
Master 2 Statistique & Data Science, Ingénierie Mathématique

Réseaux de neurones profonds pour l’apprentissage
Deep neural networks for machine learning

Course VI – Introduction to Artificial Neural Networks:

Texture Synthesis and Style Transfer

Bruno Galerne

2023-2024

1

Machine learning – Timeline

Timeline of (deep) learning

1974 Backpropagation

1995
SVM reigns

Convolution Neural Networks for
Handwritten Recognition

1998

2006
Restricted
Boltzmann

Machine

1958 Perceptron

1969

Perceptron criticized

Google Brain Project on
16k Cores

2012

2012
AlexNet wins

ImageNet

Perceptrons

book

~1980

Multilayer

network Support Vector Machines

feature 1

fe
a
tu

re
 2

Support Vectors

Maximal

Margin

Hyperplane

X1

X2

X3

X4

W11

W12

W13

W14

f(x)

Input Weights Sum
Activation

Function

arti cial

Neuron

awkward silence (AI winter)

(Source: Lucas Masuch & Vincent Lepetit) 2

Texture synthesis and style transfer

What is a texture?

A minimal definition of a texture image is an “image containing repeated

patterns” [Wei et al., 2009].

The family of patterns reflects a certain amount of randomness, depending on

the nature of the texture.

Two main subclasses:

• The micro-textures.

• The macro-textures, constitued of small but discernible objects.

3

Texture synthesis

Texture Synthesis: Given an input texture image, produce an output texture

image being both visually similar to and pixel-wise different from the input

texture.

The output image should ideally be perceived as another part of the same large

piece of homogeneous material the input texture is taken from.

4

Gatys et al algorithm

References: L. Gatys, A. S. Ecker, and M. Bethge, Texture synthesis using

convolutional neural networks, in Advances in Neural Information Processing

Systems, 2015

5

Convolutional Neural Networks (CNN)

• Main idea: Use the feature layers of a trained deep CNN, namely VGG 19

[Simonyan and Zisserman, 2015], as statistics.
• VGG 19 was trained for image classification.
• It only uses 3× 3 convolution kernels followed by RELU (= positive part)

and max-pooling.

• For texture analysis, we only use the “pool” layers.
• We do not use the last “fully connected” layers that perform classification.
• VGG 19 is understood as a multiscale nonlinear transform adapted to

natural images.
6

Gatys et al algorithm

• Each feature layer is spatially averaged and the Gram matrix is formed for

each layer.
• Texture synthesis consists in minimizing the sum of the Frobenius norm

between Gram matrices.

7

Gatys et al algorithm

Given an example image u and a random initialization x0, one optimizes the

loss function

E(x) =
∑

for selected layers L

wL

∥∥∥GL(x)−GL(u)
∥∥∥2
F

where

• wL is a weight parameter for each layer

• ‖ · ‖F is the Frobenius norm

• for an image y and a layer index L, GL(y) denotes the Gram matrix of

the VGG-19 features at layer L: if V L(y) is the feature response of y at

layer L that has spatial size w × h and n channels,

GL(y) =
1

wh

∑
k∈{0,...,w−1}×{0,...,h−1}

V L(y)kV
L(y)Tk ∈ Rn×n.

The Gram matrix is a spatial statistics of order 2 that contains mean and

covariance information.

8

Gatys et al algorithm

• The gradient of the energy is computed using back-propagation routines.
• The authors use a quasi-Newton algorithm: L-BFGS that stands for

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
• It consists in using a low-rank approximation of the Hessian matrix for

computing the descent direction.
9

Gatys et al algorithm

Given an example image u and a random initialization x0, one optimizes the

loss function

E(x) =
∑

for selected layers L

wL

∥∥∥GL(x)−GL(u)
∥∥∥2
F

Pseudo-code:

Input: Input image u, set of selected VGG-19 layers L and associated layer

weights parameter {wL, L ∈ L}
Output: Synthesized texture x

Apply VGG-19 to u and extract the layers {VL(u)), L ∈ L}
Compute the target Gram matrices {GL(u) = Gram(VL(u)), L ∈ L}.
Initialize x with some Gaussian white noise.

for Nit iterations do

Apply VGG-19 to x and extract the layers {VL(x)), L ∈ L}.
Compute the current Gram matrices of x:

{GL(x) = Gram(VL(x)), L ∈ L}
Compute the loss E(x) and its gradient ∇xE(x) using backpropagation.

x← L-BFGS-step(x,E(x),∇xE(x)).

end for 10

Gatys et al algorithm: Depth influence

11

Gatys et al algorithm: Results

• MORE RESULTS
12

http://bethgelab.org/deeptextures/

Gatys et al algorithm

• This algorithm is the current state of the art.

• The computational cost is really high (even with high-end GPUs it takes

minutes).

• A lot of improvements have been proposed, eg by adding term to the

energy or by adding correlation between layers.

• Extension for style transfer with equally impressive results, and maybe

more impact.

13

Gatys et al for style transfer

Reference: [Gatys et al., 2016]

14

Gatys et al for style transfer

Reference: [Gatys et al., 2016]

15

Gatys et al for texture synthesis and style transfer

• Very nice and clean PyTorch implementation:

https://github.com/leongatys/PytorchNeuralStyleTransfer

• Today: Practice session based in this code.

• Very slow on CPU and computationally demanding with high-end GPU

(and memory consuming, e.g. 8 GB of memory for a 1024× 1024 image).

See practice session.

• Regarding texture modeling, the number of parameters is huge:

Textures are described by the Gram matrices and the number of elements

in the Gram matrices totals 850k. That is 1000 times more than

Portilla-Simoncelli !

16

https://github.com/leongatys/PytorchNeuralStyleTransfer

Generative networks for texture synthesis

• A workaround for speeding up synthesis is to train generative forward

networks to mimic Gatys algorithm, as proposed by [Ulyanov et al., 2016]

(badly coined Texture Networks).

• The generator is trained to produce images with low Gatys loss

(self-supervised training).

• Then synthesis is fast thanks to the feedforward architecture.

17

Generative networks for texture synthesis

Texture Networks

Input Gatys et al. Texture nets (ours) Input Gatys et al. Texture nets (ours)

Figure 1. Texture networks proposed in this work are feed-forward architectures capable of learning to synthesize complex textures
based on a single training example. The perceptual quality of the feed-forwardly generated textures is similar to the results of the closely
related method suggested in (Gatys et al., 2015a), which use slow optimization process.

we devise a new type of multi-scale generative architecture
that is particularly suitable for the tasks we consider.
The resulting fully-convolutional networks (that we call
texture networks) can generate textures and process im-
ages of arbitrary size. Our approach also represents an
interesting showcase of training conceptually-simple feed-
forward architectures while using complex and expressive
loss functions. We believe that other interesting results can
be obtained using this principle.
The rest of the paper provides the overview of the most re-
lated approaches to image and texture generation (Sect. 2),
describes our approach (Sect. 3), and provides extensive
extensive qualitative comparisons on challenging textures
and images (Sect. 4).

2. Background and related work
Image generation using neural networks. In general, one
may look at the process of generating an image x as the
problem of drawing a sample from a certain distribution
p(x). In texture synthesis, the distribution is induced by
an example texture instance x0 (e.g. a polka dots image),
such that we can write x ⇠ p(x|x0). In style transfer, the
distribution is induced by an image x0 representative of the
visual style (e.g. an impressionist painting) and a second
image x1 representative of the visual content (e.g. a boat),
such that x ⇠ p(x|x0,x1).
(Mahendran & Vedaldi, 2015; Gatys et al., 2015a;b) reduce
this problem to the one of finding a pre-image of a certain

image statistics �(x) 2 Rd and pose the latter as an op-
timization problem. In particular, in order to synthesize a
texture from an example image x0, the pre-image problem
is:

argmin
x2X

k�(x) � �(x0)k2
2. (1)

Importantly, the pre-image x : �(x) ⇡ �(x0) is usually
not unique, and sampling pre-images achieves diversity. In
practice, samples are extracted using a local optimization
algorithm A starting from a random initialization z. There-
fore, the generated image is the output of the function

localopt
x2X

(k�(x) � �(x0)k2
2; A, z), z ⇠ N (0,⌃). (2)

This results in a distribution p(x|x0) which is difficult to
characterise, but is easy to sample and, for good statistics
�, produces visually pleasing and diverse images. Both
(Mahendran & Vedaldi, 2015) and (Gatys et al., 2015a;b)
base their statistics on the response that x induces in deep
neural network layers. Our approach reuses in particular
the statistics based on correlations of convolutional maps
proposed by (Gatys et al., 2015a;b).
Descriptive texture modelling. The approach described
above has strong links to many well-known models of vi-
sual textures. For texture, it is common to assume that p(x)
is a stationary Markov random field (MRF). In this case, the
texture is ergodic and one may considers local spatially-
invariant statistics � F (x; i), i 2 ⌦, where i denotes a
spatial coordinate. Often F is the output of a bank of linear

• However texture quality is not as good, and a network has to be trained

for each new image.
18

On Demand Solid Texture Synthesis Using Deep 3D Networks

• Work with Jorge Gutierrez (PhD), Julien Rabin and Thomas Hurtut

[Gutierrez et al., 2020].

• Training of generative networks for 3D textures (called solid textures)

where the Gatys approach is infeasible.

Input Output

19

On Demand Solid Texture Synthesis Using Deep 3D Networks

Training framework for the proposed CNN Generator network:

• The generator G(·|θ) with parameters θ processes a multi-scale noise input

Z to produce a solid texture v

• The loss L compares, for each direction d, the feature statistics induced by

the example ud in the layers of the pre-trained Descriptor network D(·)
(loss of Gatys et al).

20

On Demand Solid Texture Synthesis Using Deep 3D Networks

Schematic of the Generator’s architecture:

• Processes a set of noise inputs Z = {z0, . . . , zK} at K + 1 different scales

using convolution operations and non-linear activations

• The information at different scales is combined using upsampling and

channel concatenation (similar to the right part of a U-net).

21

On Demand Solid Texture Synthesis Using Deep 3D Networks

Training: Find the parameters θ for a given texture

• Minimize Gatys’ loss for each slice

• Exploit invariance by translation to generate batches of width one voxel only

• Minimization using 3000 iterations of Adam algorithm

input 10 20 50 100

200 300 500 1000

1500 2000 2500 3000

22

On Demand Solid Texture Synthesis Using Deep 3D Networks

Generated volume Examples Generated slices

v u1 = u2 =

u3

v
1,

N1
2

v
2,

N2
2

v
3,

N3
2

oblique

(45◦)

g
ra
n
it
e

b
ee
f

m
ar
b
le

23

On Demand Solid Texture Synthesis Using Deep 3D Networks

Generated volume Examples Generated slices

v u1 = u2 =

u3

v
1,

N1
2

v
2,

N2
2

v
3,

N3
2

oblique

(45◦)

p
eb

b
le

ch
ee
se

h
is
to
lo
g
y

24

On Demand Solid Texture Synthesis Using Deep 3D Networks

• Solid textures can be used to apply textures on surfaces without

parametrization.

25

On Demand Solid Texture Synthesis Using Deep 3D Networks

• Fast synthesis thanks to the feed forward network (1 sec. for 2563)
• On demand synthesis using a pseudo random number generator seed with

spatial coordinates

• Training and synthesis with high resolution images without memory issues

thanks to the single slice strategy.

26

Generative networks for texture synthesis

• Other contributions propose generative networks for universal style

transfer/texture synthesis.

• Universal means that a single network is adapted to all images.

• This still relies in approximating the Gatys procedure with some

approximation for a faster style transfer: auto-encoders to invert VGG19

and imposing Gram matrices.

27

References i

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016).

Image style transfer using convolutional neural networks.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2414–2423.

Gutierrez, J., Rabin, J., Galerne, B., and Hurtut, T. (2020).

On demand solid texture synthesis using deep 3d networks.

Computer Graphics Forum, 39(1):511–530.

Simonyan, K. and Zisserman, A. (2015).

Very deep convolutional networks for large-scale image recognition.

In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings.

28

References ii

Ulyanov, D., Lebedev, V., Vedaldi, A., and Lempitsky, V. (2016).

Texture networks: Feed-forward synthesis of textures and stylized

images.

In ICML, pages 1349–1357.

Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. (2009).

State of the art in example-based texture synthesis.

In Eurographics 2009, State of the Art Report, EG-STAR. Eurographics

Association.

29

Questions?

Slides from Charles Deledalle

29

	Texture synthesis and style transfer
	References

