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Introduction on generative models



Generative models

1. Model and/or learn a distribution p(u) on the space of images.

(source: Charles Deledalle)
The images may represent:

• different instances of the same texture image,
• all images naturally described by a dataset of images,
• any image

2. Generate samples from this distribution.
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Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

• z is a generic source of randomness, often called the latent variable.
• If G(·; Θ) is known, then p = G(·; Θ)#N (0, In) is the push-forward of the

latent distribution.

The generator G(·; Θ) can be:

• A deterministic function (e.g. convolution operator),
• A neural network with learned parameter,
• An iterative optimization algorithm (gradient descent,...),
• A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,. . . ).
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Image generation: Gaussian model

• Consider a Gaussian model for the distribution of images x with d pixels:

x ∼ N (x;µ,Σ) =
1√

(2π)d|Σ|
exp

[
−(x− µ)TΣ−1(x− µ)

]

• µ: mean image,
• Σ: covariance matrix of images.

(source: Charles Deledalle)
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Image generation: Gaussian model

• Take a training dataset D of images:

D = {x1, . . . , xN}

=

 , , , , ,

×N

, . . .


• Estimate the mean

µ̂ =
1
N

∑
i

xi =

• Estimate the covariance matrix: Σ̂ = 1
N

∑
i(xi − µ̂)(xi − µ̂)T = ÊΛ̂ÊT

Ê =

 , , , , ,

×N

, . . .

︸ ︷︷ ︸
eigenvectors of Σ̂, i.e., main variation axis
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Image generation: Gaussian model

You now have learned a generative model:
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Image generation: Gaussian model

How to generate samples from N (µ̂, Σ̂)?{
z ∼ N (0, Id) ← Generate random latent variable
x = µ̂+ ÊΛ̂1/2z

The model does not generate realistic faces.

• The Gaussian distribution assumption is too simplistic.

• Each generated image is just a linear random combination of the
eigenvectors (with independence !).

• The generator corresponds to a one layer liner neural network (without
non-linearities).
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Image generation: Gaussian model

• Deep generative modeling consists in learning non-linear generative
models to reproduce complex data such as realistic images.

• It relies on deep neural networks and several solutions have been
proposed since the “Deep learning revolution” (2012).
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Generative models: Examples

Texture synthesis with a stationary Gaussian model: (Galerne et al.,
2011)

• Data: A single texture image h.

• Inferred distribution: p is the stationary Gaussian distribution with similar
mean and covariance statistics.

• z is a Gaussian white noise image (each pixel is iid with standard normal
distribution).

• G is a convolution operator with know parameters Θ.

Data Generated images

Spot h G(z1; Θ) G(z2; Θ) G(z3; Θ)
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Generative models: Examples

Generative Adversarial Networks: (Goodfellow et al., 2014)

• Data: A database of images.
• Inferred distribution: Not explicit, push-forward measure given by

generator.
• z is a Gaussian array in a latent space.
• G(·; Θ) is a (convolutional) neural network with parameters Θ learned

using an adversarial discriminator network D(·; ΘD).

Data Generated images

MNIST: handwritten digits Fake images (100 epochs)

Image size:
28×28 px
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Generative models: Examples

Generative Adversarial Networks: Style GAN (Karras et al., 2019)

Image size:
1024× 1024 px

(source: Karras et al.)
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Denoising diffusion probabilistic models

• Learn to revert a degradation process: Add more and more noise to an
image.

• First similar model (Sohl-Dickstein et al., 2015)

(source: Yang Song)

• Probably the most promising framework these days... but things change
very quickly in this field!
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Diffusion models

(Ho et al., 2020): Denoising Diffusion Probabilistic Models (DDPM): One of
the first paper producing images with reasonable resolution.

Denoising Diffusion Probabilistic Models

Jonathan Ho
UC Berkeley

jonathanho@berkeley.edu

Ajay Jain
UC Berkeley

ajayj@berkeley.edu

Pieter Abbeel
UC Berkeley

pabbeel@cs.berkeley.edu

Abstract

We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic
models and denoising score matching with Langevin dynamics, and our models nat-
urally admit a progressive lossy decompression scheme that can be interpreted as a
generalization of autoregressive decoding. On the unconditional CIFAR10 dataset,
we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On
256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our imple-
mentation is available at https://github.com/hojonathanho/diffusion.

1 Introduction

Deep generative models of all kinds have recently exhibited high quality samples in a wide variety
of data modalities. Generative adversarial networks (GANs), autoregressive models, flows, and
variational autoencoders (VAEs) have synthesized striking image and audio samples [14, 27, 3,
58, 38, 25, 10, 32, 44, 57, 26, 33, 45], and there have been remarkable advances in energy-based
modeling and score matching that have produced images comparable to those of GANs [11, 55].

Figure 1: Generated samples on CelebA-HQ 256× 256 (left) and unconditional CIFAR10 (right)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.Bruno Galerne Generative models for images I: Introduction and basics on image restorationMVA 2025-26 13 / 84



Generative models: Motivations

Why generative models are interesting ?

• Generating realistic images is important by itself for entertainment
industry (visual effects, video games, augmented reality...), design,
advertising industry,...

• Good image model leads to good image processing: Generative
models can be used as a parametric space for solving inverse problems.
Example: Inpainting of a portrait image.

• Also generative models opens the way to non trivial image
manipulation using conditional generative models.
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Conditional generative models: Examples

Pix2pix: Image-to-Image Translation with Conditional Adversarial Nets
(Isola et al., 2017)

• GAN conditioned on input image.
• Generator: U-net architecture
• Discriminator: Patch discriminator applied to each patch
• Opens the way for new creative tools

(source: Isola et al.)
Bruno Galerne Generative models for images I: Introduction and basics on image restorationMVA 2025-26 15 / 84



Conditional generative models: Examples

Latest trends using diffusion models: Text to image generation

• DALL·E 1 & 2: CreatingImages from Text (Open AI, January 2021 and
April 2022)

• Imagen, Google research (May 2022)

DALL·E 2 (Open AI) Imagen (Google)
Input: An astronaut riding a
horse in a photorealistic style

Input: A dog looking curiously in
the mirror, seeing a cat.
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Conditional generative models: Examples

Imagen pipeline:

(source: (Saharia et al., 2022))
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Conditional generative models: Examples

In August 2022, StableDiffusion was released:

• Based on the paper (Rombach et al., 2022)
• Open source!

(source: Stable diffusion)Bruno Galerne Generative models for images I: Introduction and basics on image restorationMVA 2025-26 18 / 84



Diffusion models in 2023

Diffusion models are considered mature models and have been used in a
large variety of frameworks.

• Diffusion models beyond image generation: Text to video, motion
generation, proteins, soft robots,...

• Control of (latent) diffusion models((Ruiz et al., 2023), (Zhang et al.,
2023),...)

• Diffusion models as priors for imaging inverse problems ((Chung
et al., 2023), (Song et al., 2023), lot of applications in medical imaging,
etc.)
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Diffusion models in 2023

DreamBooth: Fine Tuning Text-to-Image Diffusion Models
for Subject-Driven Generation

Nataniel Ruiz∗,1,2 Yuanzhen Li1 Varun Jampani1

Yael Pritch1 Michael Rubinstein1 Kfir Aberman1

1 Google Research 2 Boston University

Figure 1. With just a few images (typically 3-5) of a subject (left), DreamBooth—our AI-powered photo booth—can generate a myriad
of images of the subject in different contexts (right), using the guidance of a text prompt. The results exhibit natural interactions with the
environment, as well as novel articulations and variation in lighting conditions, all while maintaining high fidelity to the key visual features
of the subject.

Abstract

Large text-to-image models achieved a remarkable leap
in the evolution of AI, enabling high-quality and diverse
synthesis of images from a given text prompt. However,
these models lack the ability to mimic the appearance of
subjects in a given reference set and synthesize novel rendi-
tions of them in different contexts. In this work, we present
a new approach for “personalization” of text-to-image dif-
fusion models. Given as input just a few images of a sub-
ject, we fine-tune a pretrained text-to-image model such that
it learns to bind a unique identifier with that specific sub-
ject. Once the subject is embedded in the output domain of
the model, the unique identifier can be used to synthesize
novel photorealistic images of the subject contextualized in
different scenes. By leveraging the semantic prior embed-
ded in the model with a new autogenous class-specific prior
preservation loss, our technique enables synthesizing the
subject in diverse scenes, poses, views and lighting condi-
tions that do not appear in the reference images. We ap-
ply our technique to several previously-unassailable tasks,
including subject recontextualization, text-guided view syn-
thesis, and artistic rendering, all while preserving the sub-
ject’s key features. We also provide a new dataset and eval-
uation protocol for this new task of subject-driven genera-
tion. Project page: https://dreambooth.github.io/

*This research was performed while Nataniel Ruiz was at Google.

1. Introduction
Can you imagine your own dog traveling around the

world, or your favorite bag displayed in the most exclusive
showroom in Paris? What about your parrot being the main
character of an illustrated storybook? Rendering such imag-
inary scenes is a challenging task that requires synthesizing
instances of specific subjects (e.g., objects, animals) in new
contexts such that they naturally and seamlessly blend into
the scene.

Recently developed large text-to-image models have
shown unprecedented capabilities, by enabling high-quality
and diverse synthesis of images based on a text prompt writ-
ten in natural language [51,58]. One of the main advantages
of such models is the strong semantic prior learned from a
large collection of image-caption pairs. Such a prior learns,
for instance, to bind the word “dog” with various instances
of dogs that can appear in different poses and contexts in
an image. While the synthesis capabilities of these models
are unprecedented, they lack the ability to mimic the ap-
pearance of subjects in a given reference set, and synthesize
novel renditions of the same subjects in different contexts.
The main reason is that the expressiveness of their output
domain is limited; even the most detailed textual description
of an object may yield instances with different appearances.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22500

(source: (Ruiz et al., 2023))

Bruno Galerne Generative models for images I: Introduction and basics on image restorationMVA 2025-26 20 / 84



Diffusion models in 2023

Adding Conditional Control to Text-to-Image Diffusion Models

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala
Stanford University

{lvmin, anyirao, maneesh}@cs.stanford.edu

Input Canny edge Default “masterpiece of fairy tale, giant deer, golden antlers”

Input human pose Default “chef in kitchen”

“…, quaint city Galic”

“Lincoln statue”

Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges
(top), human pose (bottom), etc., to control the image generation of large pretrained diffusion models. The default results use
the prompt “a high-quality, detailed, and professional image”. Users can optionally give prompts like the “chef in kitchen”.

Abstract

We present ControlNet, a neural network architecture to
add spatial conditioning controls to large, pretrained text-
to-image diffusion models. ControlNet locks the production-
ready large diffusion models, and reuses their deep and ro-
bust encoding layers pretrained with billions of images as a
strong backbone to learn a diverse set of conditional controls.
The neural architecture is connected with “zero convolutions”
(zero-initialized convolution layers) that progressively grow
the parameters from zero and ensure that no harmful noise
could affect the finetuning. We test various conditioning con-
trols, e.g., edges, depth, segmentation, human pose, etc., with
Stable Diffusion, using single or multiple conditions, with
or without prompts. We show that the training of Control-
Nets is robust with small (<50k) and large (>1m) datasets.
Extensive results show that ControlNet may facilitate wider
applications to control image diffusion models.

1. Introduction
Many of us have experienced flashes of visual inspiration

that we wish to capture in a unique image. With the advent
of text-to-image diffusion models [54, 61, 71], we can now
create visually stunning images by typing in a text prompt.
Yet, text-to-image models are limited in the control they
provide over the spatial composition of the image; precisely
expressing complex layouts, poses, shapes and forms can be
difficult via text prompts alone. Generating an image that
accurately matches our mental imagery often requires nu-
merous trial-and-error cycles of editing a prompt, inspecting
the resulting images and then re-editing the prompt.

Can we enable finer grained spatial control by letting
users provide additional images that directly specify their
desired image composition? In computer vision and machine
learning, these additional images (e.g., edge maps, human
pose skeletons, segmentation maps, depth, normals, etc.)
are often treated as conditioning on the image generation
process. Image-to-image translation models [34, 97] learn

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3836

(source: ControlNet (Zhang et al., 2023))
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Diffusion models in 2023

Diffusion posterior sampling for general noisy inverse problems (Chung et al.,
2023)

Figure 1: Solving noisy linear, and nonlinear inverse problems with diffusion models. Our recon-
struction results (right) from the measurements (left) are shown.

In this work, we devise a method to circumvent the intractability of posterior sampling by diffusion
models via a novel approximation, which can be generally applied to noisy inverse problems.
Specifically, we show that our method can efficiently handle both the Gaussian and the Poisson
measurement noise. Also, our framework easily extends to any nonlinear inverse problems, when
the gradients can be obtained through automatic differentiation. We further reveal that a recently
proposed method of manifold constrained gradients (MCG) (Chung et al., 2022a) is a special case
of the proposed method when the measurement is noiseless. With a geometric interpretation, we
further show that the proposed method is more likely to yield desirable sample paths in noisy setting
than the previous approach (Chung et al., 2022a). In addition, the proposed method fully runs on
the image domain rather than the spectral domain, thereby avoiding the computation of SVD for
efficient implementation. With extensive experiments including various inverse problems—inpainting,
super-resolution, (Gaussian/motion/non-uniform) deblurring, Fourier phase retrieval—we show that
our method serves as a general framework for solving general noisy inverse problems with superior
quality (Representative results shown in Fig. 1).

2 BACKGROUND

2.1 SCORE-BASED DIFFUSION MODELS

Diffusion models define the generative process as the reverse of the noising process. Specifically,
Song et al. (2021b) defines the Itô stochastic differential equation (SDE) for the data noising process
(i.e. forward SDE) x(t), t ∈ [0, T ], x(t) ∈ Rd ∀t in the following form1

dx = −β(t)
2

xdt+
√
β(t)dw, (1)

where β(t) : R → R > 0 is the noise schedule of the process, typically taken to be monotonically
increasing linear function of t (Ho et al., 2020), and w is the standard d−dimensional Wiener process.
The data distribution is defined when t = 0, i.e. x(0) ∼ pdata, and a simple, tractable distribution (e.g.
isotropic Gaussian) is achieved when t = T , i.e. x(T ) ∼ N (0, I).

Our aim is to recover the data generating distribution starting from the tractable distribution, which
can be achieved by writing down the corresponding reverse SDE of (1) (Anderson, 1982):

dx =

[
−β(t)

2
x− β(t)∇xt

log pt(xt)

]
dt+

√
β(t)dw̄, (2)

1In this work, we consider the variance preserving (VP) form of the SDE (Song et al., 2021b) which is
equivalent to Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020).

2

(source: (Chung et al., 2023))
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Diffusion models in 2024

• Text-to-video
generation.

• Image generation
broadly available
via conversational
agent (ChatGPT,
Le Chat by Mistral
(based on Flux
Pro),...).

• Diffusion models
used as “world
model”.

DiffusionLight: Light Probes for Free by Painting a Chrome Ball

Pakkapon Phongthawee*1 Worameth Chinchuthakun*1,2 Nontaphat Sinsunthithet1

Amit Raj3 Varun Jampani4 Pramook Khungurn5 Supasorn Suwajanakorn1

1 VISTEC 2 Tokyo Tech 3 Google Research 4 Stability AI 5 Pixiv
https://diffusionlight.github.io/

Figure 1. We leverage a pre-trained diffusion model (Stable Diffusion XL) for light estimation by rendering an HDR chrome ball. In each
scene, we show our normally exposed chrome ball on top and our underexposed version, which reveals bright light sources, on the bottom.

Abstract
We present a simple yet effective technique to estimate

lighting in a single input image. Current techniques rely
heavily on HDR panorama datasets to train neural networks
to regress an input with limited field-of-view to a full environ-
ment map. However, these approaches often struggle with
real-world, uncontrolled settings due to the limited diversity
and size of their datasets. To address this problem, we lever-
age diffusion models trained on billions of standard images
to render a chrome ball into the input image. Despite its
simplicity, this task remains challenging: the diffusion mod-
els often insert incorrect or inconsistent objects and cannot
readily generate chrome balls in HDR format. Our research
uncovers a surprising relationship between the appearance
of chrome balls and the initial diffusion noise map, which we

*Authors contributed equally to this work.

utilize to consistently generate high-quality chrome balls. We
further fine-tune an LDR diffusion model (Stable Diffusion
XL) with LoRA, enabling it to perform exposure bracketing
for HDR light estimation. Our method produces convinc-
ing light estimates across diverse settings and demonstrates
superior generalization to in-the-wild scenarios.

1. Introduction
Single-view lighting estimation is the problem of inferring
the lighting conditions from an input image. In this work, we
represent lighting as an environment map [8], which facili-
tates seamless insertion of virtual objects, including highly
reflective ones. This problem is ill-posed because the envi-
ronment map extends beyond the limited field of view of the
input image. Moreover, the output must have a high dynamic
range (HDR) to capture the true intensity of the incoming
light. These difficulties have spurred numerous attempts to

1
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(source: (Phongthawee et al., 2024))
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Generative models for images: Plan of the course 2025-26

Courses shared with Arthur Leclaire (Telecom Paris).

Warm up (today):

• Introduction to generative models for images (done)
• Basics on image restoration/inverse problems (end of today session)

Part I: Established generative models frameworks based on CNN

1. Generative models based on likelihood maximization
(BG, 1 course)

• Variational AutoEncoders (VAEs)
• Normalizing Flows (NFs)

2. Generative Adversarial Networks (GANs)
(AL, 2 courses)

• Training of GANs
• Link with optimal transport

3. Application of generative models for imaging inverse problems
(AL, 1 course)

• Classical imaging problems: Super-Resolution, inpainting,...
• Image-to-image translations
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Generative models for images: Plan of the course 2025-26

Part II: Plug-and-Play methods for imaging inverse problems
(AL, 2 courses)

1. Proximal splitting and PnP methods
2. Convergence of PnP methods via fixed point

• Fixed point theorem for “averaged” operators
• Convergence of PnP with an “averaged” denoiser
• Learning a denoiser with Lipschitz constraint

3. Convergence of PnP methods via non-convex optimization

• Convergence of proximal splitting in the non-convex case
• Gradient-step regularization, and convergence of PnP
• Applications to several inverse problems
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Generative models for images: Plan of the course 2025-26

Part III: Diffusion or Score-Based Generative Models (SGM)
(BG, 2 courses)

1. Diffusion models in pixel space

• Time reversal of stochastic processes
• Denoising Diffusion Probabilistic Models (DDPM)
• Denoising Implicit Diffusion Models (DDIM)
• Application to imaging inverse problems

2. Latent Diffusion Models (LDM)

• Stable diffusion pipeline
• Text-to-image synthesis
• Controllable diffusion

Some courses are practice sessions. Bring your laptop!
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Generative models for images: Validation

Validation (Master MVA)

• Un devoir sur table rapide (30 min) en février.

• Un projet final.

• Merci de vous inscrire via le google form.

• Email: generative.modeling.mva@gmail.com

Projet final : Détails

• Etude d’un article en groupe de 2 étudiants

• Rendu de rapport et soutenance orale à Telecom Paris (semaine du 30
mars 2026)

• Choix d’un article parmi une liste proposée

• Discussion critique de l’article

• Comparaison avec les méthodes vues en cours

• Expériences numériques et comparaison avec les résultats vus en TP
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Inverse Problems



Inverse problem with additive noise:

v = Au0 + w

where

• u0 ∈ Rd is the clean image to recover

• A : Rd → Rm

• w is a noise

In many cases, the degradation operator A can be approximated with a linear
operator A, and the noise model w is assumed to be Gaussian.

But, there are also inverse problems with non-linear A and non-Gaussian
noise (e.g. Poisson noise).
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Classical Inverse Problems
42 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

TABLE I
EXAMPLES OF INVERSE PROBLEMS IN IMAGING

to noise (e.g., when the spectrum of A is not bounded below;
in the case where A is the linear operator A, this corresponds
to some eigenvalues of A�A being small).

In some settings, one might have prior knowledge about
which x are more likely; for instance, we might expect x to
be smooth, or be smooth away from edges and boundaries.
Such knowledge can be codified into a prior distribution for
x, leading to a maximum a posteriori (MAP) estimate

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x)

= arg min
x

− ln p(y|x) − ln p(x).

For the special case of additive white Gaussian noise, the MAP
formulation leads to

arg min
x

1
2‖A(x) − y‖2

2 + r(x), (1)

where r(x) is proportional to the negative log-prior of x.
Examples of this framework include Tikhonov regulariza-
tion [54], sparsity regularization in some basis or frame [55],
[56], and total variation regularization [11], [57]. In some
settings, MAP estimation with underdetermined A(·) can be
considered an algorithmic procedure for choosing, among the
infinitely many values of x that satisfy y = A(x), the one that
is most likely under the prior.

While in principle MAP estimation can be used to solve
most image reconstruction problems, difficulties arise when

(1) the statistics of the noise are not known, (2) the distribu-
tion of the signal is not known or the log-likelihood does not
have a closed form, or (3) the forward operator is not known
or only partially known. In the last five years, machine learn-
ing has provided machinery to (partially) overcome many of
these issues. Variations on the aforementioned inverse problem
appear in a range of imaging settings. We highlight a few
prominent examples in Table I.

A. Supervised vs. Unsupervised Inversion

We start by explaining a central dichotomy in the litera-
ture and in our proposed taxonomy of approaches to inverse
problems. The first (and most well-known) family of deep
learning inversion methods use what we call supervised inver-
sions. The central idea is to create a matched dataset of ground
truth images x and corresponding measurements y, which can
be done by simulating (or physically implementing) the for-
ward operator on clean data, i.e., measure them. Subsequently,
one can train a network that takes in measurements y and
reconstructs the image x, i.e., learns an inverse mapping. Such
supervised methods typically perform very well, but are sen-
sitive to changes or uncertainty to the forward operator A. In
addition, a new network needs to be trained every time the
measurement process changes.

The second family of techniques we cover are unsuper-
vised, i.e., do not rely on a matched dataset of images x and
measurements y. In our taxonomy we separate unsupervised

Authorized licensed use limited to: CEA DAM. Downloaded on June 30,2021 at 07:30:38 UTC from IEEE Xplore.  Restrictions apply. 

(source: (Ongie et al., 2020))
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Gaussian denoising

Let’s start with the case A = Id, i.e. image denoising:

v = u0 + w where w ∼ N (0, σ2Id).

• We want to estimate u0 from a single realization of v.

• We need to add some prior knowledge on the solution (e.g. regularity
assumption).

u0 v
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Deblurring

• A spatially invariant blur can be modeled
by a convolution operator Au = k ∗ u

• Several types of blur exist (motion,
defocus)

• Non-blind deblurring consists in
recovering u0 from

v = k ∗ u0 + w.

• Non-blind means that the blur kernel k is
known.

• We won’t tackle blind deblurring here.

Which blur kernel was used ?

Isotropic blur Motion blur

Original

Blurred
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Super-Resolution

Super-resolution consists in finding another version of v at higher resolution.

This is an inverse problem involving the subsampling operator with stride
s ∈ N∗:

u↓s(x, y) = u(sx, sy).

In practice, to create a low resolution version of an image we need to apply
an (anti-aliasing) filter before subsampling!

With prefiltering, we obtain the zoom-out operator

Au = (k ∗ u)↓s.

Super-resolution consists in recovering u0 from

v = (k ∗ u)↓s + w.

The degraded image v is defined on a subgrid of stride s.
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Inpainting

Inpainting consists in filling missing regions in images

The degradation operator then writes

Au = u1ω

where ω ⊂ Ω is the set of known pixels and Ω \ ω the mask.
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Inverse problem

We wish to recover u0 from
v = Au0 + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k ∗ u, we can invert A directly in Fourier
domain:

u = F−1
(

v̂
k̂

)
= F−1

(
û0 +

ŵ
k̂

)
−→ but noise explodes !

When the problem is ill-posed, there may be multiple solutions or erroneous
solutions.

It is thus useful to adopt an a priori on the solution, e.g. imposing some kind
of regularity.
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Image Restoration by Optimization

We will therefore try to solve

F(u) =
1
2
∥Au− v∥2

2 + λR(u)

where R(u) imposes some kind of regularity of u, and λ ≥ 0 is a parameter.

The problem argminu∈RΩ F(u) is very high-dimensional, and we need efficient
algorithms.

Simple (nearly useless) regularization: Consider R(u) = λ
2 ∥u∥2

2. Then
uλ ∈ argminF is given by

AT(Auλ − v) + λuλ = 0 i.e. uλ = (AT A + λI)−1AT v

Example: for denoising (A = Id),

it just divides all values by 1 + λ...

For differentiable F, we can always consider simple gradient descent.

Example: The gradient of f (u) = 1
2∥Au− v∥2

2 is ∇f (u) = AT(Au− v).

If Au = k ∗ u (periodic convolution), then AT u = k̃ ∗ u with k̃(x) = k(−x).
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The Steepest Descent

https://mathinsight.org/directional_derivative_gradient_

introduction
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Descent Lemma

Let f : Rd → R be differentiable with L-Lipschitz gradient. Then, for any
x, y ∈ Rd,

f (y) = f (x) +
∫ 1

0
∇f (x + t(y− x)) · (y− x)dt

= f (x) +∇f (x) · (y− x) +
∫ 1

0

(
∇f (x + t(y− x))−∇f (x)

)
· (y− x)dt

≤ f (x) +∇f (x) · (y− x) +
∫ 1

0
∥∇f (x + t(y− x))−∇f (x)∥∥y− x∥dt

≤ f (x) +∇f (x) · (y− x) +
∫ 1

0
Lt∥y− x∥2dt

≤ f (x) +∇f (x) · (y− x) +
L
2
∥y− x∥2.

Consequence: If we choose τ ∈ [0, 2
L ], then

f (x− τ∇f (x)) ≤ f (x)− τ
(

1− τL
2

)
∥∇f (x)∥2 ≤ f (x).
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Gradient Descent

We consider here the gradient descent method:

xn+1 = xn − τn∇f (xn) ,

where τn > 0 is a sequence of step sizes.

• For τn = τ constant, we speak of fixed step size.

• We speak of optimal step size if, at each iteration n, we choose

τn ∈ argmint∈R f (xn − t∇f (xn)).

The descent lemma gives that for f differentiable with L-Lipschitz gradient
and τ ⩽ 2

L ,
f (xn+1) ⩽ f (xn)

Thus, if f is lower bounded, f (xn) converges.
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Convexity and Minimum

The function f : Rd → R is convex if for all x, y ∈ Rd,

∀t ∈ (0, 1), f ((1− t)x + ty) ⩽ (1− t)f (x) + tf (y).

It is said strictly convex if the inequality is strict.

If f is convex and differentiable, one can show that for any x, y ∈ Rd,

f (y) ⩾ f (x) +∇f (x) · (y− x).

Consequence : If f is convex and differentiable, then

x ∈ argmin f ⇐⇒ ∇f (x) = 0.

The argmin is unique as soon as f is strictly convex.
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Strong Convexity

We say that f is α-convex (with α ∈ R) if f − α
2 ∥ · ∥2 is convex.

When α > 0, we say that f is strongly convex.

Remark : The convexity and the gradient Lipschitz constant can be read on
the Hessian:

If A,B ∈ Rd×d are symmetric, we write A ⪰ B if A− B if semi-definite positive,
i.e.

∀x ∈ Rd, Ax · x ≥ Bx · x.

For f : Rd → R of class C 2,

∇f is L-Lipschitz iff ∀x ∈ Rd, −LId ⪯ ∇2f (x) ⪯ LId.
i.e. ∀x the eigenvalues of ∇2f (x) have moduli ≤ L.

f is α-convex iff ∀x ∈ Rd, ∇2f (x) ⪰ αId
i.e. ∀x the eigenvalues of ∇2f (x) are all ≥ α.
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Convergence Guarantees, Convex Case

Theorem
Let f : Rd → R be convex differentiable with ∇f L-Lipschitz. Assume that
argmin f is non-empty.

Let τ ∈ (0, 2
L ), x0 ∈ Rd and (xn) the sequence defined by

xn+1 = xn − τ∇f (xn) .

Then (xn) converges towards an element of argmin f .

Theorem
Let f : Rd → R be differentiable and α-strongly convex with L-Lipschitz
gradient.

Then there exists a unique x∗ ∈ argmin f , and for τ < 1
L ⩽ 1

α
, we have

∥xn − x∗∥2 ⩽ (1− τα)n∥x0 − x∗∥2.
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Optimization for Inverse Problems

To solve the inverse problem v = Au0 + w, we can thus minimize

F(u) = f (u) + g(u)

with f (u) = 1
2∥Au− v∥2 and g(u) = λR(u), λ > 0.

Consider here R(u) = 1
2∥Bu∥2

2 with B ∈ Rp×d, F is convex and differentiable.

Solutions are characterized by ∇F(u) = 0 i.e. AT(Au− v) + λBT Bu = 0.

Also, we can minimize F by gradient descent with τ < 2
L where

L = ∥AT A + λBT B∥.

• For Au = k ∗ u, AT Au = F−1(|k̂|2û).
If |k̂| ≤ 1, it follows that ∥AT A∥ ≤ 1.

• For Au = 1ωu, AT A = A2 = A and ∥A∥ = 1.

Good news: By automatic differentiation you need only coding F(u)...

But ! in order to avoid instability problems, you’d better know what F does...
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If |k̂| ≤ 1, it follows that ∥AT A∥ ≤ 1.

• For Au = 1ωu, AT A = A2 = A and ∥A∥ = 1.

Good news: By automatic differentiation you need only coding F(u)...

But ! in order to avoid instability problems, you’d better know what F does...
Bruno Galerne Generative models for images I: Introduction and basics on image restorationMVA 2025-26 40 / 84



Let us start with zero regularization!

Consider here
f (u) =

1
2
∥Au− v∥2.

• We have an orthogonal decomposition Rd = K ⊕ K⊥ with K = Ker[A]
and K⊥ = Im[AT ]

• Therefore argminRd f is non-empty and we can define

A+v = min
u∈argmin f

∥u∥2
2.

It defines a linear operator A+, called Moore-Penrose pseudo-inverse.

• The Moore-Penrose pseudo-inverse has a zero component in Ker[A].

• AK⊥ : K⊥ → Im(A) is invertible. Thus A+ = A−1
KT P (with P the orthogonal

projection on Im(AT)).

• Actually, one can show that A+v = limλ→0(AT A + λI)−1AT v.

• Gradient descent on f (u) converges to A+v, as soon as initialization has
null component on K.

• But A+v is generally a bad solution for inverse problems because of bad
conditioning.
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Gaussian deblurring and pseudo-inverse

Original Blurred Pseudo-inverse
no noise

Original Blurred Pseudo-inverse
noise σ = 4
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Explicit Regularizations

We define the discrete derivatives of u by

∇u(x, y) =

(
∂1u(x, y)
∂2u(x, y)

)
avec

∂1u(x, y) = d1 ∗ u(x, y) = u(x + 1, y)− u(x, y)

∂2u(x, y) = d2 ∗ u(x, y) = u(x, y + 1)− u(x, y)
.

We define Tychonov regularization by

∥∇u∥2
2 =

∑
x∈Ω

∥∇u(x)∥2 =
∑
x∈Ω

|∂1u(x)|2 + |∂2u(x)|2.

We define the total variation by

TV(u) = ∥∇u∥1 =
∑
x∈Ω

∥∇u(x)∥ =
∑
x∈Ω

√
|∂1u(x)|2 + |∂2u(x)|2.
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Back to denoising

Let us minimize
F(u) =

1
2
∥u− v∥2 + λR(u)

where R is a regularization and λ > 0.

Consider first Tychonov regularization R(u) = 1
2∥∇u∥2

2.

We have ∇R(u) = ∇T∇u. As F is convex,

u ∈ argminF ⇐⇒ ∇F(u) = 0 ⇐⇒ u−v+λ∇T∇u = 0 ⇐⇒ u = (I+λ∇T∇)−1v

For p : Ω→ R2, ∇T p is given by

∇T p(x, y) = p1(x− 1, y)− p1(x, y) + p2(x, y− 1)− p2(x, y).

Actually, div(p) := −∇T p is a discrete divergence and ∆u := −∇T∇u is a
discrete Laplacian.
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Explicit Solution: Wiener filtering

Theorem

Let v ∈ CΩ and λ > 0. The function F : CΩ → R+ defined by

∀u ∈ CΩ, F(u) =
1
2
∥u− v∥2

2 +
λ

2
∥∇u∥2

2

has a minimum attained at a unique u∗ ∈ CΩ, which is given in Fourier
domain by:

∀(ξ, ζ) ∈ Ω, û∗(ξ, ζ) =
v̂(ξ, ζ)

1 + λ L̂(ξ, ζ)

where L̂(ξ, ζ) = |d̂1(ξ, ζ)|2 + |d̂2(ξ, ζ)|2 = 4
(
sin2 (πξ

M

)
+ sin2 (πζ

N

))
.

Remarks:

• d1, d2 are the kernel derivatives, e.g. d1 = δ(−1,0) − δ(0,0). So L̂ is the
kernel of −∆ filter.

• The theorem adapts for deblurring with Tychonov regularization:

∀(ξ, ζ) ∈ Ω, û∗(ξ, ζ) =
k̂(ξ, ζ)v̂(ξ, ζ)

|̂k(ξ, ζ)|2 + λ L̂(ξ, ζ)
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Link with an evolution model

The gradient descent on

F(u) =
1
2
∥u− v∥2

2 +
λ

2
∥∇u∥2

2

writes as
un+1 − un = −τ(un − v) + λτ∆un .

The sequence (un) converges to u∗ as soon as τ < 2
L with

L = ∥I + λ∇T∇∥ = 1 + 8λ.

If we drop the data-fidelity... then gradient descent on u 7→ 1
2∥∇u∥2

2 gives

un+1 − un = τ∆un

This is a discretization of the heat equation ∂tu = c∆u with initial condition u0.

Bruno Galerne Generative models for images I: Introduction and basics on image restorationMVA 2025-26 46 / 84



Link with an evolution model

The gradient descent on

F(u) =
1
2
∥u− v∥2

2 +
λ

2
∥∇u∥2

2

writes as
un+1 − un = −τ(un − v) + λτ∆un .

The sequence (un) converges to u∗ as soon as τ < 2
L with

L = ∥I + λ∇T∇∥ = 1 + 8λ.

If we drop the data-fidelity... then gradient descent on u 7→ 1
2∥∇u∥2

2 gives

un+1 − un = τ∆un

This is a discretization of the heat equation ∂tu = c∆u with initial condition u0.
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Smoothed Total Variation

What if we want to minimize

F(u) =
1
2
∥u− v∥2

2 + λTV(u).

Problem: The total variation is not differentiable.

A simple solution: consider a smoothed variant: For ε > 0, let

TVε(u) =
∑

(x,y)∈Ω

√
ε2 + ∂1u(x, y)2 + ∂2u(x, y)2 .

One can see that

∇TVε(u) = ∇T

(
∇u√

ε2 + ∥∇u∥2
2

)
.

And one can show that ∇TVε is 8
ε
-Lipschitz.

We can thus minimize F by gradient descent with τ < 2
1+ 8λ

ε

.
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Denoising Examples

Noisy Tychonov denoising TVε denoising
PSNR = 19.93 PSNR = 25.89 PSNR = 27.21
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Projected Gradient Descent

Imagine that we want to constrain the solution into a convex closed set
C ⊂ Rd:

argminu∈C F(u)

For that, we can use the orthogonal projection pC : Rd → C.

Theorem
Let f : Rd → R be convex differentiable such that ∇f is L-Lipschitz.

Let C ⊂ Rd be a closed convex set. Assume that argminC f is non-empty.

For τ ∈ (0, 2
L ), x0 ∈ Rd, let (xn) be defined by

xn+1 = pC(xn − τ∇f (xn)) .

Then (xn) converges to an element of argminC f .

Example : For inpainting, we can deal with the noiseless problem v = Au.

In this case, we can perform constrained minimization of only the
regularization term:

min
v=Au

R(u).
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Metrics for Inverse Problems



Euclidean metrics

• Given two images u and v of size M × N with graylevels between 0 and
255.

• Denote Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1} the pixel domain

• Mean Square Error ↓:

MSE(u, v) =
1

MN

∑
x∈Ω

(u(x)− v(x))2

• Root Mean Square Error ↓:

RMSE(u, v) =

(
1

MN

∑
x∈Ω

(u(x)− v(x))2

) 1
2

• Peak Signal to Noise Ratio ↑:

PSNR(u, v) = 20 log10

(
MAX

RMSE(u, v)

)
(where MAX = 255)

• Useful for inverse problems such as denoising.

• Not ideal when one hopes to generate new content.
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Structural similarity index measure (SSIM ↑) (Wang et al., 2004)

Between patches:

• Given two patches x, y (typically of size 8×8 or 11×11 with a Gaussian
windowing)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
∈ [−1, 1]

with:
• µx the pixel sample mean of x
• µy the pixel sample mean of y
• σ2

x the variance of x
• σ2

y the variance of y
• σxy the covariance of x and y
• c1 = (k1L)2, c2 = (k2L)2 two variables to stabilize the division with weak

denominator, with the range L = 255 or 1 and k1 = 0.01 and k2 = 0.03 by
default.

• SSIM(x, y) is the product of three terms:

Luminance Contrast Structure
l(x, y) = 2µxµy+c1

µ2
x+µ2

y+c1
c(x, y) = 2σxσy+c2

σ2
x+σ2

y+c2
s(x, y) = σxy+c2/2

σxσy+c2/2
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Structural similarity index measure (SSIM ↑) (Wang et al., 2004)

Between images:

• Given two images u and v of size M × N with graylevels between 0 and
255, define the Mean-SSIM by averaging over all patches:

(M)SSIM(u, v) = mean({SSIM(Px(u),Px(v)), x + ω ⊂ Ω})

where Px(u) is the restriction of u on the patch x + ω.

• There are also multiscale variants.

• SSIM is not a distance, its range is [−1, 1].

• SSIM is closer to a perceptual distance, especially regarding local
textures.
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Structural similarity index measure (SSIM)

(source: From (Wang et al., 2004))
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LPIPS ↓ (Zhang et al., 2018)

LPIPS: Learned Perceptual Image Patch Similarity

• Previous works on texture synthesis (Gatys et al., 2015) and style
transfer (Gatys et al., 2016) (Johnson et al., 2016) have shown the
importance of the VGG (Simonyan and Zisserman, 2015) features for
perceptual similarity between images.

• This means that intermediate features of classification CNN are useful in
their own: “a good feature is a good feature. Features that are good at
semantic tasks are also good at self-supervised and unsupervised tasks,
and also provide good models of both human perceptual behavior and
macaque neural activity.” (Zhang et al., 2018)
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LPIPS ↓ (Zhang et al., 2018)

LPIPS: Learned Perceptual Image Patch Similarity

LPIPS model: Define a perceptual distance between 64×64 patches by
computing a Euclidean norm between features:

LPIPS(u, u0)
2 =

∑
layers ℓ

1
HℓWℓ

∑
i,j

∥wℓ ⊙ (Fℓ(u)i,j − Fℓ(u0)i,j)∥2
2

where for each layer ℓ, the neural response Fℓ(u) is weighted by channel
weights wℓ ∈ RCℓ that are learned to reproduce human evaluation of
distortion between patches.
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Textures synthesis using CNN
statistics



Gatys et al algorithm

References: L. Gatys, A. S. Ecker, and M. Bethge, Texture synthesis using
convolutional neural networks, in Advances in Neural Information Processing
Systems, 2015
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Texture synthesis

Texture Synthesis: Given an input texture image, produce an output texture
image being both visually similar to and pixel-wise different from the input
texture.

The output image should ideally be perceived as another part of the same
large piece of homogeneous material the input texture is taken from.
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Texture synthesis: Motivation

• Important problem in the industry of virtual reality (video games, movies,
special effects,. . . ).

• Periodic repetition is not satisfying !
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Convolutional Neural Networks (CNN)

• Main idea: Use the feature layers of a trained deep CNN, namely VGG
19 (Simonyan and Zisserman, 2015), as statistics.

• VGG 19 was trained for image classification.
• It only uses 3× 3 convolution kernels followed by RELU (= positive part)

and max-pooling.

• We do not use the last “fully connected” layers that perform classification.
• VGG 19 is understood as a multiscale nonlinear transform adapted to

natural images.
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Gatys et al algorithm

Given an example image u and a random initialization x0, one optimizes the
loss function

E(x) =
∑

for selected layers L

wL
∥∥GL(x)− GL(u)

∥∥2

F

where

• wL is a weight parameter for each layer

• ∥ · ∥F is the Frobenius norm

• for an image y and a layer index L, GL(y) denotes the Gram matrix of
the VGG-19 features at layer L: if VL(y) is the feature response of y at
layer L that has spatial size w× h and n channels,

GL(y) =
1

wh

∑
k∈{0,...,w−1}×{0,...,h−1}

VL(y)kVL(y)T
k ∈ Rn×n.

The Gram matrix is a spatial statistics of order 2 that contains mean and
covariance information.
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Gatys et al algorithm

• The gradient of the energy is computed using back-propagation routines.
• The authors use a quasi-Newton algorithm: L-BFGS that stands for

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
(low-rank approximation of the Hessian matrix for computing the descent
direction).
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Gatys et al algorithm

Given an example image u and a random initialization x0, one optimizes the
loss function

E(x) =
∑

for selected layers L

wL
∥∥GL(x)− GL(u)

∥∥2

F

Pseudo-code:

Require: Input image u, set of selected VGG-19 layers L and associated
layer weights parameter {wL, L ∈ L}

Ensure: Synthesized texture x
Apply VGG-19 to u and extract the layers {VL(u)), L ∈ L}
Compute the target Gram matrices {GL(u) = Gram(VL(u)), L ∈ L}.
Initialize x with some Gaussian white noise.
for Nit iterations do

Apply VGG-19 to x and extract the layers {VL(x)), L ∈ L}.
Compute the current Gram matrices of x: {GL(x) = Gram(VL(x)), L ∈ L}
Compute the loss E(x) and its gradient ∇xE(x) using backpropagation.
x← L-BFGS-step(x,E(x),∇xE(x)).

end for
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Gatys et al algorithm: Depth influence
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Gatys et al algorithm: Results

• MORE RESULTSBruno Galerne Generative models for images I: Introduction and basics on image restorationMVA 2025-26 63 / 84
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Gatys et al algorithm

• This algorithm is the current state of the art.

• The computational cost is really high (even with high-end GPUs it takes
minutes).

• A lot of improvements have been proposed, eg by adding term to the
energy or by adding correlation between layers.

• Extension for style transfer with equally impressive results, and maybe
more impact.
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Gatys et al for style transfer

Reference: (Gatys et al., 2016)
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Gatys et al for style transfer

Reference: (Gatys et al., 2016)
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Gatys et al for texture synthesis and style transfer

• Very nice and clean PyTorch implementation:
https://github.com/leongatys/PytorchNeuralStyleTransfer

• Today: Practice session based in this code.

• Very slow on CPU and computationally demanding with high-end GPU
(and memory consuming, e.g. 8 GB of memory for a 1024× 1024
image). See practice session.

• Regarding texture modeling, the number of parameters is huge:
Textures are described by the Gram matrices and the number of
elements in the Gram matrices totals 850k. That is 1000 times more
than Portilla-Simoncelli !
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Generative networks for texture synthesis

• A workaround for speeding up synthesis is to train generative forward
networks to mimic Gatys algorithm, as proposed by (Ulyanov et al.,
2016) (coined Texture Networks).

• This is an example of generative network.

• The generator is trained to produce images with low Gatys loss
(self-supervised training) from multi-scale white noise.

• Synthesis is fast thanks to the feedforward architecture.
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Generative networks for texture synthesis

Texture Networks

Input Gatys et al. Texture nets (ours) Input Gatys et al. Texture nets (ours)

Figure 1. Texture networks proposed in this work are feed-forward architectures capable of learning to synthesize complex textures
based on a single training example. The perceptual quality of the feed-forwardly generated textures is similar to the results of the closely
related method suggested in (Gatys et al., 2015a), which use slow optimization process.

we devise a new type of multi-scale generative architecture
that is particularly suitable for the tasks we consider.
The resulting fully-convolutional networks (that we call
texture networks) can generate textures and process im-
ages of arbitrary size. Our approach also represents an
interesting showcase of training conceptually-simple feed-
forward architectures while using complex and expressive
loss functions. We believe that other interesting results can
be obtained using this principle.
The rest of the paper provides the overview of the most re-
lated approaches to image and texture generation (Sect. 2),
describes our approach (Sect. 3), and provides extensive
extensive qualitative comparisons on challenging textures
and images (Sect. 4).

2. Background and related work
Image generation using neural networks. In general, one
may look at the process of generating an image x as the
problem of drawing a sample from a certain distribution
p(x). In texture synthesis, the distribution is induced by
an example texture instance x0 (e.g. a polka dots image),
such that we can write x ⇠ p(x|x0). In style transfer, the
distribution is induced by an image x0 representative of the
visual style (e.g. an impressionist painting) and a second
image x1 representative of the visual content (e.g. a boat),
such that x ⇠ p(x|x0,x1).
(Mahendran & Vedaldi, 2015; Gatys et al., 2015a;b) reduce
this problem to the one of finding a pre-image of a certain

image statistics �(x) 2 Rd and pose the latter as an op-
timization problem. In particular, in order to synthesize a
texture from an example image x0, the pre-image problem
is:

argmin
x2X

k�(x) � �(x0)k2
2. (1)

Importantly, the pre-image x : �(x) ⇡ �(x0) is usually
not unique, and sampling pre-images achieves diversity. In
practice, samples are extracted using a local optimization
algorithm A starting from a random initialization z. There-
fore, the generated image is the output of the function

localopt
x2X

(k�(x) � �(x0)k2
2; A, z), z ⇠ N (0,⌃). (2)

This results in a distribution p(x|x0) which is difficult to
characterise, but is easy to sample and, for good statistics
�, produces visually pleasing and diverse images. Both
(Mahendran & Vedaldi, 2015) and (Gatys et al., 2015a;b)
base their statistics on the response that x induces in deep
neural network layers. Our approach reuses in particular
the statistics based on correlations of convolutional maps
proposed by (Gatys et al., 2015a;b).
Descriptive texture modelling. The approach described
above has strong links to many well-known models of vi-
sual textures. For texture, it is common to assume that p(x)
is a stationary Markov random field (MRF). In this case, the
texture is ergodic and one may considers local spatially-
invariant statistics  � F (x; i), i 2 ⌦, where i denotes a
spatial coordinate. Often F is the output of a bank of linear

• However texture quality is not as good, and a network has to be trained
for each new image.
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On demand solid texture synthesis using deep 3D networks

• Texture networks can be extended to 3D (Gutierrez et al., 2020) while
the Gatys approach is infeasible.

Input Output
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On demand solid texture synthesis using deep 3D networks

Training framework for the proposed CNN Generator network:

• The generator G(·|θ) with parameters θ processes a multi-scale noise
input Z to produce a solid texture v

• The loss L compares, for each direction d, the feature statistics induced
by the example ud in the layers of the pre-trained Descriptor network
D(·) (loss of Gatys et al).
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On demand solid texture synthesis using deep 3D networks

Schematic of the Generator’s architecture:

• Processes a set of noise inputs Z = {z0, . . . , zK} at K + 1 different scales
using convolution operations and non-linear activations

• The information at different scales is combined using upsampling and
channel concatenation (similar to the right part of a U-net).
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On demand solid texture synthesis using deep 3D networks

Training: Find the parameters θ for a given texture
• Exploit invariance by translation to generate batches of width one voxel only

(“single-slice training scheme”)
• Minimize Gatys’ loss for each slice, using 3000 iterations of Adam algorithm

input 10 20 50 100

200 300 500 1000
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On demand solid texture synthesis using deep 3D networks
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On demand solid texture synthesis using deep 3D networks

Generated volume Examples Generated slices
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On demand solid texture synthesis using deep 3D networks

• Solid textures can be used to apply textures on surfaces without
parametrization.
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On demand solid texture synthesis using deep 3D networks

• Fast synthesis thanks to the feed forward network ( 1 sec. for 2563)

• On demand synthesis using a pseudo random number generator seed
with spatial coordinates

• Training and synthesis with high resolution images without memory
issues thanks to the single slice strategy.
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Generative networks for texture synthesis

• Other contributions propose generative networks for universal style
transfer/texture synthesis (e.g. (Li et al., 2017)).

• Universal means that a single network is adapted to all images.

• This still relies in approximating the Gatys procedure with some
approximation for a faster style transfer: auto-encoders to invert VGG19
and imposing Gram matrices.

• Using Wasserstein distance between Gaussians in VGG19 feature
space is efficient for texture mixing (Vacher et al., 2020) (see practice
session).
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