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Introduction on generative models



Generative models

1. Model and/or learn a distribution p(«) on the space of images.

(source: Charles Deledalle)
The images may represent:

- different instances of the same texture image,
« all images naturally described by a dataset of images,
* any image

2. Generate samples from this distribution.
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Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

* zis a generic source of randomness, often called the latent variable.
« If G(+; ©) is known, then p = G(; ©)xN (0, 1,) is the push-forward of the
latent distribution.
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Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

* zis a generic source of randomness, often called the latent variable.
« If G(+; ©) is known, then p = G(; ©)xN (0, 1,) is the push-forward of the
latent distribution.

The generator G(+; ©) can be:

A deterministic function (e.g. convolution operator),

* A neural network with learned parameter,

+ An iterative optimization algorithm (gradient descent,...),

* A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,...).

Bruno Galerne Generative models for images I: Introduction and b: MVA 2025-26



Image generation: Gaussian model

+ Consider a Gaussian model for the distribution of images x with d pixels:

X~ Nixp, B) = exp [—(x = )= (v - )]

1
ACZR

* @i mean image,
» 33: covariance matrix of images.

¢

Gaussian prior z ~ N(u, X)

(source: Charles Deledalle)
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Image generation: Gaussian model

 Take a training dataset D of images:

eigenvectors of 32, i.e., main variation axis
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Image generation: Gaussian model

You now have learned a generative model:
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Image generation: Gaussian model

How to generate samples from A\ (i, 3)?

The model does not generate realistic faces.
» The Gaussian distribution assumption is too simplistic.
» Each generated image is just a linear random combination of the
eigenvectors (with independence !).

» The generator corresponds to a one layer liner neural network (without
non-linearities).
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Image generation: Gaussian model

Generative
Model

» Deep generative modeling consists in learning non-linear generative
models to reproduce complex data such as realistic images.

* It relies on deep neural networks and several solutions have been
proposed since the “Deep learning revolution” (2012).
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Generative models: Examples

Texture synthesis with a stationary Gaussian model: (Galerne et al.,
2011)

» Data: A single texture image k.

« Inferred distribution: p is the stationary Gaussian distribution with similar
mean and covariance statistics.

« z is a Gaussian white noise image (each pixel is iid with standard normal
distribution).

» G is a convolution operator with know parameters O.

Data Generated images

Spot k G(z3;0)
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Generative models: Examples

Generative Adversarial Networks: (Goodfellow et al., 2014)

» Data: A database of images.

« Inferred distribution: Not explicit, push-forward measure given by
generator.

* zis a Gaussian array in a latent space.
G(+; ©) is a (convolutional) neural network with parameters © learned
using an adversarial discriminator network D(-; ©p).

Generated images
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Fake images (100 epochs)
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Generative models: Examples

Generative Adversarial Networks: Style GAN (Karras et al., 2019)
v l. q 4 ~ ' § -

Image size:
1024 x 1024 px
(source: Karras et al.)

Bruno Galerne Generative models for images I: Introduction and b: MVA 2025-26 11/84



Denoising diffusion probabilistic models

* Learn to revert a degradation process: Add more and more noise to an
image.
* First similar model (Sohl-Dickstein et al., 2015)

Forward SDE (data — noise)
‘— dx = f(x,t)dt + g(¢t)dw 4)@
I‘ }iiiii .g‘ H’? 1‘ | | “
) score function
‘e i = [05,) (0 o)+ ot @

Reverse SDE (noise — data)

(source: Yang Song)

 Probably the most promising framework these days... but things change
very quickly in this field!
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Diffusion models

(Ho et al., 2020): Denoising Diffusion Probabilistic Models (DDPM): One of
the first paper producing images with reasonable resolution.

H%Il-ia
T 2 BN

= o i
Imlmuﬂﬁlwﬁ

Figure 1: Generated samples on CelebA-HQ 256 x 256 (left) and unconditional CIFAR10 (right)
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Generative models: Motivations

Why generative models are interesting ?

» Generating realistic images is important by itself for entertainment
industry (visual effects, video games, augmented reality...), design,
advertising industry,...

« Good image model leads to good image processing: Generative
models can be used as a parametric space for solving inverse problems.
Example: Inpainting of a portrait image.

+ Also generative models opens the way to non trivial image
manipulation using conditional generative models.
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Conditional generative models: Examples

Pix2pix: Image-to-Image Translation with Conditional Adversarial Nets
(Isola et al., 2017)

Labels to Street Scene Labels to Facade BW to Color

utput utp!
Day to nght ~ Edges to F'hoio

_ A

output mput output mput output

* GAN conditioned on input image.

» Generator: U-net architecture

« Discriminator: Patch discriminator applied to each patch
» Opens the way for new creative tools

(source: Isola et al.)
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Conditional generative models: Examples

Latest trends using diffusion models: Text to image generation

» DALL-E 1 & 2: Creatinglmages from Text (Open Al, January 2021 and
April 2022)
» Imagen, Google research (May 2022)

DALL-E 2 (Open Al) Imagen (Google)
Input:  An astronaut riding a | Input: A dog looking curiously in
horse in a photorealistic style the mirror, seeing a cat.
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Conditional generative models: Examples

Text “A Golden Retriever dog wearing a blue
¢ checkered beret and red dotted turtleneck.”

Frozen Text Encoder

Text Embedding

Text-to-Tmage
Diffusion Model

64 x

Super-Resolution

Imagen pipeline: ™1 Diffusion Model

256 x 256 Image

Super-Resolution
Diffusion Model

1024 x 1024 Image

(source: (
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Conditional generative models: Examples

In August 2022, StableDiffusion was released:

+ Based on the paper (Rombach et al., 2022)
» Open source!

futuristic tree house, hyper realistic,
epic composition, cinematic, landscape
vista photography by Carr Clifton &
Galen Rowell, Landscape veduta photo
by Dustin Lefevre & tdraw, detailed
landscape painting by Ivan Shishkin, :
rendered in Enscape, Miyazaki, Nausicaa
Ghibli, 4k detailed post processing,
unreal engine

Steps: 50, Sampler: PLMS, CFG scale:
9, Seed: 2937258437
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Diffusion models in 2023

Diffusion models are considered mature models and have been used in a
large variety of frameworks.

+ Diffusion models beyond image generation: Text to video, motion
generation, proteins, soft robots,...

» Control of (latent) diffusion models((Ruiz et al., 2023), (Zhang et al.,
2023),...)

- Diffusion models as priors for imaging inverse problems ((Chung
et al., 2023), (Song et al., 2023), lot of applications in medical imaging,
etc.)
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Diffusion models in 2023

DreamBooth: Fine Tuning Text-to-Image Diffusion Models

for Subject-Driven Generation
Nataniel Ruiz*!? Yuanzhen Li! Varun Jampani'
Yael Pritch! Michael Rubinstein® Kfir Aberman’

! Google Research 2 Boston University

Figure 1. With just a few images (typically 3-5) of a subject (left), DreamBooth—our Al-powered photo booth—can generate a myriad
of images of the subject in different contexts (right), using the guidance of a text prompt. The results exhibit natural interactions with the
environment, as well as novel articulations and variation in lighting conditions, all while maintaining high fidelity to the key visual features
of the subject.

(source: (Ruiz et al., 2023))
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Diffusion models in 2023

Adding Conditional Control to Text-to-Image Diffusion Models

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala
Stanford University

{lvmin, anyirao, maneesh}@cs.stanford.edu

“masterpiece of fairy tale, giant deer, golden antlers”  “..., quaint city Galic™

['9) 2 ot
7 ‘*

“chef in kitchen” “Lincoln statue”

Input Canny edge Default

Default

Input human pose
Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges

(top), human pose (bottom), efc., to control the image generation of large pretrained diffusion models. The default results use
the prompt “a high-quality, detailed, and professional image”. Users can optionally give prompts like the “chef in kitchen”.

(source: ControlNet (Zhang et al., 2023))
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Diffusion models in 2023

Diffusion posterior sampling for general noisy inverse problems (Chung et al.,
2023)

Linear

(a) Inpainting (c) Gaussian deblur

Non-linear
(e) Phase retrieval (f) Non-uniform deblur

Figure 1: Solving noisy linear, and nonlinear inverse problems with diffusion models. Our recon-
struction results (right) from the measurements (left) are shown.

(source: (Chung et al., 2023))
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Diffusion models in 2024

 Text-to-video
generation.

» Image generation
broadly available
via conversational
agent (ChatGPT,
Le Chat by Mistral
(based on Flux
Pro),...).

Diffusion models
used as “world
model”.

Bruno Galerne

DiffusionLight: Light Probes for Free by Painting a Chrome Ball

Pakkapon Phongthawee*! Worameth Chinchuthakun*!? Nontaphat Sinsunthithet
Amit Raj? Varun Jampani* Pramook Khungurn® Supasorn Suwajanakorn’
'VISTEC 2Tokyo Tech 3Google Research * Stability Al °Pixiv
ttps://diffusionlight.github.io/

Figure 1. raing
scene, we show our normally exposed chrome ball on Iup and our underexposed version, which reveals bright light sources, on the bottom,

(source: (Phongthawee et al., 2024))
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Generative models for images: Plan of the course 2025-26

Courses shared with Arthur Leclaire (Telecom Paris).
Warm up (today):

* Introduction to generative models for images (done)
+ Basics on image restoration/inverse problems (end of today session)

Part I: Established generative models frameworks based on CNN

1. Generative models based on likelihood maximization
(BG, 1 course)

 Variational AutoEncoders (VAESs)
* Normalizing Flows (NFs)

2. Generative Adversarial Networks (GANSs)
(AL, 2 courses)

« Training of GANs
* Link with optimal transport

3. Application of generative models for imaging inverse problems
(AL, 1 course)

« Classical imaging problems: Super-Resolution, inpainting,...
» Image-to-image translations
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Generative models for images: Plan of the course 2025-26

Part ll: Plug-and-Play methods for imaging inverse problems
(AL, 2 courses)

1. Proximal splitting and PnP methods
2. Convergence of PnP methods via fixed point
« Fixed point theorem for “averaged” operators
» Convergence of PnP with an “averaged” denoiser
* Learning a denoiser with Lipschitz constraint
3. Convergence of PnP methods via non-convex optimization
» Convergence of proximal splitting in the non-convex case
» Gradient-step regularization, and convergence of PnP
» Applications to several inverse problems
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Generative models for images: Plan of the course 2025-26

Part lll: Diffusion or Score-Based Generative Models (SGM)
(BG, 2 courses)

1. Diffusion models in pixel space
» Time reversal of stochastic processes
» Denoising Diffusion Probabilistic Models (DDPM)
» Denoising Implicit Diffusion Models (DDIM)
 Application to imaging inverse problems
2. Latent Diffusion Models (LDM)
« Stable diffusion pipeline
 Text-to-image synthesis
« Controllable diffusion

Some courses are practice sessions. Bring your laptop!
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Generative models for images: Validation

Validation (Master MVA)

» Un devoir sur table rapide (30 min) en février.
* Un projet final.

» Merci de vous inscrire via le google form.

» Email: generative.modeling.mva@gmail.com

Projet final : Détails

 Etude d’un article en groupe de 2 étudiants

» Rendu de rapport et soutenance orale a Telecom Paris (semaine du 30
mars 2026)

 Choix d'un article parmi une liste proposée

Discussion critique de l'article

» Comparaison avec les méthodes vues en cours

Expériences numériques et comparaison avec les résultats vus en TP
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Inverse Problems



Inverse problem with additive noise:
v=Auy +w
where

* up € R? is the clean image to recover
* A:R 5 R”

* wis anoise

In many cases, the degradation operator A can be approximated with a linear
operator A, and the noise model w is assumed to be Gaussian.

there are also inverse problems with non-linear .4 and non-Gaussian
noise (e.g. Poisson noise).
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Classical Inverse Problems

Application
Denoising [58]
Deconvolution
[58,59]

Superresolution
[60,61]

Inpainting [62]
Compressive
Sensing [63,64]

MRI [3]

Computed tomog-
raphy [58]

Phase Re-
trieval [67-70]

Forward model
A=1

Alz)=hx+z
A=5SB

A=S

A = SFo A =
Gaussian or Bernoulli
ensemble

A=SFD

A=R

A(z) = |Az|*

Notes

1 is the identity matrix

h is a known blur kernel and * denotes convo-
lution. When h is unknown the reconstruction
problem is known as blind deconvolution.

S is a subsampling operator (identity matrix
with missing rows) and B is a blurring operator
cooresponding to convolution with a blur kernel
S is a diagonal matrix where S;; = 1 for the pix-
els that are sampled and S;; = 0 for the pixels
that are not.

S is a subsampling operator (identity matrix with
missing rows) and F discrete Fourier transform
matrix.

S is a subsampling operator (identity matrix with
missing rows), F' is the discrete Fourier trans-
form matrix, and D is a diagonal matrix rep-
resenting a spatial domain multiplication with
the coil sensitivity map (assuming a single coil
aquisition with Cartesian sampling in a SENSE
framework [65]).

R is the discrete Radon transform [66].

|| denotes the absolute value, the square is taken
elementwise, and A is a (potentially complex-
valued) measurement matrix that depends on the
application. The measurement matrix A is often
a variation on a discrete Fourier transform ma-
trix.

source: (Ongie et al.
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Gaussian denoising

Let’s start with the case A = Id, i.e. image denoising:

v=up+w where w~ N(0,0°ld).

+ We want to estimate uy from a single realization of v.

» We need to add some prior knowledge on the solution (e.g. regularity
assumption).
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Deblurring
* A spatially invariant blur can be modeled .

by a convolution operator Au = k * u Isotropic blur Motion blur

Several types of blur exist (motion,
defocus)

Non-blind deblurring consists in
recovering uo from

v==k*xuy+w.

* Non-blind means that the blur kernel k is
known.

» We won't tackle blind deblurring here.

Blurred
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Deblurring
* A spatially invariant blur can be modeled .

by a convolution operator Au = k * u Isotropic blur Motion blur

Several types of blur exist (motion,
defocus)

Non-blind deblurring consists in
recovering uo from

v==k*xuy+w.

* Non-blind means that the blur kernel k is
known.
» We won't tackle blind deblurring here.

Which blur kernel was used ?

Blurred
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Super-Resolution

Super-resolution consists in finding another version of v at higher resolution.

This is an inverse problem involving the subsampling operator with stride
s € N*:
uy(x,y) = u(sx, ).

In practice, to create a low resolution version of an image we need to apply
an (anti-aliasing) filter before subsampling!

With prefiltering, we obtain the zoom-out operator

Au = (k * u) .

Super-resolution consists in recovering u, from
v=(k*u)y +w.

The degraded image v is defined on a subgrid of stride s.
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Inpainting consists in filling missing regions in images

The degradation operator then writes
Au = ul,,

where w C Q is the set of known pixels and Q2 \ w the mask.
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Inverse problem

We wish to recover uy from
v = Aug + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k x u, we can invert A directly in Fourier
domain:
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Inverse problem

We wish to recover uy from
v = Aug + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k x u, we can invert A directly in Fourier

domain:
u=F"" (i) — = (u})+ %) —  but noise explodes !
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Inverse problem

We wish to recover u from
v = Aug + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.
Example : For deblurring, Au = k x u, we can invert A directly in Fourier
domain:

u=F"" (%) =F! (ub + %) — but noise explodes !
When the problem is ill-posed, there may be multiple solutions or erroneous
solutions.

It is thus useful to adopt an a priori on the solution, e.g. imposing some kind
of regularity.
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = EHAM — |13 + AR(u)
where R(u) imposes some kind of regularity of u, and A > 0 is a parameter.

The problem argmin, o F(u) is very high-dimensional, and we need efficient
algorithms.

Simple (nearly useless) regularization: Consider R(u) = 3|ull3. Then
uy € argming is given by

AT(Aux —v) 4+ duy =0 ie. uy=(ATA+A)'ATY

Example: for denoising (A = Id),
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = EHAM — |13 + AR(u)
where R(u) imposes some kind of regularity of u, and A > 0 is a parameter.

The problem argmin, o F(u) is very high-dimensional, and we need efficient
algorithms.

Simple (nearly useless) regularization: Consider R(u) = 3|ull3. Then
uy € argming is given by

AT(Aux —v) 4+ duy =0 ie. uy=(ATA+A)'ATY

Example: for denoising (A = Id), it just divides all values by 1 + A...
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = EHAM — |13 + AR(u)
where R(u) imposes some kind of regularity of u, and A > 0 is a parameter.

The problem argmin, o F(u) is very high-dimensional, and we need efficient
algorithms.

Simple (nearly useless) regularization: Consider R(u) = 3|ull3. Then
uy € argming is given by

AT(Aux —v) 4+ duy =0 ie. uy=(ATA+A)'ATY

Example: for denoising (A = Id), it just divides all values by 1 + A...
For differentiable F, we can always consider simple gradient descent.

Example: The gradient of f(u) = 1 ||Au — v||3 is
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = EHAM — |13 + AR(u)
where R(u) imposes some kind of regularity of u, and A > 0 is a parameter.

The problem argmin, o F(u) is very high-dimensional, and we need efficient
algorithms.

Simple (nearly useless) regularization: Consider R(u) = 3|ull3. Then
uy € argming is given by

AT(Aux —v) 4+ duy =0 ie. uy=(ATA+A)'ATY
Example: for denoising (A = Id), it just divides all values by 1 + A...

For differentiable F, we can always consider simple gradient descent.

Example: The gradient of f(u) = 1 ||Au — v|[3 is Vf(u) = A" (Au — v).
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = EHAM — |13 + AR(u)
where R(u) imposes some kind of regularity of u, and A > 0 is a parameter.

The problem argmin, o F(u) is very high-dimensional, and we need efficient
algorithms.

Simple (nearly useless) regularization: Consider R(u) = 3|ull3. Then
uy € argming is given by

AT(Aux —v) 4+ duy =0 ie. uy=(ATA+A)'ATY
Example: for denoising (A = Id), it just divides all values by 1 + A...

For differentiable F, we can always consider simple gradient descent.

Example: The gradient of f(u) = 1 ||Au — v|[3 is Vf(u) = A" (Au — v).

If Au = k * u (periodic convolution), then A"y =
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = EHAM — |13 + AR(u)
where R(u) imposes some kind of regularity of u, and A > 0 is a parameter.

The problem argmin, o F(u) is very high-dimensional, and we need efficient
algorithms.

Simple (nearly useless) regularization: Consider R(u) = 3|ull3. Then
uy € argming is given by

AT(Aux —v) 4+ duy =0 ie. uy=(ATA+A)'ATY
Example: for denoising (A = Id), it just divides all values by 1 + A...

For differentiable F, we can always consider simple gradient descent.

Example: The gradient of f(u) = 1 ||Au — v|[3 is Vf(u) = A" (Au — v).

If Au = k * u (periodic convolution), then A”u = k * u with k(x) = k(—x).
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The Steepest Descent

https://mathinsight.org/directional_derivative_gradient_

introduction
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https://mathinsight.org/directional_derivative_gradient_introduction
https://mathinsight.org/directional_derivative_gradient_introduction

Descent Lemma

Letf : RY — R be differentiable with L-Lipschitz gradient. Then, for any
x,y € RY,

£0) =10+ [ Wiy =) (=
— () + V(@) - (- ) + /'1 (T + 13 — X)) = V() - (v — x)d
<F() + VA - (3= ) /nw — ) = V£ lly — xlde
<F() + V) - O x>+'/0 Lilly — x|[*ds

<P+ VAW - =) + 5y — P

Consequence: If we choose 7 € [0, 2], then

fle=TVF@) < F@) - (1 = TR < £,
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Gradient Descent

We consider here the gradient descent method:
Xn+1 = Xp — T)va(xu) 5
where 7, > 0 is a sequence of step sizes.

» For 7, = 7 constant, we speak of fixed step size.
» We speak of optimal step size if, at each iteration n, we choose

Tu € argmin,cp f(x, — 1Vf(x,)).

The descent lemma gives that for f differentiable with L-Lipschitz gradient

and 7 < 2,

fGon1) < f ()

Thus, if f is lower bounded, f(x,) converges.
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Convexity and Minimum

The function f : R — R is convex if for all x,y € R?,

vie (0,1), f((1-0x+1y) < —0f(x)+50)

It is said strictly convex if the inequality is strict.

If f is convex and differentiable, one can show that for any x,y € R?,
fO) 2 f&x) + Vi) - (v — x).

Consequence : If f is convex and differentiable, then

x € argminf <= Vf(x) =0.

The argmin is unique as soon as f is strictly convex.
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Strong Convexity

We say that f is a-convex (with a € R) if f — 2| - ||* is convex.

When « > 0, we say that f is strongly convex.

Remark : The convexity and the gradient Lipschitz constant can be read on
the Hessian:

If A, B € R™“ are symmetric, we write A = B if A — B if semi-definite positive,
i.e.

Vx € Rd, Ax-x > Bx - x.
Forf : RY — R of class €2,

Vf is L-Lipschitz iff  Vx € RY, —LId < V*f(x) < Lld.
i.e. Vx the eigenvalues of V2f(x) have moduli < L.

fis a-convex iff  Vx € RY, Vf(x) = ald
i.e. Vx the eigenvalues of V2f(x) are all > a.
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Convergence Guarantees, Convex Case

Theorem
Letf : R — R be convex differentiable with Vf L-Lipschitz. Assume that

argminf is non-empty.

LetT € (0,%), xo € R? and (x,) the sequence defined by
X1 = Xn — TV (%) -

Then (x,) converges towards an element of argminf.

Theorem
Letf : R — R be differentiable and o-strongly convex with L-Lipschitz

gradient.

Then there exists a unique x,. € argminf, and for r < { < g we have

[P — xe* < (1 = 7)o — x|
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Optimization for Inverse Problems

To solve the inverse problem v = Auy + w, we can thus minimize
F(u) = f(u) + g(u)
with f(u) = 1||Au — v||* and g(u) = AR(u), A > 0.
Consider here R(u) = 1||Bul|5 with B € R"*“, F is convex and differentiable.

Solutions are characterized by VF(u) =0 i.e. A”(Au—v) -+ AB"Bu = 0.

Also, we can minimize F by gradient descent with 7 < # where
L=|A"A + \B"B||.

« For Au = k * u, ATAu = F~'(|k|*).
If k| < 1, it follows that ||A7A|| < 1.
 For Au=1,u, A"TA=A*>=Aand |A| = 1.
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Optimization for Inverse Problems

To solve the inverse problem v = Auy + w, we can thus minimize

F(u) = f(u) + g(u)
with f(u) = 1||Au — v||* and g(u) = AR(u), A > 0.

Consider here R(u) = 1||Bul|5 with B € R"*“, F is convex and differentiable.
Solutions are characterized by VF(u) =0 i.e. A”(Au—v) -+ AB"Bu = 0.

Also, we can minimize F by gradient descent with 7 < # where
L=|A"A + \B"B||.

« For Au = k * u, ATAu = F~'(|k|*).
If k| < 1, it follows that ||A7A|| < 1.
 For Au=1,u, A"TA=A*>=Aand |A| = 1.

Good news: By automatic differentiation you need only coding F(u)...
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Optimization for Inverse Problems

To solve the inverse problem v = Auy + w, we can thus minimize
F(u) = f(u) + g(u)
with f(u) = 1||Au — v||* and g(u) = AR(u), A > 0.
Consider here R(u) = 1||Bul|5 with B € R"*“, F is convex and differentiable.

Solutions are characterized by VF(u) =0 i.e. A”(Au—v) -+ AB"Bu = 0.

Also, we can minimize F by gradient descent with 7 < # where
L=|A"A + \B"B||.

« For Au = k * u, ATAu = F~'(|k|*).
If k| < 1, it follows that ||A7A|| < 1.
 For Au=1,u, A"TA=A*>=Aand |A| = 1.

Good news: By automatic differentiation you need only coding F(u)...

But | in order to avoid instability problems, you’d better know what F does...
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Let us start with zero regularization!

Consider here

Bruno Galerne

flu) = *HAM — ||

We have an orthogonal decomposition R? = K @ K+ with K = Ker|[A]
and K+ = Tm[A”]
Therefore argming. f is non-empty and we can define

Atv="min |u?.
u€argmin f

It defines a linear operator A™, called Moore-Penrose pseudo-inverse.
The Moore-Penrose pseudo-inverse has a zero component in Ker[A].
Agr : K+ — Tm(A) is invertible. Thus AT = A;T‘P (with P the orthogonal
projection on Tm(A”)).

Actually, one can show that A™v = limy—o(A"A + \)~'A"v.

Gradient descent on f(u) converges to A*v, as soon as initialization has
null component on K.

But A*v is generally a bad solution for inverse problems because of bad
conditioning.
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Gaussian deblurring and pseudo-i

Blurred
no noise

Original Blurred Pseudo-inverse
noise o = 4
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Explicit Regularizations

We define the discrete derivatives of u by

Vu(x,y) = (81u(x, y)) avec {81Lt(x, y) =dixu(x,y) = u(x+ 1,y) — u(x,y)

Oau(x,y Du(x,y) = dy * u(x,y) = ulx,y + 1) — u(x,y)

We define Tychonov regularization by

IVulls =D [IVu@)I* = Y 101u(x)]* + |Oau(x) .

xeEN xeN
We define the total variation by

V(@) = |Vull = > [IVu@)ll = > VIdwu®)P + [0au(x)P-

xeQ xeQ
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Back to denoising

Let us minimize

1
F(u) = 5 [lu = v|* + AR(w)

where R is a regularization and A > 0.

Consider first Tychonov regularization R(u) = 1| Vul[3.
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Back to denoising

Let us minimize

1
F(u) = 5 [lu = v|* + AR(w)

where R is a regularization and A > 0.
Consider first Tychonov regularization R(u) = 1| Vul[3.

We have VR(u) = V' Vu.
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Back to denoising

Let us minimize .
Fu) = 5llu— v|[* + AR(u)

where R is a regularization and A > 0.
Consider first Tychonov regularization R(u) = 1| Vul[3.

We have VR(u) = V'Vu. As F is convex,

u€argminF <= VFu) =0 <= u—vHAV' Vu=0 <= u= I+AV'V)" 1y
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Back to denoising

Let us minimize .
F(u) = Sl = vI* + AR(w)

where R is a regularization and A > 0.

Consider first Tychonov regularization R(u) = 1| Vul[3.

We have VR(u) = V'Vu. As F is convex,

u € argminF <= VF(u) =0 <= u—v+AV' Vu =0 < u= I+ \V'V) v
Forp:Q — R?, V'pis given by

Vip(x,y) =pi(x — 1,y) — pi(x,y) + pa(x,y — 1) — pa(x,y).

Actually, div(p) := —V"p is a discrete divergence and Au := —V'Vuis a
discrete Laplacian.

Bruno Galerne Generative models for images I: Introduction and b: MVA 2025-26 44 /84



Explicit Solution: Wiener filtering

Theorem

Letv € C* and X > 0. The function F : C** — R defined by

Vue €, Fu)= gl — vl + 5 Vul
has a minimum attained at a unique u.. € C**, which is given in Fourier
domain by:
X (¢, Q)
v s € Q, UG, = =
(&0 (39 [T ALEQ
where L(¢,¢) = |di(&, O + |d2(&, Q) = 4 (sin® (5¢) +sin® (57))
Remarks:

* dy,d, are the kernel derivatives, e.g. di = §(_1,0) — 6(0,0)- SO L is the
kernel of —A filter.
 The theorem adapts for deblurring with Tychonov regularization:
~ 7(\ ) % b
VEQ) €D, (g () = — &)
lk(&, Q> + A L(&,€)
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Link with an evolution model

The gradient descent on

1 A
F(u) = Xl —vif + 119l
writes as

Ung1 — Up = —T(Up — V) + ATAu, .

The sequence (u,) converges to u, as soon as 7 < ,2 with
L=+ AV'V| =1+8\
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Link with an evolution model

The gradient descent on

1 A
Fu) = Sllu = vl + 51Vull2
2 2

writes as
Ung1 — Up = —T(Up — V) + ATAu, .

The sequence (u,) converges to u, as soon as 7 < ,2 with
L=+ AV'V| =1+8\

If we drop the data-fidelity... then gradient descent on u — 1||Vul[; gives
Unt1 — Up = TAUy

This is a discretization of the heat equation d.u = cAu with initial condition wuo.
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Smoothed Total Variation

What if we want to minimize

1
F(u) = §||u - vH% + ATV (u).

Problem: The total variation is

A simple solution: consider a smoothed variant: For e > 0, let

TV.(u) = Z \/52 + Owu(x,y)? + Ou(x, y)? .

(xy)eQ

One can see that

Yu
VIV.(u) =V ——— | .
& (x/E“rIlWI%)

And one can show that VTV. is £-Lipschitz.

We can thus minimize F by gradient descent with = < ﬁ
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Denoising Examples

Noisy Tychonov denoising TV. denoising
PSNR = 19.93 PSNR = 25.89 PSNR = 27.21
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Projected Gradient Descent

Imagine that we want to constrain the solution into a convex closed set
C CR%:
argmin, - F(u)

For that, we can use the orthogonal projection pc : RY — C.

Theorem
Letf : R! — R be convex differentiable such that Vf is L-Lipschitz.

Let C C R? be a closed convex set. Assume that argmin,.f is non-empty.

ForT € (0, %), xo € R?, let (x,) be defined by

Xnt1 = pe(xn — TV (xn)) -
Then (x,) converges to an element of argmin, f.
Example : For inpainting, we can deal with the noiseless problem v = Au.

In this case, we can perform constrained minimization of only the
regularization term:
min R(u).

v=Au
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Metrics for Inverse Problems




Euclidean metrics

Bruno Galerne

Given two images « and v of size M x N with graylevels between 0 and
255.

Denote 2 = {0,...,M — 1} x {0,...,N — 1} the pixel domain
Mean Square Error |:

MSE(u,v) = Z

Root Mean Square Error |:

RMSE(u,v) = (MIN Z(u(x) - V(X))2>

Peak Signal to Noise Ratio 7:

MAX

PSNR(u,v) = 20log,, (W(”V)

) (where MAX = 255)

Useful for inverse problems such as denoising.
Not ideal when one hopes to generate new content.
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Structural similarity index measure (SSIM 1)

Between patches:
 Given two patches x, y (typically of size 8x8 or 11x 11 with a Gaussian
windowing)

(2pcpry + €1) (20 + 2)
(12 + 15 + 1) (0% + 07 + 2)

SSIM(x,y) = €[-1,1]

* uy the pixel sample mean of x

* py the pixel sample mean of y

+ o2 the variance of x

* o2 the variance of y

* o,y the covariance of xand y

¢ = (kiL)?, ¢ = (koL)? two variables to stabilize the division with weak
denominator, with the range L = 255 or 1 and k; = 0.01 and k, = 0.03 by
default.

* SSIM(x, y) is the product of three terms:

Luminance Contrast Structure
N 2pepyte _ 200yt _ oyta)/2?
l(X7}) - u%l’u\%ﬁﬁ-l C(X7y) - G’E‘;’U%+fz S(.X,y) - (y/\:"“—'_(‘z/z
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Structural similarity index measure (SSIM 1)

Between images:

+ Given two images u and v of size M x N with graylevels between 0 and
255, define the Mean-SSIM by averaging over all patches:

(M)SSIM(u, v) = mean({SSIM(Px(u), Px(v)), x +w C Q})

where Py (u) is the restriction of u on the patch x + w.
 There are also multiscale variants.
« SSIM is not a distance, its range is [—1, 1].

» SSIM is closer to a perceptual distance, especially regarding local
textures.
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Structural similarity index measure (SSIM)

[0}

Tig. 7. Sample JPEG2000 images compressed to different quality levels (original size: 768x512; cropped to 256x192 for visibility). (a),
(b) and (c) are the original “Stream”, “Caps” and “Bikes” images, respectively. (d) Compressed to 0.1896 bits/pixel, PSNR = 23.46dB,
MSSIM = 0.7339; (c) Compressed to 0.1952 bits/pixel, PSNR = 34.56B, MSSTM = 0.9409; (f) Compressed to 1.1454 bits/pixel, PSNR
= 33.47dB, MSSIM = 0.9747. (g), (h) and (i) show SSIM maps of the compressed images, where brightness indicates the magnitude of

the local SSIM index (squared for visibility). (3), (k) and (1) show absolute error maps of the compressed images (contrast-inverted for
easier comparison to the SSIM maps).
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LPIPS: Learned Perceptual Image Patch Similarity

* Previous works on texture synthesis (Gatys et al., 2015) and style
transfer (Gatys et al., 2016) (Johnson et al., 2016) have shown the
importance of the VGG (Simonyan and Zisserman, 2015) features for
perceptual similarity between images.

» This means that intermediate features of classification CNN are useful in
their own: “a good feature is a good feature. Features that are good at
semantic tasks are also good at self-supervised and unsupervised tasks,
and also provide good models of both human perceptual behavior and
macaque neural activity.” (Zhang et al., 2018)
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LPIPS: Learned Perceptual Image Patch Similarity

LPIPS model: Define a perceptual distance between 64 x64 patches by
computing a Euclidean norm between features:

1
H,W,

LPIPS(u,u0)* = >

layers ¢

Z we © (F*(u)ij — F*(u0)i)) |13

where for each layer ¢, the neural response F*(u) is weighted by channel
weights 1w, € R that are learned to reproduce human evaluation of
distortion between patches.
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Textures synthesis using CNN
statistics




Gatys et al algorithm

References: L. Gatys, A. S. Ecker, and M. Bethge, Texture synthesis using
convolutional neural networks, in Advances in Neural Information Processing
Systems, 2015
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Texture synthesis

Texture Synthesis: Given an input texture image, produce an output texture
image being both visually similar to and pixel-wise different from the input
texture.

Ideal Outpu

The output image should ideally be perceived as another part of the same
large piece of homogeneous material the input texture is taken from.
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Texture synthesis: Motivation

* Important problem in the industry of virtual reality (video games, movies,
special effects,...).
* Periodic repetition is not satisfying !
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Convolutional Neural Networks (CNN)

» Main idea: Use the feature layers of a trained deep CNN, namely VGG
19 (Simonyan and Zisserman, 2015), as statistics.

+ VGG 19 was trained for image classification.

* It only uses 3 x 3 convolution kernels followed by RELU (= positive part)
and max-pooling.

CONV3-64.

* | convae
"| convaase

CONV3-512
CONV3-512

Input : 2 :ﬁ Prediction

/ 4 ” / pPooL2
. | (oo ]
POOLZ
LY oo |
PRV oo |
/| ooz |

4

» We do not use the last “fully connected” layers that perform classification.
* VGG 19 is understood as a multiscale nonlinear transform adapted to
natural images.
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Gatys et al algorithm

Given an example image « and a random initialization xy, one optimizes the
loss function

En= Y w|c0-cw];

for selected layers L

where

* wy is a weight parameter for each layer

* || - | is the Frobenius norm

- for an image y and a layer index L, G“(y) denotes the Gram matrix of
the VGG-19 features at layer L: if VX(y) is the feature response of y at
layer L that has spatial size w x h and n channels,

1 nxn
G'() = — VE@UVE()E € R™.
wh
ke{0,...,w—1}x{0,...,h—1}

The Gram matrix is a spatial statistics of order 2 that contains mean and
covariance information.
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Gatys et al algorithm

. .
B, =Y (6 0")
. BT
” —— GL=NTFLFL
x
1 L AL ry
JEL DEL
e = pool 2L = ﬁ T
E

+teate o Gradient
e L= o7 descentr
L L
& e E = o
7 L&D =Y wE
0% ;
N
POV
Fmfoalz

o

» The gradient of the energy is computed using back-propagation routines.

+ The authors use a quasi-Newton algorithm: L-BFGS that stands for
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
(low-rank approximation of the Hessian matrix for computing the descent
direction).
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Gatys et al algorithm

Given an example image « and a random initialization x,, one optimizes the
loss function

EW= Y,  wlc)-cwl;

for selected layers L
Pseudo-code:

Require: Input image u, set of selected VGG-19 layers £ and associated
layer weights parameter {w,, L € L}
Ensure: Synthesized texture x
Apply VGG-19 to u and extract the layers {V.(«)), L € L}
Compute the target Gram matrices {G.(u) = Gram(V.(«)), L € L}.
Initialize x with some Gaussian white noise.
for N; iterations do
Apply VGG-19 to x and extract the layers {V.(x)), L € L}.
Compute the current Gram matrices of x: {G.(x) = Gram(V.(x)), L € L}
Compute the loss E(x) and its gradient VE(x) using backpropagation.
x < L-BFGS-step(x, E(x), V,E(x)).
end for
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Gatys et al algorithm: Depth influence
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Gatys et al algorithm: Results

pool4

original

Portilla & Simoncelli
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Gatys et al algorithm

Bruno Galerne

This algorithm is the current state of the art.

The computational cost is really high (even with high-end GPUs it takes
minutes).

A lot of improvements have been proposed, eg by adding term to the
energy or by adding correlation between layers.

Extension for style transfer with equally impressive results, and maybe
more impact.

Generative models for images I: Introduction and b: MVA 2025-26 64/84



Gatys et al for style transfer

Reference: (Gatys et al., 2016)

2
Ep = Z (G4 - at) Liotat = Leontent + ﬁﬁstyle

=Y FkFL
mo Loomtent = 3 (F = ) 2

-~ =

DD\J
" O O—

#tean Oﬁmmr Gradient
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oz descent
maps
= Loyl = Z w By
? g - * ,
a= & T = 9
a - P
\j/oc
=1 - A o7
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Gatys et al for style transfer

Reference: (Gatys et al., 2016)
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Gatys et al for texture synthesis and style transfer

Very nice and clean PyTorch implementation:
https://github.com/leongatys/PytorchNeuralStyleTransfer

 Today: Practice session based in this code.

« Very slow on CPU and computationally demanding with high-end GPU
(and memory consuming, e.g. 8 GB of memory for a 1024 x 1024
image). See practice session.

Regarding texture modeling, the number of parameters is huge:
Textures are described by the Gram matrices and the number of
elements in the Gram matrices totals 850k. That is 1000 times more
than Portilla-Simoncelli !
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Generative networks for texture synthesis

» A workaround for speeding up synthesis is to train generative forward
networks to mimic Gatys algorithm, as proposed by (Ulyanov et al.,
2016) (coined Texture Networks).

 This is an example of generative network.

» The generator is trained to produce images with low Gatys loss
(self-supervised training) from multi-scale white noise.

» Synthesis is fast thanks to the feedforward architecture.

Generator network Descriptor network

conv
Z“w = | block
3202
conv )
|2k = | block
Zs £ iz,

axiexs

oo ; S R i
CZk | ©D | feek > doin > B ! doin 1>+ x| Join > FON i layert | >tayerz| ... frew11| ... [reluz1] ... [rel31| ...
", - 2 ‘x ,'

; ) |
loss loss | | loss
£ h A o ry
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synthesis

Texture Networks

Input Gatys et al. Texture nets (ours) Input Gatys et al. Texture nets (ours)

Figure 1. Texture networks proposed in this work are feed-forward architectures capable of learning to synthesize complex textures
based on a single training example. The perceptual quality of the feed-forwardly generated textures is similar to the results of the closely
related method suggested in (Gatys et al., 2015a), which use slow optimization process.

» However texture quality is not as good, and a network has to be trained
for each new image.
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On demand solid texture synthesis using deep 3D networks

 Texture networks can be extended to 3D (Gutierrez et al., 2020) while
the Gatys approach is infeasible.

PP e P PR

Input
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On demand solid texture synthesis using deep 3D networks

Training framework for the proposed CNN Generator network:
Texture examples

—

{ur,...,up} 3D slice-based loss
LONHu,. .., up}) -
Multi-scale noise input Synthesized solid 2D slices
— |Generator G (-0)|— ’* —
{z0,.-.»2K} v (Van.d efl,....D},nefl,..., Na}}
Training

+ The generator G(-|0) with parameters 6 processes a multi-scale noise
input Z to produce a solid texture v

» The loss £ compares, for each direction d, the feature statistics induced
by the example u, in the layers of the pre-trained Descriptor network
D(-) (loss of Gatys et al).
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On demand solid texture synthesis using deep 3D networks

Schematic of the Generator’s architecture:

Nid ~ y
[8]+ 20 [§]+20k-4 o] e O N 3 I TR I 5 Pev)
M w, M, a1, a1, o, 3w,
KM, K1, 5
[#5]+ 26k [#5]+ 2000 -4
" w,
Convolution block
2420 3 PP
L C[ ! Upsampling
I w Channel concatenation
: Single convolution layer
N2 Na2o-4
" ,

* Processes a set of noise inputs Z = {z, ...,z } at K + 1 different scales
using convolution operations and non-linear activations

» The information at different scales is combined using upsampling and
channel concatenation (similar to the right part of a U-net).
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On demand solid texture synthesis using deep 3D networks

Training: Find the parameters 6 for a given texture
» Exploit invariance by translation to generate batches of width one voxel only
(“single-slice training scheme”)
» Minimize Gatys’ loss for each slice, using 3000 iterations of Adam algorithm

10 20 50 100
1000

73

input
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On demand solid texture synthesis using deep 3D networks

Generated volume Examples Generated slices

v oblique (45°)

v Uy = Uy = u3

N3
3,4
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On demand solid texture synthesis using deep 3D networks

cheese pebble

histology

Bruno Galerne

Generated volume

Examples
Uy = up = u3

gl
nige g:'?

. .

Generated slices
oblique (45°)

o

A oi®
Sechadt, |

P 2 *{ & ey
25 S L SRR e S O B
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On demand solid texture synthesis using deep 3D networks

« Solid textures can be used to apply textures on surfaces without
parametrization.

Bruno Galerne Generative models for images I: Introdu MVA 2025-26



On demand solid texture synthesis using deep 3D networks

« Fast synthesis thanks to the feed forward network ( 1 sec. for 256°)

« On demand synthesis using a pseudo random number generator seed
with spatial coordinates

4,*1. .:,‘ A

‘ _1' Vs e
o w,,’v

» Training and synthesis with high resolution images without memory
issues thanks to the single slice strategy.
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Generative networks for texture synthesis

Other contributions propose generative networks for universal style
transfer/texture synthesis (e.g. (Li et al., 2017)).

Universal means that a single network is adapted to all images.

This still relies in approximating the Gatys procedure with some
approximation for a faster style transfer: auto-encoders to invert VGG19
and imposing Gram matrices.

» Using Wasserstein distance between Gaussians in VGG19 feature
space is efficient for texture mixing (Vacher et al., 2020) (see practice
session).
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