Ecole IoT: Data Science

Course II – Contrast change and Spatial Filtering

Bruno Galerne Wednesday January 10, 2023

Credits

Several slides from **Charles Deledalle's** course "UCSD ECE285 Image and video restoration" (30×50 minutes course) given at UCSD (University of California, San Diego) and Julie Delon's course "Perception, acquisition et analyse d'images" at Université de Paris.

www.charles-deledalle.fr/

https://delon.wp.imt.fr/

Today's program

Content:

- Contrast change in images.
- Spatial filters, linear (= spatial convolution) and non-linear.

Image Contrast

What is a contrast?

Definition (Cambridge dictionary)

contrast, noun: an obvious difference between two or more things.

Low / High contrast

4

What is a contrast?

Definition (Cambridge dictionary)

contrast, noun: an obvious difference between two or more things.

Low / High contrast (source wikipedia)

• Human perception is robust to contrast change.

4

Image contrast

- We will limit the discussion to grayscale images.
- Human perception is robust to contrast change: Our perception is nearly the same when applying an increasing function to the gray-levels of the image.
- Examples: Sun glasses, contrast/luminosity of a display screen...

Image contrast

- This is false if the function is not increasing.
- Example: Negative image: Apply $g: x \mapsto 1 x$:

Who is this?

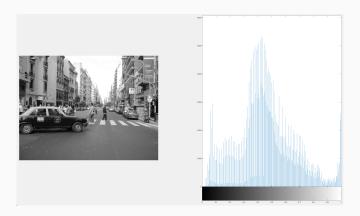
Image contrast

- This is false if the function is not increasing.
- Example: Negative image: Apply $g: x \mapsto 1 x$:

Who is this?

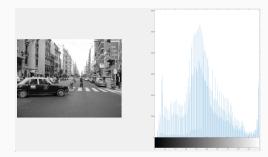
Image Histogram

• The histogram of an image counts the number of times a gray-level is used.



7

Normalized Histogram



- One often normalize the histogram to get a probability distribution.
- If the pixel grid is Ω and the gray-level values are $\mathcal{Y} = \{y_0, \dots, y_{n-1}\}$ then the normalized histogram of u is:

$$h_u = \sum_{i=0}^{n-1} h_i \delta_{y_i} \quad \text{where} \quad h_i = \frac{|\{x \in \Omega, \text{ s.t. } u(x) = y_i\}|}{|\Omega|}$$

• h_i = proportion of pixels having gray-level y_i .

R

Contrast change

- A **contrast change** is an increasing function $g : \mathbb{R} \to \mathbb{R}$.
- ullet Applying the contrast change consists in applying g to all pixel values:

$$g(u)(x) = g(u(x)), \quad x \in \Omega.$$

ullet The normalized histogram of g(u) is obtained by shifting the pics of the histogram:

$$h_{g(u)} = \sum_{i=0}^{n-1} h_i \delta_{g(y_i)}$$

Since g is increasing, there is no pic left-right inversion (order is preserved):

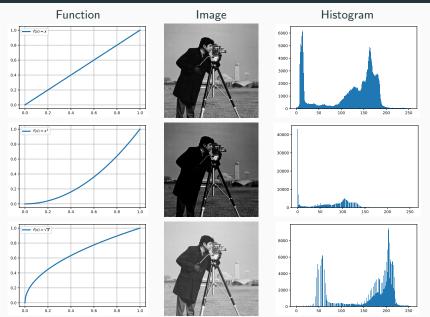
$$y_0 < y_1 < \dots < y_{n-1} \quad \Rightarrow \quad g(y_0) \leqslant g(y_1) \leqslant \dots \leqslant g(y_{n-1})$$

- If g takes several times the same vaues $g(y_i) = g(y_j)$ the pics are piled up together. Then information is lost.
- **Example:** Image binarization: g is the step function

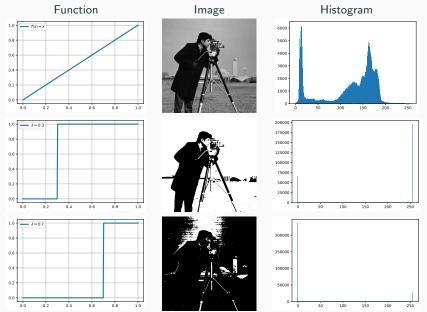
$$g(y) = \begin{cases} 1 & \text{if } y > \lambda, \\ 0 & \text{if } y \leqslant \lambda. \end{cases}$$

a

Contrast change: Two examples



Contrast change: Two examples of binarizations

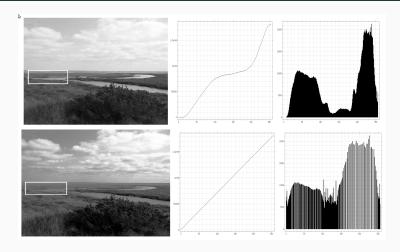


- Contrast equalization consists in making the gray-level distribution as uniform as possible.
- What does it mean for the histogram?

- Contrast equalization consists in making the gray-level distribution as uniform as possible.
- What does it mean for the histogram?
- Make the histogram flat.

- Contrast equalization consists in making the gray-level distribution as uniform as possible.
- What does it mean for the histogram?
- Make the histogram flat.
- What does it mean for the cumulative histogram?

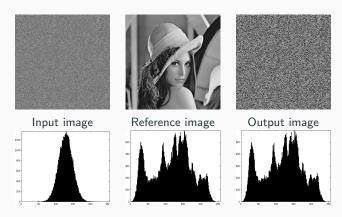
- Contrast equalization consists in making the gray-level distribution as uniform as possible.
- What does it mean for the histogram?
- Make the histogram flat.
- What does it mean for the cumulative histogram?
- Make it like the identity line.



- Dark regions and bright regions have more details.
- But some local contrast decrease.

Histogram matching

- More general: Apply the histogram of a reference image to another image.
- Example of histogram matching: The histogram of a Gaussian white noise is matched with the histogram of the Lena image.



Histogram matching

Algorithm 1: Histogram matching

Input: Input image u, reference image v (both images have size $M \times N$) **Output:** Image u having the same histogram as v (the input u is lost)

- 1. Define L=MN and describe the image as arrays of length L (e.g. by reading them line by line).
- 2. Sort the reference image v:
- 3. Determine the permutation τ such that $v_{\tau(1)} \leqslant v_{\tau(2)} \leqslant \cdots \leqslant v_{\tau(L)}$.
- 4. Sort the input image u:
- 5. Determine the permutation σ such that $u_{\sigma(1)} \leqslant u_{\sigma(2)} \leqslant \cdots \leqslant u_{\sigma(L)}$.
- 6. Match the histogram of u:
- 7. for rank k=1 to L do
- 8. $u_{\sigma(k)} \leftarrow v_{\tau(k)}$ (the k-th pixel of u takes the gray-value of the k-th pixel of v).
- 9. end
 - Other solutions exists based an inversing cumulative histogram: Apply contrast change $g=H_v^{-1}\circ H_u.$

Histogram interpolation

- ullet One may also want to find the "average histogram" between the one of u and the one of v.
- This is called midway histogram (Delon, 2004).

Midway histogram equalization

$$u_{\sigma(k)}^{\mathrm{midway}} \leftarrow \frac{u_{\sigma(k)} + v_{\tau(k)}}{2} \quad \text{and} \quad v_{\tau(k)}^{\mathrm{midway}} \leftarrow \frac{u_{\sigma(k)} + v_{\tau(k)}}{2}$$

The k-th pixel of u takes the average gray-value of the k-th pixel of u and the k-th pixel of v, and similarly for v.

Histogram interpolation

- ullet One may also want to find the "average histogram" between the one of u and the one of v.
- This is called midway histogram (Delon, 2004).

Midway histogram equalization

$$u_{\sigma(k)}^{\text{midway}} \leftarrow \frac{u_{\sigma(k)} + v_{\tau(k)}}{2} \quad \text{and} \quad v_{\tau(k)}^{\text{midway}} \leftarrow \frac{u_{\sigma(k)} + v_{\tau(k)}}{2}$$

The k-th pixel of u takes the average gray-value of the k-th pixel of u and the k-th pixel of v, and similarly for v.

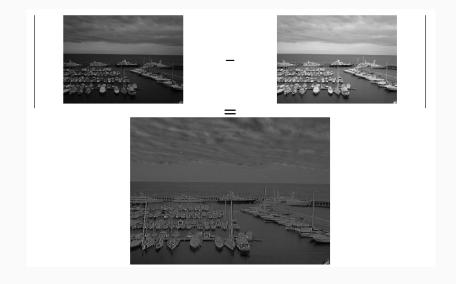
• It is useful to compare images (e.g. for stereovision).

Unequalized images:

(credits: Lionel Moisan, Julie Delon)

Unequalized images:

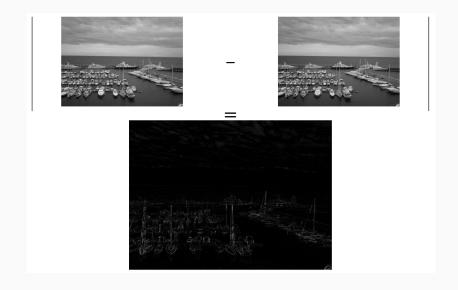
(credits: Lionel Moisan, Julie Delon)



Midway equalized images:

(credits: Lionel Moisan, Julie Delon)

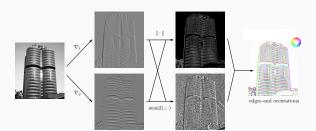
Midway equalized images:



Conclusion on contrast

- Perception robust by change of contrast.
- Contrast is important for optimal detail visualization.
- For image comparison, equalizing the contrast may be important (depending on the application: image registration, stereovision,...).

Image filters



Definition (Collins dictionary)

filter, *noun*: any electronic, optical, or acoustic device that <u>blocks</u> signals or radiations of certain frequencies while allowing others to pass.

Definition (Collins dictionary)

filter, *noun*: any electronic, optical, or acoustic device that <u>blocks</u> signals or radiations of certain frequencies while allowing others to pass.

Refers to the direct model (observation/sensing filter)

$$y = Hx$$
 $\begin{cases} & \bullet \ y: \ \text{observed image} \\ & \bullet \ x: \ \text{image of interest} \end{cases}$

H is a linear filter, may act only on frequencies (e.g., blurs) or may not, but can only remove information (e.g., inpainting).

(a) Unknown image x

(b) Observation y

Definition (Oxford dictionary)

filter, *noun*: a function used to <u>alter</u> the overall appearance of an image in a specific manner: 'many other apps also offer filters for enhancing photos'

Definition (Oxford dictionary)

filter, *noun*: a function used to <u>alter</u> the overall appearance of an image in a specific manner: 'many other apps also offer filters for enhancing photos'

Refers to the inversion model (restoration filter)

$$\hat{x} = \psi(y) \quad \left\{ \begin{array}{c} \bullet \ y \text{: observed image} \\ \\ \bullet \ \hat{x} \text{: estimate of } x \end{array} \right.$$

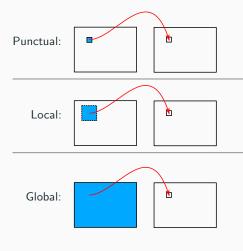
 ψ is a filter, linear or non-linear, that may act only on frequencies or may not, and usually attempts to add information.

(a) Observation y

(b) Estimate \hat{x}

Action of filters

Perform punctual, local and/or global transformations of pixel values



New pixel value depends only on the input one

e.g., change of contrast

New pixel value depends on the surrounding input pixels

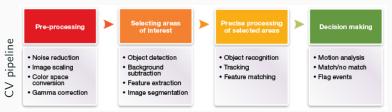
e.g., averaging/convolutions

New pixel value depends on the whole input image

e.g. solution of variational problems

Filters

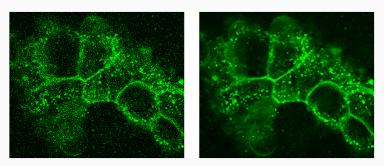
- Often one of the first steps in a processing pipeline,
- Goal: improve, simplify, denoise, deblur, detect objects...



Source: Mike Thompson

${\bf Improve}/{\tt denoise}/{\tt detect}$

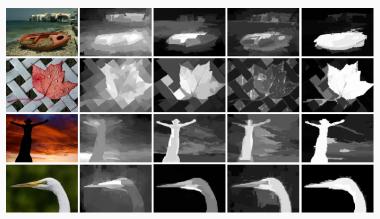
Improve/denoise/detect



Fibroblast cells and microbreads (fluorescence microscopy)

Source: F. Luisier & C. Vonesch

Improve/denoise/detect



Foreground/Background separation

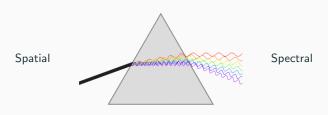
Source: H. Jiang, et al.

Standard filters

Two main approaches:

• Spatial domain: use the pixel grid / spatial neighborhoods

• **Spectral domain:** use Fourier transform, cosine transform, . . .

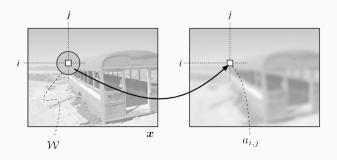


Spatial filtering

Spatial filtering – Local filters

Local / Neighboring filters

- Combine/select values of y in the neighborhood $\mathcal{N}_{i,j}$ of pixel (i,j)
- Following examples: moving average filters, derivative filters, median filters



Moving average

$$\hat{x}_{i,j} = \frac{1}{\operatorname{Card}(\mathcal{N})} \sum_{(k,l) \in \mathcal{N}_{i,j}} y_{k,l}$$

Examples:

- Boxcar filter: $\mathcal{N}_{i,j} = \{(k,l) \; ; \; |i-k| \leqslant \tau \text{ and } |j-l| \leqslant \tau \}$
- $\bullet \ \ {\rm Diskcar \ filter:} \qquad \qquad \mathcal{N}_{i,j} = \left\{ (k,l) \ ; \ |i-k|^2 + |j-l|^2 \leqslant \tau^2 \right\}$

3×3 boxcar filter

$$\hat{x}_{i,j} = \frac{1}{9} \sum_{k=i-1}^{i+1} \sum_{l=j-1}^{j+1} y_{k,l}$$

Parameters:

- Size: 3×3 , 5×5 , ...
- Shape: square, disk
- Centered or not

Moving average

$$\hat{x}_{i,j} = \frac{1}{\operatorname{Card}(\mathcal{N})} \sum_{(k,l) \in \mathcal{N}_{i,j}} y_{k,l} \quad \text{or} \quad \hat{x}_{i,j} = \frac{1}{\operatorname{Card}(\mathcal{N})} \sum_{(k,l) \in \mathcal{N}} y_{i+k,j+l}$$

Examples:

$$\mathcal{N} = \mathcal{N}_{0,0}$$

• Boxcar filter: $\mathcal{N}_{i,j} = \{(k,l) \; ; \; |i-k| \leqslant \tau \; \text{ and } \; |j-l| \leqslant \tau \}$

 $\bullet \ \ \mbox{Diskcar filter:} \qquad \qquad \mathcal{N}_{i,j} = \left\{ (k,l) \; ; \; |i-k|^2 + |j-l|^2 \leqslant \tau^2 \right\}$

 3×3 boxcar filter

$$\hat{x}_{i,j} = \frac{1}{9} \sum_{k=i-1}^{i+1} \sum_{l=j-1}^{j+1} y_{k,l}$$
 or

$$\hat{x}_{i,j} = \frac{1}{9} \sum_{k=-1}^{+1} \sum_{l=-1}^{+1} y_{i+k,j+l}$$

Parameters:

• Size: 3×3 , 5×5 , ...

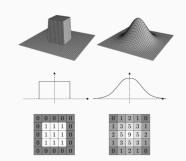
• Shape: square, disk

Centered or not

Moving weighted average

$$\hat{x}_{i,j} = \frac{\sum_{(k,l) \in \mathbb{Z}^2} w_{k,l} y_{i+k,j+l}}{\sum_{(k,l) \in \mathbb{Z}^2} w_{k,l}}$$

Normalized to preserve constant images!



- $\bullet \ \ \text{Neighboring filter:} \qquad w_{i,j} = \left\{ \begin{array}{ll} 1 & \text{if} \quad (i,j) \in \mathcal{N} \\ 0 & \text{otherwise} \end{array} \right.$
- Gaussian kernel: $w_{i,j} = \exp\left(-rac{i^2+j^2}{2 au^2}
 ight)$

• Rewrite \hat{x} as a function of s=(i,j), and let $\delta=(k,l)$ and $t=s+\delta$

$$\hat{x}(s) = \frac{\sum_{\delta \in \mathbb{Z}^2} w(\delta) y(s+\delta)}{\sum_{\delta \in \mathbb{Z}^2} w(\delta)} = \frac{\sum_{t \in \mathbb{Z}^2} w(t-s) y(t)}{\sum_{t \in \mathbb{Z}^2} w(t-s)}$$

Local average filter

• Weights are functions of the distance between t and s (length of δ) as

$$w(t-s) = \varphi(\operatorname{length}(t-s))$$

• $\varphi: \mathbb{R}^+ \to \mathbb{R}$: kernel function

 $(\land \neq \text{convolution kernel})$

$$\bullet \ \, \text{Often, } \varphi \text{ satisfies} \left\{ \begin{array}{l} \bullet \ \, \varphi(0) = 1, \\ \\ \bullet \ \, \lim_{\alpha \to \infty} \varphi(\alpha) = 0, \\ \\ \bullet \ \, \varphi \text{ non-increasing: } \alpha > \beta \Rightarrow \varphi(\alpha) \leqslant \varphi(\beta). \end{array} \right.$$

•
$$\varphi(0) = 1$$
,

•
$$\lim_{\alpha \to \infty} \varphi(\alpha) = 0$$
,

Example

Box filter

$$\varphi(\alpha) = \left\{ \begin{array}{ll} 1 & \text{if} \quad \alpha \leqslant \tau \\ 0 & \text{otherwise} \end{array} \right. \quad \text{and} \quad \operatorname{length}(\delta) = \|\delta\|_{\infty}$$

Disk filter

$$\varphi(\alpha) = \left\{ \begin{array}{ll} 1 & \text{if} \quad \alpha \leqslant \tau \\ 0 & \text{otherwise} \end{array} \right. \quad \text{and} \quad \mathrm{length}(\delta) = \|\delta\|_2$$

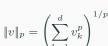
Gaussian filter

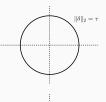
$$\varphi(\alpha) = \exp\left(-\frac{\alpha^2}{2\tau^2}\right) \quad \text{and} \quad \operatorname{length}(\delta) = \|\delta\|_2$$

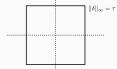
arphi often depends on (at least) one parameter au

- \bullet au controls the amount of filtering
- $\tau \to 0$: no filtering (output = input)
- $\tau \to \infty$: average everything in the same proportion signal)

Reminder:







 $(\mathsf{output} = \mathsf{constant}$

Moving average for denoising?

Figure 1 – (left) Gaussian noise $\sigma = 10$. (right) Gaussian filter $\tau = 3$.

Moving average for denoising?

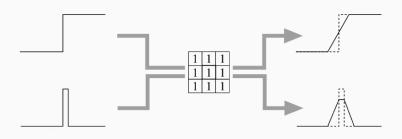
Figure 1 – (left) Gaussian noise $\sigma=30$. (right) Gaussian filter $\tau=5$.

Boxcar: oscillations/artifacts in vertical and horizontal directions

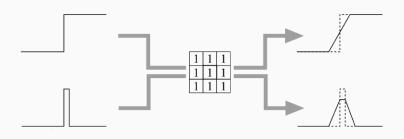
• Gaussian: no artifacts

• Moving average: reduces noise ©,

but loss of resolution, blurry aspect, removes edges ©



 $\begin{array}{c} \mathsf{Image} \ \mathsf{blur} \Rightarrow \mathsf{No} \ \mathsf{more} \ \mathsf{edges} \Rightarrow \mathsf{Structure} \ \mathsf{destruction} \\ \Rightarrow \mathsf{Reduction} \ \mathsf{of} \ \mathsf{image} \ \mathsf{quality} \end{array}$



 $\begin{array}{c} \mathsf{Image\ blur} \Rightarrow \mathsf{No\ more\ edges} \Rightarrow \mathsf{Structure\ destruction} \\ \Rightarrow \mathsf{Reduction\ of\ image\ quality} \end{array}$

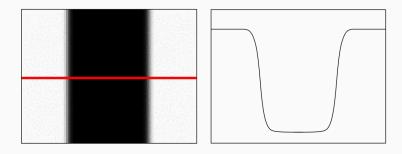
What is an edge?

Spatial filtering – Edges

Edges?

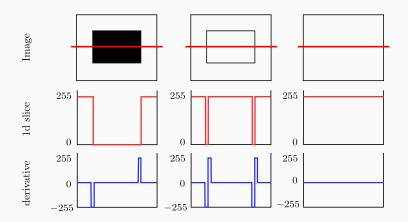
- Separation between objects, important parts of the image
- Necessary for vision in order to reconstruct objects

Spatial filtering – Edges



Edge: More or less brutal change of intensity

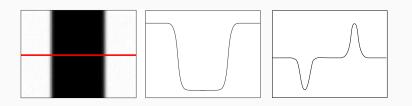
Spatial filtering – Edges



- ullet no edges \equiv no objects in the image
- \bullet abrupt change \Rightarrow gap between intensities \Rightarrow large derivative

How to detect edges?

- Look at the derivative
- How? Use derivative filters
- What? Filters that behave somehow as the derivative of real functions



How to design such filters?

Derivative of 1d signals

• Derivative of a function $x : \mathbb{R} \to \mathbb{R}$, if exists, is:

$$x'(t) = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h} \quad \text{or} \quad \lim_{h \to 0} \frac{x(t) - x(t-h)}{h} \quad \text{or} \quad \lim_{h \to 0} \frac{x(t+h) - x(t-h)}{2h}$$

equivalent definitions

• For a 1d discrete signal, finite differences are

$$x'_k = x_{k+1} - x_k$$
 $x'_k = x_k - x_{k-1}$ $x'_k = \frac{x_{k+1} - x_{k-1}}{2}$

Forward

Backward

Centered

Derivative of 1d signals

• Can be written as a filter

$$x_i' = \sum_{k=-1}^{+1} \kappa_k y_{i+k}, \quad \text{with} \quad$$

$$\kappa = (0, -1, 1)$$
 $\kappa = (-1, 1, 0)$ $\kappa = (-\frac{1}{2}, 0, \frac{1}{2})$

Forward Backward

Centered

Derivative of 2d signals

• Gradient of a function $x: \mathbb{R}^2 \to \mathbb{R}$, if exists, is:

$$\nabla x = \begin{pmatrix} \frac{\partial x}{\partial s_1} \\ \frac{\partial x}{\partial s_2} \end{pmatrix}$$

with

$$\frac{\partial x}{\partial s_1}(s_1, s_2) = \lim_{h \to 0} \frac{x(s_1 + h, s_2) - x(s_1, s_2)}{h}$$
$$\frac{\partial x}{\partial s_2}(s_1, s_2) = \lim_{h \to 0} \frac{x(s_1, s_2 + h) - x(s_1, s_2)}{h}$$

Derivative of 2d signals

Forward

• Gradient for a 2d discrete signal: finite differences in each direction

$$(\nabla_1 x)_{i,j} = \sum_{k=-1}^{+1} \sum_{l=-1}^{+1} (\kappa_1)_{k,l} y_{i+k,j+l}$$
$$(\nabla_2 x)_{i,j} = \sum_{k=-1}^{+1} \sum_{l=-1}^{+1} (\kappa_2)_{k,l} y_{i+k,j+l}$$

$$\kappa_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \kappa_{1} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \kappa_{1} = \begin{pmatrix} 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \\
\kappa_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \kappa_{2} = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \kappa_{2} = \begin{pmatrix} 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

Backward

46

Centered

Second order derivative of 1d signals

• Second order derivative of a function $x : \mathbb{R} \to \mathbb{R}$, if exists, is:

$$x''(t) = \lim_{h \to 0} \frac{x(t-h) - 2x(t) + x(t+h)}{h^2}$$

• For a 1d discrete signal:

$$x_k'' = x_{k-1} - 2x_k + x_{x+1}$$

Corresponding filter:

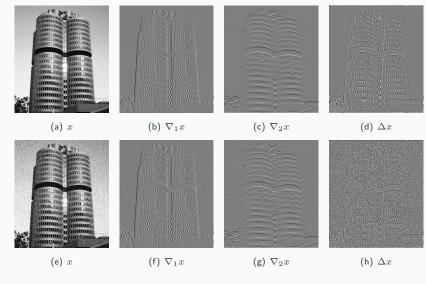
$$h=(1,-2,1)$$

Laplacian of 2d signals

• Laplacian of a function $x: \mathbb{R}^2 \to \mathbb{R}$, if exists, is:

$$\Delta x = \frac{\partial^2 x}{\partial s_1^2} + \frac{\partial^2 x}{\partial s_2^2}$$

- For a 2d discrete signal: $x_{i,j}'' = x_{i-1,j} + x_{i,j-1} 4x_{i,j} + x_{i+1,j} + x_{i,j+1}$
- Corresponding filter: $h = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 & 1 \end{pmatrix}$



Derivative filters detect edges

but are sensitive to noise

Other derivative filters

• Roberts cross operator (1963)

$$\kappa_{\searrow} = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \kappa_{\swarrow} = \begin{pmatrix} 0 & +1 \\ -1 & 0 \end{pmatrix}$$

• Sobel operator (1968)

$$\kappa_1 = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_2 = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$$

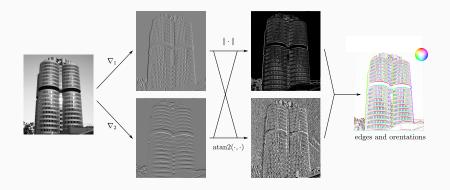
• Prewitt operator (1970)

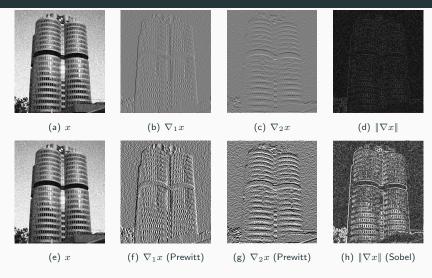
$$\kappa_1 = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \quad \text{and} \quad \kappa_2 = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$$

Edge detection

Based on the norm (and angle) of the discrete approximation of the gradient

$$\|(\nabla x)_k\| = \sqrt{(\nabla_1 x)_k^2 + (\nabla_2 x)_k^2} \quad \text{and} \quad \angle(\nabla x)_k = \operatorname{atan2}((\nabla_2 x)_k, (\nabla_1 x)_k)$$





Sobel & Prewitt: average in one direction, and differentiate in the other one
⇒ More robust to noise

Spatial filtering – Averaging and derivative filters

Comparison between averaging and derivative filters

Moving average

$$\begin{split} \hat{x}_{i,j} &= \frac{\displaystyle\sum_{(k,l)\in\mathbb{Z}^2} w_{k,l} y_{i+k,j+l}}{\displaystyle\sum_{(k,l)\in\mathbb{Z}^2} w_{k,l}} = \sum_{(k,l)\in\mathbb{Z}^2} \underbrace{\frac{w_{k,l}}{\displaystyle\sum_{(p,q)\in\mathbb{Z}^2} w_{p,q}}}_{\kappa_{k,l}} y_{i+k,j+l} \\ &= \sum_{(k,l)\in\mathbb{Z}^2} \kappa_{k,l} y_{i+k,j+l} \quad \text{with} \quad \sum_{(k,l)\in\mathbb{Z}^2} \kappa_{k,l} = 1 \quad \text{ (preserve mean)} \end{split}$$

Derivative filter

$$\hat{x}_{i,j} = \sum_{(k,l) \in \mathbb{Z}^2} \kappa_{k,l} y_{i+k,j+l}$$
 with $\sum_{(k,l) \in \mathbb{Z}^2} \kappa_{k,l} = 0$ (remove mean)

• They share the same expression

Do all filters have such an expression?

Spatial filtering – Linear translation-invariant filters

No, only linear translation-invariant (LTI) filters

Let ψ satisfying

1 Linearity
$$\psi(ax + by) = a\psi(x) + b\psi(y)$$

2 Translation-invariance $\psi(y^{\tau}) = \psi(y)^{\tau}$ where $x^{\tau}(s) = x(s+\tau)$

Then, there exist coefficients $\kappa_{k,l}$ such that

$$\psi(y)_{i,j} = \sum_{(k,l) \in \mathbb{Z}^2} \kappa_{k,l} y_{i+k,j+l}$$

The reciprocal holds true

Note: Translation-invariant = Shift-invariant = Stationary

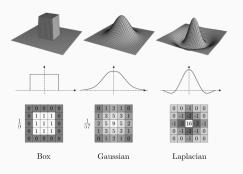
= Same weighting applied everywhere

= Identical behavior on identical structures, whatever their location

Spatial filtering – Linear translation-invariant filters

Linear translation-invariant filters

$$\hat{x}_{i,j} = \psi(y)_{i,j} = \sum_{(k,l)\in\mathbb{Z}^2} \kappa_{k,l} y_{i+k,j+l}$$



• Weighted average filters:

$$\sum \kappa_{k,l} = 1$$

Ex.: Box, Gaussian, Exponential, ...

Derivative filters:

$$\sum \kappa_{k,l} = 0$$

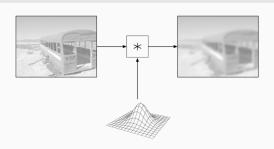
Ex.: Laplacian, Sobel, Roberts, ...

Spatial filtering – Linear translation-invariant filters

LTI filter \equiv Moving weighted sum \equiv Cross-correlation \equiv Convolution

$$\begin{split} \hat{x}_{i,j} &= \sum_{(k,l) \in \mathbb{Z}^2} \kappa_{k,l}^* y_{i+k,j+l} = \kappa \star y \quad \text{(for κ complex)} \\ &= \sum_{(k,l) \in \mathbb{Z}^2} \nu_{k,l} y_{i-k,j-l} = \nu * y \quad \text{where} \quad \nu_{k,l} = \kappa_{-k,-l}^* \end{split}$$

 ν called convolution kernel (impulse response of the filter)



Spatial filtering – LTI filters and convolution

Properties of the convolution product

• Linear
$$f*(\alpha g+\beta h)=\alpha (f*g)+\beta (f*h)$$

• Commutative
$$f * g = g * f$$

• Associative
$$f*(g*h) = (f*g)*h$$

Separable

$$h = h_1 * h_2 * \dots * h_p$$

$$\Rightarrow f * h = (((f * h_1) * h_2) \dots * h_p)$$

Spatial filtering – LTI filters – Limitations

Limitations of LTI filters

- Derivative filters:
 - Detect edges, but
 - Sensitive to noise

- Moving average:
 - Decrease noise, but
 - Do not preserve edges

Difficult object/background separation

LTI filters cannot achieve a good trade-off in terms of noise vs edge separation

Spatial filtering – LTI filters – Limitations

Weak robustness against outliers

Figure 2 – (left) Impulse noise. (center) Gaussian filter $\tau=5$. (right) $\tau=11$.

- Even less efficient for impulse noise
- For the best trade-off: structures are lost, noise remains
- Do not adapt to the signal.

Can we achieve better performance by designing an adaptive filter?

Adaptive filtering

Spatial filtering – Adaptive filtering

$\textbf{Linear filter} \Rightarrow \textbf{Non-adaptive filter}$

- Linear filters are non-adaptive
- The operation does not depend on the signal
- © Simple, fast implementation
- ② Introduce blur, do not preserve edges

Spatial filtering – Adaptive filtering

Linear filter ⇒ **Non-adaptive filter**

- Linear filters are non-adaptive
- The operation does not depend on the signal
- © Simple, fast implementation
- © Introduce blur, do not preserve edges

Adaptive filter ⇒ Non-linear filter

- Adapt the filtering to the content of the image
- ullet Operations/decisions depend on the values of y
- Adaptive ⇒ non-linear:

$$\psi(\alpha x + \beta y) \neq \alpha \psi(x) + \beta \psi(y)$$

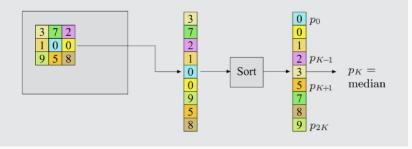
Since adapting to x or to y is not the same as adapting to $\alpha x + \beta y$.

Spatial filtering - Median filter

Median filters

• Try to denoise while respecting main structures

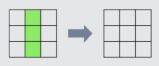
$$\hat{x}_{i,j} = \text{median}(y_{i+k,j+l} \mid (k,l) \in \mathcal{N}), \quad \mathcal{N} : \text{neighborhood}$$



Spatial filtering - Median filter

Behavior of median filters

- Remove isolated points and thin structures
- Preserve (staircase) edges and smooth corners



Spatial filtering – Median filter

Figure 3 – (left) Impulse noise. (center) 3×3 median filter. (right) 9×9 .

Spatial filtering – Median vs Gaussian

Figure 4 – (left) Impulse noise. (center) 9×9 median filter. (right) Gaussian $\tau=4$.

Spatial filtering – Median vs Gaussian

Figure 5 – (left) Gaussian noise. (center) 5×5 median filter. (right) Gaussian $\tau=3$.

Spatial filtering – Other standard non-linear filters

Morphological operators

Erosion

$$\hat{x}_{i,j} = \min(y_{i+k,j+l} \mid (k,l) \in \mathcal{N})$$

Dilation

$$\hat{x}_{i,j} = \max(y_{i+k,j+l} \mid (k,l) \in \mathcal{N})$$

ullet $\mathcal N$ called structural element

Figure 6 - (left) Salt-and-pepper noise, (center) Erosion, (right) Dilation

Spatial filtering – Morphological operators

Figure 7 – (top) Opening, (bottom) Closing. (Source: J.Y. Gil & R. Kimmel)

• Opening: erosion and next dilation (remove small bright elements)

• Closing: dilation and next erosion (remove small dark elements)

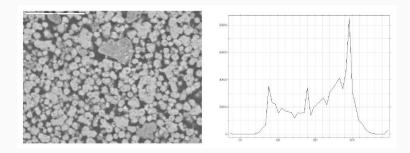
Very basic segmentation

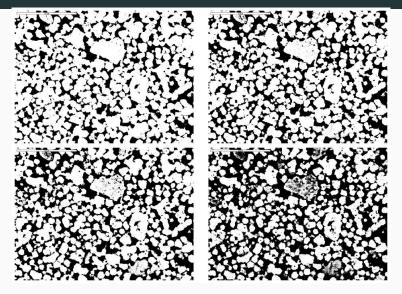
Segmentation: Find the location of a specific object into an image or partition the image according to the content.

Basic segmentation (e.g. for bright object on dark background):

- Apply some morphological operator to simplify the image content and reduce noise.
- Threshold the histogram with appropriate level.

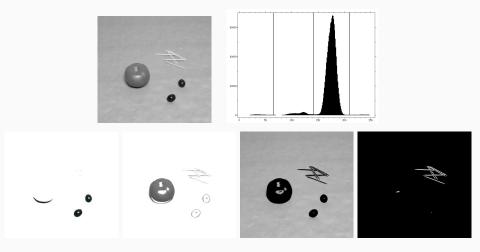
Histogram thresholding





Binarization with thresholds: 135, 145, 155, 165.

Histogram thresholding



Can be rafined with morphological operators (erosion, dilation, opening, closing)

Spatial filtering – Global filtering

Local filter

- The operation depends only on the local neighborhood
- ex: Gaussian filter, median filter
- © Simple, fast implementation
- © Do not preserve textures (global context)

Global filter

- Adapt the filtering to the global content of the image
- Result at each pixel may depend on all other pixel values
- Idea: Use non-linearity and global information

Spatial filtering – Bilateral filter

Bilateral filter [Tomasi & Manduchi, 1998]

$$\hat{x}_i = \frac{\displaystyle\sum_{j=1}^n w_{i,j} y_j}{\displaystyle\sum_{j=1}^n w_{i,j}} \quad \text{with} \quad w_{i,j} = \varphi_{\text{space}}(\| \boldsymbol{s}_i - \boldsymbol{s}_j \|_2^2) \times \varphi_{\text{color}}(\| \boldsymbol{y}_i - \boldsymbol{y}_j \|_2^2)$$

Weights depend on both the distance

- between pixel positions, and
- between pixel values.
- Consider the influence of space and color,
- Closer positions affect more the average,
- Closer intensities affect more the average.

Spatial filtering - Bilateral filter

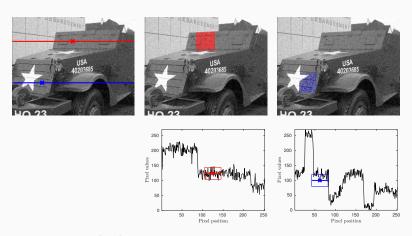


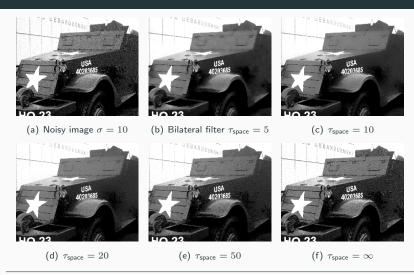
Figure 8 - Selection of pixel candidates in the bilateral filter

Spatial filtering - Bilateral filter



$$\varphi_{\text{color}}(\alpha) = \exp\left(-\frac{\alpha}{2\tau_{\text{color}}^2}\right)$$

Spatial filtering – Bilateral filter



$$\varphi_{\mathrm{space}}(\alpha) = \left\{ \begin{array}{ll} 1 & \mathrm{if} & \alpha \leqslant \tau_{\mathrm{space}^2} \\ 0 & \mathrm{otherwise} \end{array} \right.$$

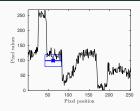
Spatial filtering – Bilateral vs moving average

Figure 9 – (left) Gaussian noise. (center) Moving average. (right) Bilateral filter.

Bilateral filter

- $\ensuremath{\texttt{@}}$ suppresses more noise while respecting the textures
- © still remaining noises and dull effects

Spatial filtering – Bilateral vs moving average



Why are there remaining noises?

- Below average pixels are mixed with other below average pixels
- Above average pixels are mixed with other above average pixels

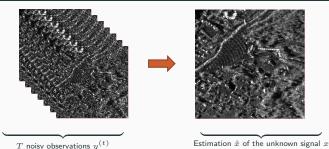
Why are there dull effects?

- ullet To counteract the remaining noise effect, $au_{
 m color}$ should be large
- ⇒ different things get mixed up together

What is missing? A more robust way to measure similarity, but similarity of what exactly?

Patches and non-local filters

Spatial filtering – Looking for other views



ullet Sample averaging of T noisy values:

$$\begin{split} \mathbb{E}[\hat{x}_i] &= \mathbb{E}\left[\frac{1}{T}\sum_{t=1}^T y_i^{(t)}\right] = \frac{1}{T}\sum_{t=1}^T \mathbb{E}[y_i^{(t)}] = \frac{1}{T}\sum_{t=1}^T x_i = x_i \qquad \text{(unbiased)} \end{split}$$
 and
$$\operatorname{Var}[\hat{x}_i] &= \operatorname{Var}\left[\frac{1}{T}\sum_{t=1}^T y_i^{(t)}\right] = \frac{1}{T^2}\sum_{t=1}^T \operatorname{Var}[y_i^{(t)}] = \frac{1}{T^2}\sum_{t=1}^T \sigma^2 = \frac{\sigma^2}{T} \end{split}$$

• ...only if the selected values are iid.

similar = close to being iid

 \rightarrow How can we select them on a single image?

(reduce noise)

Spatial filtering – Patches

Definition [Oxford dictionary]

patch (noun): A small area or amount of something.

Image patches: sub-regions of the image

- shape: typically rectangular
- size: much smaller than image size

 \rightarrow most common use: square regions between 5×5 and 21×21 pixels

 \rightarrow trade-off:

size $\nearrow \Rightarrow$ more distinctive/informative size $\searrow \Rightarrow$ easier to model/learn/match

non-rectangular / deforming shapes: computational complexity \nearrow

patches capture local context: geometry and texture

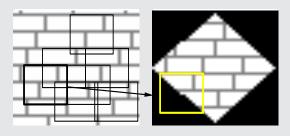
Spatial filtering – Patches for texture synthesis

Copying/pasting similar patches yields impressive texture synthesis:

Texture synthesis method by Efros and Leung (1999)

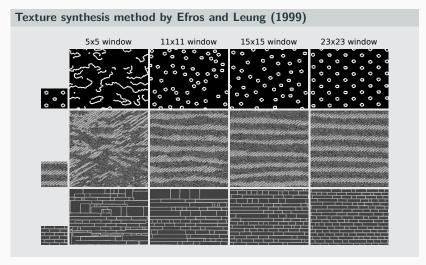
To generate a new pixel value:

- extract the surrounding patch (yellow)
- find similar patches in the reference image
- randomly pick one of them
- use the value of the central pixel of that patch



Spatial filtering – Patches for texture synthesis

Copying/pasting similar patches yields impressive texture synthesis:

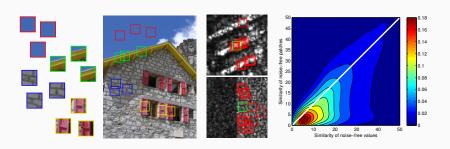


Non-local approach

[Buades at al, 2005, Awate et al, 2005]

• Local filters: average neighborhood pixels

- $\hat{x}_i = \frac{\sum_j w_{i,j} y_j}{\sum_j w_{i,j}}$
- Non-local filters: average pixels being in a similar context

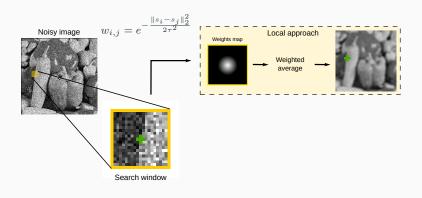


Patches are redundant in most types of images (large noise reduction) and similar ones tend to share the same underlying noise-free values (unbiasedness)

Non-local approach

[Buades at al, 2005, Awate et al, 2005]

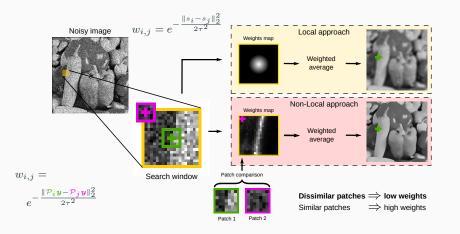
- Local filters: average neighborhood pixels
- $\hat{x}_i = \frac{\sum_j w_{i,j} y_j}{\sum_i w_{i,j}}$ • Non-local filters: average pixels being in a similar context



Non-local approach

[Buades at al, 2005, Awate et al, 2005]

- Local filters: average neighborhood pixels
- $\hat{x}_i = \frac{\sum_j w_{i,j} y_j}{\sum_j w_{i,j}}$ • Non-local filters: average pixels being in a similar context

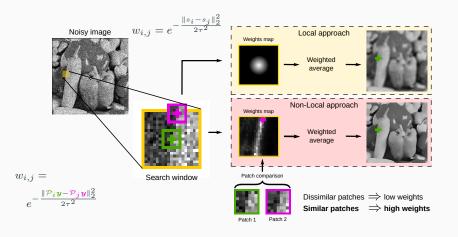


Non-local approach

[Buades at al, 2005, Awate et al, 2005]

- Local filters: average neighborhood pixels
- Non-local filters: average pixels being in a similar context

 $\hat{x}_i = \frac{\sum_j w_{i,j} y_j}{\sum_j w_{i,j}}$



Bilateral filter [Tomasi & Manduchi, 1998]

$$\hat{x}_i = \frac{\displaystyle\sum_{j \in \mathcal{N}_i} w_{i,j} y_j}{\displaystyle\sum_{j \in \mathcal{N}_i} w_{i,j}} \quad \text{with} \quad w_{i,j} = \varphi_{\text{space}}(\| \mathbf{s}_i - \mathbf{s}_j \|_2^2) \times \varphi_{\text{color}}(\| \mathbf{y}_i - \mathbf{y}_j \|_2^2)$$

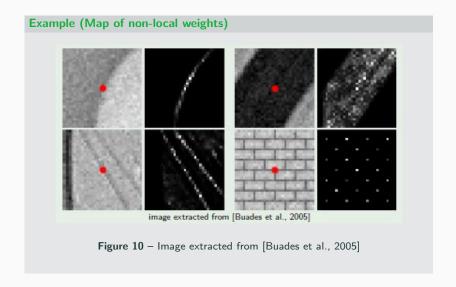
weights depend on the distance between pixel positions and pixel values

Non-local means [Buades at al, 2005, Awate et al, 2005]

$$\hat{x}_i = \frac{\displaystyle\sum_{j \in \mathcal{N}_i} w_{i,j} y_j}{\displaystyle\sum_{j \in \mathcal{N}_i} w_{i,j}} \quad \text{with} \quad w_{i,j} = \varphi(\| \mathbf{\mathcal{P}}_i y - \mathbf{\mathcal{P}}_j y \|_2^2)$$

- \mathcal{N}_i : large neighborhood of i, called search window (typically 21×21)
- \mathcal{P}_i : operator extracting a small window, patch, at i (typically 7×7)

weights in a large search window depend on the distance between patches



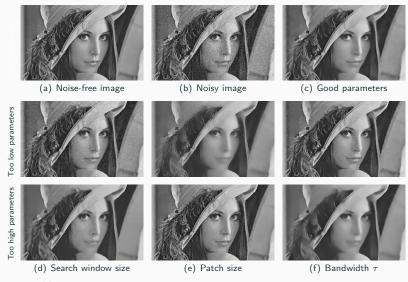


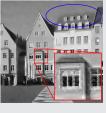
Figure 11 – Influence of the three main parameters of the NL means on the solution.

Limitations of NL-means

- Respects edges
- Good for texture

(a) Noisy image

- © Remaining noise around rare patches
- © Loses/blurs details with low SNR



(b) NL-means

(c) BM3D

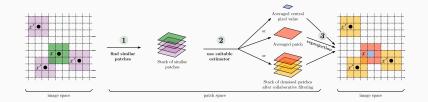
- Naive implementation: $O(n|\mathcal{N}||\mathcal{P}|)$
- (~ 1 minute for 256×256 image)

Using integral tables: $O(n|\mathcal{N}|)$

(few seconds for 256×256 image)

 \odot Or FFT: $O(n|\mathcal{N}|\log|\mathcal{N}|)$

Spatial filtering - Extensions of non-local means



More elaborate schemes mostly rely on patches and use more sophisticated estimators than the average

Questions?

Next class: Spectral filtering and variational methods for inverse problems

Slides from Charles Deledalle and Julie Delon

Sources, images courtesy and acknowledgment

L. Condat	I. Kokkinos	V. Tong Ta
DLR	JM. Nicolas	P. Tilakarat
DMMD	A. Newson	Wikipedia
Dpreview	D. C. Pearson	R. Willett
Y. Gong	S. Seitz	Y. Lee
A. Horodniceanu	J. Delon	L. Moisan