanding Q(X(z), 0) and Q(0, Y(z))

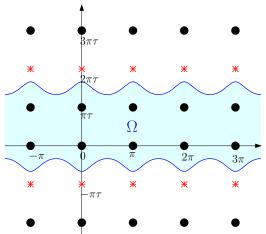
Poles and roots of X(z):



Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1.



Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$.



Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies $B(-\pi \tau - z) = B(z)$.

$$X(z)Y(z) - tX(z)A(z) - tY(z)B(z) = 0.$$

Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies $B(-\pi \tau - z) = B(z)$.

The equation becomes:

$$X(z)Y(z) - tX(z)A(z) - tY(z)B(z) = 0.$$

From K(X(z), Y(z)) = 0, we have

$$X(z)Y(z) = \frac{1}{t} - \frac{1}{X(z)} - \frac{1}{Y(z)}.$$

Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies $B(-\pi \tau - z) = B(z)$.

The equation becomes:

$$X(z)Y(z) - tX(z)A(z) - tY(z)B(z) = 0.$$

From K(X(z), Y(z)) = 0, we have

$$X(z)Y(z) = \frac{1}{t} - \frac{1}{X(z)} - \frac{1}{Y(z)}.$$

Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies

 $B(-\pi\tau-z)=B(z).$

The equation becomes:

$$\frac{1}{t} - \frac{1}{X(z)} - \frac{1}{Y(z)} - tX(z)A(z) - tY(z)B(z) = 0.$$

From K(X(z), Y(z)) = 0, we have

$$X(z)Y(z) = \frac{1}{t} - \frac{1}{X(z)} - \frac{1}{Y(z)}.$$

Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies

$$B(-\pi\tau-z)=B(z).$$

$$\frac{1}{t} - \frac{1}{X(z)} - \frac{1}{Y(z)} - tX(z)A(z) - tY(z)B(z) = 0.$$

Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies $B(-\pi \tau - z) = B(z)$.

$$\frac{1}{t} - \frac{1}{X(z)} - \frac{1}{Y(z)} - tX(z)A(z) - tY(z)B(z) = .$$

Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies $B(-\pi \tau - z) = B(z)$.

$$\frac{1}{t} - \frac{1}{Y(z)} - tY(z)B(z) = \frac{1}{X(z)} + tX(z)A(z).$$

Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies $B(-\pi \tau - z) = B(z)$.

The equation becomes:

$$I(z) = \frac{1}{t} - \frac{1}{Y(z)} - tY(z)B(z) = \frac{1}{X(z)} + tX(z)A(z).$$

From LHS: $I(z) = I(-\pi\tau - z)$. From RHS: $I(z) = I(\pi\tau - z)$.

Let Ω be the largest neighbourhood of 0 in which |X(z)| < 1. For $z \in \Omega$, define A(z) = Q(X(z), 0). Then $A(\pi \tau - z) = A(z)$. Similarly, defining B(z) = Q(0, Y(z)) around z = 0 implies $B(-\pi \tau - z) = B(z)$.

The equation becomes:

$$I(z) = \frac{1}{t} - \frac{1}{Y(z)} - tY(z)B(z) = \frac{1}{X(z)} + tX(z)A(z).$$

From LHS: $I(z) = I(-\pi\tau - z)$. From RHS: $I(z) = I(\pi\tau - z)$.

Now I(z) has π and $2\pi\tau$ as periods, so we can solve it:

$$I(z) = e^{\frac{\pi \tau i}{3}} \frac{\vartheta(\pi \tau, 3\tau)}{\vartheta'(0, 3\tau)} \left(\frac{\vartheta'(z, 2\tau)}{\vartheta(z, 2\tau)} - \frac{\vartheta'(z + \pi \tau, 2\tau)}{\vartheta(z + \pi \tau, 2\tau)} - i \right) + \frac{1}{2t}.$$

Then Q(x,0) is given by

$$Q(X(z), 0) = \frac{I(z)}{tX(z)} - \frac{1}{tX(z)^2}.$$

SOLUTION FOR KREWERAS PATHS

Recall: Q(x, 0) is determined by

$$t = e^{-\frac{\pi\tau i}{3}} \frac{\vartheta'(0,3\tau)}{4i\vartheta(\pi\tau,3\tau) + 6\vartheta'(\pi\tau,3\tau)}$$

$$X(z) = \frac{e^{-\frac{4\pi\tau i}{3}}\vartheta(z,3\tau)\vartheta(z-\pi\tau,3\tau)}{\vartheta(z+\pi\tau,3\tau)\vartheta(z-2\pi\tau,3\tau)}$$

$$I(z) = e^{\frac{\pi\tau i}{3}} \frac{\vartheta(\pi\tau,3\tau)}{\vartheta'(0,3\tau)} \left(\frac{\vartheta'(z,2\tau)}{\vartheta(z,2\tau)} - \frac{\vartheta'(z+\pi\tau,2\tau)}{\vartheta(z+\pi\tau,2\tau)} - i\right) + \frac{1}{2t}.$$

$$Q(X(z),0) = \frac{I(z)}{tX(z)} - \frac{1}{tX(z)^2}.$$

All three have periods $6\pi\tau$ and π , so X(z) and Q(X(z),0) are algebraically related.

Therefore: Q(x, 0) is algebraic in x.

SOLUTION AS FORMAL POWER SERIES

Recall:

$$\vartheta(z,\tau) = e^{\frac{(\pi\tau - 2z)i}{2}} T(e^{2iz}, e^{2i\pi\tau}),$$

where

$$T(u,q) = \sum_{n=0}^{\infty} (-1)^n q^{n(n+1)/2} (u^{n+1} - u^{-n}).$$

More generally:

$$\vartheta^{(k)}(z,\tau) = e^{\frac{(\pi\tau - 2z)i}{2}} i^k T_k(e^{2iz}, e^{2i\pi\tau}),$$

where

$$T_k(u,q) = \sum_{n=0}^{\infty} (-1)^n (2n+1)^k q^{n(n+1)/2} (u^{n+1} - (-1)^k u^{-n}).$$

We can rewrite the solution using $q = e^{2\pi\tau i}$ and $u = e^{2iz}$

SOLUTION AS FORMAL POWER SERIES

$$T_k(u,q) = \sum_{n=0}^{\infty} (-1)^n (2n+1)^k q^{n(n+1)/2} (u^{n+1} - (-1)^k u^{-n}).$$

We can rewrite the solution using $q = e^{2\pi\tau i}$ and $u = e^{2iz}$

$$t = q^{1/3} \frac{T_1(1, q^3)}{4T(q, q^3) + 6T_1(q, q^3)}$$

$$x = q^{-2/3} \frac{T(u, q^3)T(u/q, q^3)}{T(uq, q^3) \vartheta(uq^{-2}, q^3)}$$

$$I(x) = q^{-1/3} \frac{T(q, q^3)}{T_1(1, q^3)} \left(\frac{T_1(u, q^2)}{T(u, q^2)} - \frac{T_1(uq, q^2)}{T(uq, q^2)} - 1\right) + \frac{1}{2t}.$$

$$Q(x, 0) = \frac{I(x)}{tx} - \frac{1}{tx^2}.$$

Part 2c: Solutions for other quadrant models

Equation to solve:

$$Q(x,y)K(x,y) = R(x,y),$$

where

$$R(x, y) = xy - P_1(y)Q(0, y) - P_2(x)Q(x, 0) + c$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

Equation to solve:

$$X(z)Y(z) - P_1(Y(z))Q(0, Y(z)) - P_2(X(z))Q(X(z), 0) + c = 0$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

Equation to solve:

$$X(z)Y(z) - P_1(Y(z))Q(0, Y(z)) - P_2(X(z))Q(X(z), 0) + c = 0$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and Q(X(z), 0) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and Q(0, Y(z)) are fixed under $z \to \alpha_2 + \beta_2 z$.
- Write $A(z) = P_2(X(z))Q(X(z), 0)$ and $B(z) = P_1(Y(z))Q(0, Y(z)) c$

Equation to solve:

$$X(z)Y(z) = A(z) + B(z)$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \text{ and } Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and Q(X(z), 0) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and Q(0, Y(z)) are fixed under $z \to \alpha_2 + \beta_2 z$.
- Write $A(z) = P_2(X(z))Q(X(z), 0)$ and $B(z) = P_1(Y(z))Q(0, Y(z)) c$

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

$$(X(z) - X(\alpha_2 + \beta_2 - z))Y(z) = A(z) - A(\alpha_2 + \beta_2 - z)$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

$$(X(z) - X(\alpha_2 + \beta_2 - z))Y(z) = A(z) - A(\alpha_1 + \beta_1 - \alpha_2 - \beta_2 + z)$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

Equation to solve for A(z):

$$(X(z) - X(\alpha_2 + \beta_2 - z))Y(z) = A(z) - A(\alpha_1 + \beta_1 - \alpha_2 - \beta_2 + z)$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

Equation to solve for A(z):

$$(X(z) - X(\alpha_2 + \beta_2 - z))Y(z) = A(z) - A(\alpha_1 + \beta_1 - \alpha_2 - \beta_2 + z)$$

where X(z) and Y(z) have π and $\pi\tau$ as periods.

Equation to solve for A(z):

$$(X(z) - X(\alpha_2 + \beta_2 - z))Y(z) = A(z) - A(\alpha_1 + \beta_1 - \alpha_2 - \beta_2 + z)$$

where X(z) and Y(z) have π and $\pi\tau$ as periods.

Since $\alpha_1 + \beta_1 - \alpha_2 - \beta_2 \in \pi \tau \mathbb{Q}$, we get:

$$F(z) = A(z) - A(n\pi\tau + z),$$

where F(z) has periods π and $\pi\tau$.

Equation to solve for A(z):

$$(X(z) - X(\alpha_2 + \beta_2 - z))Y(z) = A(z) - A(\alpha_1 + \beta_1 - \alpha_2 - \beta_2 + z)$$

where X(z) and Y(z) have π and $\pi\tau$ as periods.

Since $\alpha_1 + \beta_1 - \alpha_2 - \beta_2 \in \pi \tau \mathbb{Q}$, we get:

$$F(z) = A(z) - A(n\pi\tau + z),$$

where F(z) has periods π and $\pi\tau$.

Then $U(z) = \frac{A(z)}{F(z)}$ satisfies $U(z + n\pi\tau) = U(z) - 1$.

So the following all have π and $\pi\tau$ as periods:

$$U'(z)$$
, $F(z)$, $X(z)$ and $Y(z)$

It follows that A(z) = U(z)F(z) is D-finite in X(z)

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

Equation to solve for A(z) and B(z):

$$X(z)Y(z) = A(z) + B(z)$$

where

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

In these cases:

• X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .

Equation to solve for A(z) and B(z):

$$R_1(X(z)) + R_2(Y(z)) = A(z) + B(z)$$

where

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

In these cases:

• X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .

Equation to solve for A(z) and B(z):

$$I(z) = R_1(X(z)) - A(z) = B(z) - R_2(Y(z))$$

where

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

In these cases:

• X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1, R_2 .

Equation to solve for A(z) and B(z):

$$I(z) = R_1(X(z)) - A(z) = B(z) - R_2(Y(z))$$

where

$$X(z) = c_1 \frac{\vartheta(z - \alpha_1)\vartheta(z - \beta_1)}{\vartheta(z - \gamma_1)\vartheta(z - \delta_1)} \quad \text{and} \quad Y(z) = c_2 \frac{\vartheta(z - \alpha_2)\vartheta(z - \beta_2)}{\vartheta(z - \gamma_2)\vartheta(z - \delta_2)}.$$

- X(z) and A(z) are fixed under $z \to \alpha_1 + \beta_1 z$.
- Y(z) and B(z) are fixed under $z \to \alpha_2 + \beta_2 z$.

In these cases:

- X(z)Y(z) splits as $X(z)Y(z) = R_1(X(z)) + R_2(Y(z))$, for explicit rational functions R_1 , R_2 .
- I(z) is fixed under $z \to \alpha_1 + \beta_1 z$ and $z \to \alpha_2 + \beta_2 z$, so it has $\alpha_1 + \beta_1 \alpha_2 \beta_2$ and π as periods.
- We can then solve for I(z).

NEXT WEEKS

Next week:

- Asymptotic analysis
- Algebraicity properties in t
- Modular properties of $\vartheta(\tau, z)$

Following week: More problems that we can solve with theta functions