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Temperley-Lieb algebra TLn = TLn(v + v−1): associative, unital
Z[v , v−1]-algebra.
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Motivation:bases of Temperley-Lieb algebras

Temperley-Lieb algebra TLn = TLn(v + v−1): associative, unital
Z[v , v−1]-algebra.

Basis of TLn indexed by the set Wf of fully commutative elements of
Sn+1. We denote this basis by {bw}w∈Wf

.

⇒ dim(TLn) = Cn+1 =
1

n + 2

(
2(n + 1)

n + 1

)
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Temperley-Lieb algebra TLn = TLn(v + v−1): associative, unital
Z[v , v−1]-algebra.

Basis of TLn indexed by the set Wf of fully commutative elements of
Sn+1. We denote this basis by {bw}w∈Wf

.

⇒ dim(TLn) = Cn+1 =
1

n + 2

(
2(n + 1)

n + 1

)

 Diagram or Kazhdan− Lusztig basis.
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Motivation:bases of Temperley-Lieb algebras

Temperley-Lieb algebra TLn = TLn(v + v−1): associative, unital
Z[v , v−1]-algebra.

Basis of TLn indexed by the set Wf of fully commutative elements of
Sn+1. We denote this basis by {bw}w∈Wf

.

⇒ dim(TLn) = Cn+1 =
1

n + 2

(
2(n + 1)

n + 1

)

 Diagram or Kazhdan− Lusztig basis.

Multiplicative homomorphism

Bn+1 → TLn

where Bn+1 = braid group on n + 1 strands.

Noncrossing partitions and Bruhat order
Noncrossing partitions in representation

theory Bielefeld, June 2014



Motivation: bases of Temperley-Lieb algebras

Motivation:bases of Temperley-Lieb algebras

Noncrossing partitions and Bruhat order
Noncrossing partitions in representation

theory Bielefeld, June 2014



Motivation: bases of Temperley-Lieb algebras

Motivation:bases of Temperley-Lieb algebras

Let (W,S) be a Coxeter system of type An, where W = Sn+1,
S = {si = (i , i +1)}ni=1. Let c be any Coxeter element, i.e., any product of
all the elements of S. Let T =

⋃

w∈W wSw−1 be the set of reflections.
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Motivation:bases of Temperley-Lieb algebras

Let (W,S) be a Coxeter system of type An, where W = Sn+1,
S = {si = (i , i +1)}ni=1. Let c be any Coxeter element, i.e., any product of
all the elements of S. Let T =

⋃

w∈W wSw−1 be the set of reflections.

Partial order <T on W: u <T v if and only if

ℓT (u) + ℓT (u
−1v) = ℓT (v),

where ℓT is the reflection or absolute length. The poset
Pc = {x <T c} is isomorphic to the lattice of noncrossing partitions.
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Motivation:bases of Temperley-Lieb algebras

Let (W,S) be a Coxeter system of type An, where W = Sn+1,
S = {si = (i , i +1)}ni=1. Let c be any Coxeter element, i.e., any product of
all the elements of S. Let T =

⋃

w∈W wSw−1 be the set of reflections.

Partial order <T on W: u <T v if and only if

ℓT (u) + ℓT (u
−1v) = ℓT (v),

where ℓT is the reflection or absolute length. The poset
Pc = {x <T c} is isomorphic to the lattice of noncrossing partitions.

Dual braid monoid associated to (W,T , c): it has one generator ic(t)
per element t of T and relations

ic(t)ic(t
′) = ic(tt

′t)ic(t) whenever tt
′ <T c

called dual braid relations.
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Motivation: bases of Temperley-Lieb algebras

Embedding

B∗
c →֒ Frac(B∗

c )
∼= Bn+1 = braid group on n+ 1 strands.
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Motivation: bases of Temperley-Lieb algebras

Embedding

B∗
c →֒ Frac(B∗

c )
∼= Bn+1 = braid group on n+ 1 strands.

For any x <T c , consider a T -reduced expression t1t2 · · · tk of x .
Then

ic(x) := ic(t1)ic(t2) · · · ic(tk)

is independent of the choice of the T -reduced expression.
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For any x <T c , consider a T -reduced expression t1t2 · · · tk of x .
Then

ic(x) := ic(t1)ic(t2) · · · ic(tk)

is independent of the choice of the T -reduced expression.

The set {ic(x) | x <T c} is the set of simple elements of the dual
braid monoid. It has Catalan enumeration
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Motivation: bases of Temperley-Lieb algebras

Embedding

B∗
c →֒ Frac(B∗

c )
∼= Bn+1 = braid group on n+ 1 strands.

For any x <T c , consider a T -reduced expression t1t2 · · · tk of x .
Then

ic(x) := ic(t1)ic(t2) · · · ic(tk)

is independent of the choice of the T -reduced expression.

The set {ic(x) | x <T c} is the set of simple elements of the dual
braid monoid. It has Catalan enumeration

→ IDEA (Zinno): map the simple elements to the Temperley-Lieb
algebra via the composition

B∗
c →֒ Bn+1 → TLn,

ic(x) 7→ Zx .
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Motivation: bases of Temperley-Lieb algebras

It turns out that in case c = s1s2 · · · sn, the {Zx}x∈Pc is a set of
linearly independent elements of TLn, giving a basis of it=Zinno basis.
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Motivation: bases of Temperley-Lieb algebras

It turns out that in case c = s1s2 · · · sn, the {Zx}x∈Pc is a set of
linearly independent elements of TLn, giving a basis of it=Zinno basis.

Zinno shows that there exists a total order on the set
Pc := {x <T c} and a bijection a : Pc → Wf such that if you endow
Wf with the order induced by a, then for x ∈ Pc ,

Zx = cxba(x) +
∑

y∈Pc , y<x

cy ,xba(y),

where cx is invertible.
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Motivation: bases of Temperley-Lieb algebras

It turns out that in case c = s1s2 · · · sn, the {Zx}x∈Pc is a set of
linearly independent elements of TLn, giving a basis of it=Zinno basis.

Zinno shows that there exists a total order on the set
Pc := {x <T c} and a bijection a : Pc → Wf such that if you endow
Wf with the order induced by a, then for x ∈ Pc ,

Zx = cxba(x) +
∑

y∈Pc , y<x

cy ,xba(y),

where cx is invertible. From Zinno’s work it is not difficult to see that

cy ,x 6= 0 ⇒ y <S x ,

where <S is the restriction of the Bruhat order to Pc !
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Motivation: bases of Temperley-Lieb algebras

There is another proof that Zx is a basis by Lee and Lee; however they
don’t prove triangularity. As shown by Vincenti, one can then derive a
proof that we get a basis by mapping the simple elements of any dual
braid monoid (that is, for any Coxeter element c) to the TL algebra.
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There is another proof that Zx is a basis by Lee and Lee; however they
don’t prove triangularity. As shown by Vincenti, one can then derive a
proof that we get a basis by mapping the simple elements of any dual
braid monoid (that is, for any Coxeter element c) to the TL algebra.

Digne made computations of the change of basis matrix for various n
and various Coxeter elements. It seems that there still exist orders
making the change of basis matrix upper triangular. Also, positivity
phenomenons appear in the change of basis matrix.
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Motivation: bases of Temperley-Lieb algebras

There is another proof that Zx is a basis by Lee and Lee; however they
don’t prove triangularity. As shown by Vincenti, one can then derive a
proof that we get a basis by mapping the simple elements of any dual
braid monoid (that is, for any Coxeter element c) to the TL algebra.

Digne made computations of the change of basis matrix for various n
and various Coxeter elements. It seems that there still exist orders
making the change of basis matrix upper triangular. Also, positivity
phenomenons appear in the change of basis matrix.

Question: It there a ”general” explanation of these phenomenons
(triangularity, positivity + preserved when changing the Coxeter
element) by a nice categorification of the TL algebra?
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Motivation: bases of Temperley-Lieb algebras

There is another proof that Zx is a basis by Lee and Lee; however they
don’t prove triangularity. As shown by Vincenti, one can then derive a
proof that we get a basis by mapping the simple elements of any dual
braid monoid (that is, for any Coxeter element c) to the TL algebra.

Digne made computations of the change of basis matrix for various n
and various Coxeter elements. It seems that there still exist orders
making the change of basis matrix upper triangular. Also, positivity
phenomenons appear in the change of basis matrix.

Question: It there a ”general” explanation of these phenomenons
(triangularity, positivity + preserved when changing the Coxeter
element) by a nice categorification of the TL algebra? → open
problem.

Noncrossing partitions and Bruhat order
Noncrossing partitions in representation

theory Bielefeld, June 2014



Motivation: bases of Temperley-Lieb algebras

There is another proof that Zx is a basis by Lee and Lee; however they
don’t prove triangularity. As shown by Vincenti, one can then derive a
proof that we get a basis by mapping the simple elements of any dual
braid monoid (that is, for any Coxeter element c) to the TL algebra.

Digne made computations of the change of basis matrix for various n
and various Coxeter elements. It seems that there still exist orders
making the change of basis matrix upper triangular. Also, positivity
phenomenons appear in the change of basis matrix.

Question: It there a ”general” explanation of these phenomenons
(triangularity, positivity + preserved when changing the Coxeter
element) by a nice categorification of the TL algebra? → open
problem. Or in case you have one, please inform me �.
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Motivation: bases of Temperley-Lieb algebras

However:
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However:

Positivity of the coefficients can be proven for some choices of
Coxeter elements using positivity results in the Hecke algebra,
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However:

Positivity of the coefficients can be proven for some choices of
Coxeter elements using positivity results in the Hecke algebra,

There are explicit formulas for some of the coefficients in case
c = s1s2 · · · sn but not for all and in general we don’t even know
exactly when they are nonzero,
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However:

Positivity of the coefficients can be proven for some choices of
Coxeter elements using positivity results in the Hecke algebra,

There are explicit formulas for some of the coefficients in case
c = s1s2 · · · sn but not for all and in general we don’t even know
exactly when they are nonzero,

Triangularity can be proven in general (that is, for arbitrary Coxeter
elements). For this, we need to understand the Bruhat order on Pc in
case c = s1s2 · · · sn and understand the way of ordering the
(generalized) Zinno basis for arbitrary Coxeter elements.
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Motivation: bases of Temperley-Lieb algebras

However:

Positivity of the coefficients can be proven for some choices of
Coxeter elements using positivity results in the Hecke algebra,

There are explicit formulas for some of the coefficients in case
c = s1s2 · · · sn but not for all and in general we don’t even know
exactly when they are nonzero,

Triangularity can be proven in general (that is, for arbitrary Coxeter
elements). For this, we need to understand the Bruhat order on Pc in
case c = s1s2 · · · sn and understand the way of ordering the
(generalized) Zinno basis for arbitrary Coxeter elements. We will
focuse on that point for today.
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Vectors with parity conditions and lattice property

Bruhat order on noncrossing partitions, two examples

e

s1 s2 s3

s1s2 s1s3 s2s3

s1s2s3s2s1s2 s3s2s3

s2s1s2s3 s1s3s2s3

s3s2s1s2s3

s2s3s2s1s2s3

c = s1s2s3
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Bruhat order on noncrossing partitions, two examples

e

s1 s2 s3

s1s2 s1s3 s2s3

s1s2s3s2s1s2 s3s2s3

s2s1s2s3 s1s3s2s3

s3s2s1s2s3

s2s3s2s1s2s3

e

s1 s2 s3

s2s1 s1s3 s2s3

s2s1s3
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Bruhat order on noncrossing partitions, two examples

e

s1 s2 s3

s1s2 s1s3 s2s3

s1s2s3s2s1s2 s3s2s3

s2s1s2s3 s1s3s2s3

s3s2s1s2s3

s2s3s2s1s2s3

e

s1 s2 s3

s2s1 s1s3 s2s3

s2s1s3s2s1s2 s3s2s3

s2s1s2s3 s3s2s3s1

c = s1s2s3 c ′ = s2s1s3
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Vectors with parity conditions and lattice property

Bruhat order on noncrossing partitions, two examples

e

s1 s2 s3

s1s2 s1s3 s2s3

s1s2s3s2s1s2 s3s2s3

s2s1s2s3 s1s3s2s3

s3s2s1s2s3

s2s3s2s1s2s3

e

s1 s2 s3

s2s1 s1s3 s2s3

s2s1s3s2s1s2 s3s2s3

s2s1s2s3 s3s2s3s1

s2s1s3s2

s3s2s1s2s3

c = s1s2s3 c ′ = s2s1s3
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Vectors with parity conditions and lattice property

Is it a general fact that for c = s1 · · · sn, the set of noncrossing
partitions together with the restriction of the Bruhat order gives rise
to the lattice structure coming from the root poset?
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Vectors with parity conditions and lattice property

Is it a general fact that for c = s1 · · · sn, the set of noncrossing
partitions together with the restriction of the Bruhat order gives rise
to the lattice structure coming from the root poset?

If the answer is yes, why does it fail for other Coxeter elements? Is
Bruhat order still the order to consider to prove triangularity of the
change of basis matrix in the Temperley-Lieb algebras in case we
change the Coxeter element?
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to the lattice structure coming from the root poset?

If the answer is yes, why does it fail for other Coxeter elements? Is
Bruhat order still the order to consider to prove triangularity of the
change of basis matrix in the Temperley-Lieb algebras in case we
change the Coxeter element?
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Vectors with parity conditions and lattice property

Standard forms

Let us assume that c = s1s2 · · · sn. Noncrossing partitions are represented
by disjoing unions of polygons having as vertices marked points on a circle:

b

b

bb

b

b

•

•

•

•

•

•

2

3

45

6

1
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Vectors with parity conditions and lattice property

Standard forms

Let us assume that c = s1s2 · · · sn. Noncrossing partitions are represented
by disjoing unions of polygons having as vertices marked points on a circle:

b

b

bb

b

b

•

•

•

•

•

•

2

3

45

6

1

Geometric representation of the noncrossing partition x = (1, 6)(2, 3, 5).
Here n = 5. We represent a polygon by the ordered sequence of numbers
indexing its vertices. In the example above, there are two polygons [16]
and [235].
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Vectors with parity conditions and lattice property

Standard forms

Let x ∈ Pc . Consider any polygon P = [i1i2 · · · ik ] occuring in the
geometric representation of x . It corresponds to the cycle
y = (i1, i2, . . . , ik) ∈ Pc . One has

y = (i1, i2)(i2, i3) · · · (ik−1, ik)

Noncrossing partitions and Bruhat order
Noncrossing partitions in representation

theory Bielefeld, June 2014



Vectors with parity conditions and lattice property

Standard forms

Let x ∈ Pc . Consider any polygon P = [i1i2 · · · ik ] occuring in the
geometric representation of x . It corresponds to the cycle
y = (i1, i2, . . . , ik) ∈ Pc . One has

y = (i1, i2)(i2, i3) · · · (ik−1, ik)

We then replace each transposition (j , j ′), j < j ′ in the product above by
the Coxeter word

[j , j ′] := sj ′−1sj ′−2 · · · sj+1sjsj+1 · · · sj ′−2sj ′−1

and denote by my the obtained Coxeter word.
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Vectors with parity conditions and lattice property

Standard forms

Let x ∈ Pc . Consider any polygon P = [i1i2 · · · ik ] occuring in the
geometric representation of x . It corresponds to the cycle
y = (i1, i2, . . . , ik) ∈ Pc . One has

y = (i1, i2)(i2, i3) · · · (ik−1, ik)

We then replace each transposition (j , j ′), j < j ′ in the product above by
the Coxeter word

[j , j ′] := sj ′−1sj ′−2 · · · sj+1sjsj+1 · · · sj ′−2sj ′−1

and denote by my the obtained Coxeter word. This is the standard form of
y ∈ Pc . The various subwords [di1, di2 ], . . . , [dik−1

, dik ] are called the
syllables of my .
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Vectors with parity conditions and lattice property

Standard forms

Let x ∈ Pc . Consider any polygon P = [i1i2 · · · ik ] occuring in the
geometric representation of x . It corresponds to the cycle
y = (i1, i2, . . . , ik) ∈ Pc . One has

y = (i1, i2)(i2, i3) · · · (ik−1, ik)

We then replace each transposition (j , j ′), j < j ′ in the product above by
the Coxeter word

[j , j ′] := sj ′−1sj ′−2 · · · sj+1sjsj+1 · · · sj ′−2sj ′−1

and denote by my the obtained Coxeter word. This is the standard form of
y ∈ Pc . The various subwords [di1, di2 ], . . . , [dik−1

, dik ] are called the
syllables of my . Now if we order the polygons of x by ascending order of
their maximal index and concatenate the standard forms of the various
associated elements in this order, we obtain the standard form mx of x .

Noncrossing partitions and Bruhat order
Noncrossing partitions in representation

theory Bielefeld, June 2014



Vectors with parity conditions and lattice property

Example

Let x = (1, 6)(2, 3, 5), n = 5. Let P1 = [235], P2 = [16]. Let
y1 = (2, 3, 5), y2 = (1, 6). The standard form of y1 is s2s4s3s4. The
standard form of y2 is s5s4s3s2s1s2s3s4s5.
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Vectors with parity conditions and lattice property

Example

Let x = (1, 6)(2, 3, 5), n = 5. Let P1 = [235], P2 = [16]. Let
y1 = (2, 3, 5), y2 = (1, 6). The standard form of y1 is s2s4s3s4. The
standard form of y2 is s5s4s3s2s1s2s3s4s5. Hence the standard form of x is

mx = s2s4s3s4
︸ ︷︷ ︸

my1

s5s4s3s2s1s2s3s4s5
︸ ︷︷ ︸

my2

.
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Vectors with parity conditions and lattice property

Example

Let x = (1, 6)(2, 3, 5), n = 5. Let P1 = [235], P2 = [16]. Let
y1 = (2, 3, 5), y2 = (1, 6). The standard form of y1 is s2s4s3s4. The
standard form of y2 is s5s4s3s2s1s2s3s4s5. Hence the standard form of x is

mx = s2s4s3s4
︸ ︷︷ ︸

my1

s5s4s3s2s1s2s3s4s5
︸ ︷︷ ︸

my2

.

We associate to x a vector vx = (x1, . . . , xn) in (Z≥0)
n having as i -th

component xi the number of occurrences of si in mx .
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Vectors with parity conditions and lattice property

Example

Let x = (1, 6)(2, 3, 5), n = 5. Let P1 = [235], P2 = [16]. Let
y1 = (2, 3, 5), y2 = (1, 6). The standard form of y1 is s2s4s3s4. The
standard form of y2 is s5s4s3s2s1s2s3s4s5. Hence the standard form of x is

mx = s2s4s3s4
︸ ︷︷ ︸

my1

s5s4s3s2s1s2s3s4s5
︸ ︷︷ ︸

my2

.

We associate to x a vector vx = (x1, . . . , xn) in (Z≥0)
n having as i -th

component xi the number of occurrences of si in mx . For x as in the
example above we have

vx = (1, 3, 3, 4, 2).
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Vectors with parity conditions and lattice property

Consider the set V of tuples (x1, x2, . . . , xn) ∈ (Z≥0)
n with the following

properties:
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Vectors with parity conditions and lattice property

Consider the set V of tuples (x1, x2, . . . , xn) ∈ (Z≥0)
n with the following

properties:

The first nonzero component of (x1, . . . , xn) is equal to 1,
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Consider the set V of tuples (x1, x2, . . . , xn) ∈ (Z≥0)
n with the following

properties:

The first nonzero component of (x1, . . . , xn) is equal to 1,

The last nonzero component of (x1, . . . , xn) is equal to 1 or 2,
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Vectors with parity conditions and lattice property

Consider the set V of tuples (x1, x2, . . . , xn) ∈ (Z≥0)
n with the following

properties:

The first nonzero component of (x1, . . . , xn) is equal to 1,

The last nonzero component of (x1, . . . , xn) is equal to 1 or 2,

We have the following conditions on the differences xk+1 − xk , for
each 1 ≤ k < n:

xm+1 − xm xm+1 even xm+1 odd

xm even −2 or 0 1 or −1

xm odd 1 or −1 2 or 0
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Vectors with parity conditions and lattice property

Consider the set V of tuples (x1, x2, . . . , xn) ∈ (Z≥0)
n with the following

properties:

The first nonzero component of (x1, . . . , xn) is equal to 1,

The last nonzero component of (x1, . . . , xn) is equal to 1 or 2,

We have the following conditions on the differences xk+1 − xk , for
each 1 ≤ k < n:

xm+1 − xm xm+1 even xm+1 odd

xm even −2 or 0 1 or −1

xm odd 1 or −1 2 or 0

Example

If n = 2, one has V = {(0, 0), (1, 0), (0, 1), (1, 1), (1, 2)}.
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Vectors with parity conditions and lattice property

Example

If n = 3, one has
V = {(0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),
(1, 1, 1), (1, 2, 0), (0, 1, 2), (1, 2, 1),
(1, 1, 2), (1, 2, 2), (1, 3, 2)}.
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Vectors with parity conditions and lattice property

Example

If n = 3, one has
V = {(0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),
(1, 1, 1), (1, 2, 0), (0, 1, 2), (1, 2, 1),
(1, 1, 2), (1, 2, 2), (1, 3, 2)}.

We order V in the following way: let
(x1, . . . , xn), (w1, . . . ,wn) ∈ V. Then

(x1, . . . , xn) < (w1, . . . ,wn)

if for each 1 ≤ i ≤ n, one has

xi ≤ wi .
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Example

If n = 3, one has
V = {(0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),
(1, 1, 1), (1, 2, 0), (0, 1, 2), (1, 2, 1),
(1, 1, 2), (1, 2, 2), (1, 3, 2)}.

We order V in the following way: let
(x1, . . . , xn), (w1, . . . ,wn) ∈ V. Then

(x1, . . . , xn) < (w1, . . . ,wn)

if for each 1 ≤ i ≤ n, one has

xi ≤ wi .

Hasse diagram of (V, <) for n = 3:
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Example

If n = 3, one has
V = {(0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),
(1, 1, 1), (1, 2, 0), (0, 1, 2), (1, 2, 1),
(1, 1, 2), (1, 2, 2), (1, 3, 2)}.

We order V in the following way: let
(x1, . . . , xn), (w1, . . . ,wn) ∈ V. Then

(x1, . . . , xn) < (w1, . . . ,wn)

if for each 1 ≤ i ≤ n, one has

xi ≤ wi .

Hasse diagram of (V, <) for n = 3:

(0, 0, 0)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1)(1, 2, 0) (0, 1, 2)

(1, 2, 1) (1, 1, 2)

(1, 2, 2)

(1, 3, 2)
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Vectors with parity conditions and lattice property

The criterion

We denote by <S the Bruhat order on Pc
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The criterion

We denote by <S the Bruhat order on Pc

Theorem

The map (Pc , <S) → (V, <) defined by

x 7→ vx

is an isomorphism of posets. That is, for x , y ∈ Pc , we have

x <S y if and only if ∀i , xi ≤ yi .

Noncrossing partitions and Bruhat order
Noncrossing partitions in representation

theory Bielefeld, June 2014



Vectors with parity conditions and lattice property

The criterion

We denote by <S the Bruhat order on Pc

Theorem

The map (Pc , <S) → (V, <) defined by

x 7→ vx

is an isomorphism of posets. That is, for x , y ∈ Pc , we have

x <S y if and only if ∀i , xi ≤ yi .

Lemma

The poset (V, <) is a lattice.
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The criterion

We denote by <S the Bruhat order on Pc

Theorem

The map (Pc , <S) → (V, <) defined by

x 7→ vx

is an isomorphism of posets. That is, for x , y ∈ Pc , we have

x <S y if and only if ∀i , xi ≤ yi .

Lemma

The poset (V, <) is a lattice.

Corollary

The poset (Pc , <S) is a lattice.
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Vectors with parity conditions and lattice property

Is it a general fact that for c = s1 · · · sn, the set of noncrossing
partitions together with the restriction of the Bruhat order gives rise
to the lattice structure coming from the root poset?

If the answer is yes, why does it fail for other Coxeter elements? Is
Bruhat order still the order to consider to prove triangularity of the
change of basis matrix in the Temperley-Lieb algebras in case we
change the Coxeter element?
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Vectors with parity conditions and lattice property

IDEA 1: the Coxeter element c = s1s2 · · · sn has a single S-reduced
expression, which fails for other Coxeter elements (except c−1).
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IDEA 1: the Coxeter element c = s1s2 · · · sn has a single S-reduced
expression, which fails for other Coxeter elements (except c−1).

One may then look outside type A, for example in type B . But the
lattice property fails there.
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IDEA 1: the Coxeter element c = s1s2 · · · sn has a single S-reduced
expression, which fails for other Coxeter elements (except c−1).

One may then look outside type A, for example in type B . But the
lattice property fails there.
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Vectors with parity conditions and lattice property

IDEA 1: the Coxeter element c = s1s2 · · · sn has a single S-reduced
expression, which fails for other Coxeter elements (except c−1).

One may then look outside type A, for example in type B . But the
lattice property fails there.

−→ /
IDEA 2: any x ∈ Pc has a reduced T -decomposition t1 · · · tk where if
you replace any ti by an S-reduced decomposition of ti , you obtain an
S-reduced decomposition of x . It is exactly the process we used to
build the ”standard form” of x . Such a property fails for c ′ 6= c .
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IDEA 1: the Coxeter element c = s1s2 · · · sn has a single S-reduced
expression, which fails for other Coxeter elements (except c−1).

One may then look outside type A, for example in type B . But the
lattice property fails there.

−→ /
IDEA 2: any x ∈ Pc has a reduced T -decomposition t1 · · · tk where if
you replace any ti by an S-reduced decomposition of ti , you obtain an
S-reduced decomposition of x . It is exactly the process we used to
build the ”standard form” of x . Such a property fails for c ′ 6= c .

−→ ,
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Vectors with parity conditions and lattice property

Standard forms (arbitrary Coxeter elements)

Let c ′ be an arbitrary Coxeter element, c = s1s2 · · · sn.
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Vectors with parity conditions and lattice property

Standard forms (arbitrary Coxeter elements)

Let c ′ be an arbitrary Coxeter element, c = s1s2 · · · sn.

Lemma

Let x ′ ∈ Pc′ . Assume that x ′ = (i1, i2, . . . , ik) is a cycle. Consider x ∈ Pc

represented by a single polygon having as vertices the points indexed by
{i1, i2, . . . , ik}. There exists a word mc′

x ′ representing x ′ in the Coxeter
group and such that
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Standard forms (arbitrary Coxeter elements)

Let c ′ be an arbitrary Coxeter element, c = s1s2 · · · sn.

Lemma

Let x ′ ∈ Pc′ . Assume that x ′ = (i1, i2, . . . , ik) is a cycle. Consider x ∈ Pc

represented by a single polygon having as vertices the points indexed by
{i1, i2, . . . , ik}. There exists a word mc′

x ′ representing x ′ in the Coxeter
group and such that

the number of occurrences of si in mc′

x ′ is equal to xi , ∀i ,
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Standard forms (arbitrary Coxeter elements)

Let c ′ be an arbitrary Coxeter element, c = s1s2 · · · sn.

Lemma

Let x ′ ∈ Pc′ . Assume that x ′ = (i1, i2, . . . , ik) is a cycle. Consider x ∈ Pc

represented by a single polygon having as vertices the points indexed by
{i1, i2, . . . , ik}. There exists a word mc′

x ′ representing x ′ in the Coxeter
group and such that

the number of occurrences of si in mc′

x ′ is equal to xi , ∀i ,

the word mc′

x ′ is an S-reduced expression of x ′,
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Standard forms (arbitrary Coxeter elements)

Let c ′ be an arbitrary Coxeter element, c = s1s2 · · · sn.

Lemma

Let x ′ ∈ Pc′ . Assume that x ′ = (i1, i2, . . . , ik) is a cycle. Consider x ∈ Pc

represented by a single polygon having as vertices the points indexed by
{i1, i2, . . . , ik}. There exists a word mc′

x ′ representing x ′ in the Coxeter
group and such that

the number of occurrences of si in mc′

x ′ is equal to xi , ∀i ,

the word mc′

x ′ is an S-reduced expression of x ′,

if {i1, . . . , ik} = {d1, . . . , dk} where di < di+1, then mc′

x ′ is obtained by
concatenating the syllables [di , di+1] in some order (depending on c ′).
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Vectors with parity conditions and lattice property

Standard forms (arbitrary Coxeter elements)

Let c ′ be an arbitrary Coxeter element, c = s1s2 · · · sn.

Lemma

Let x ′ ∈ Pc′ . Assume that x ′ = (i1, i2, . . . , ik) is a cycle. Consider x ∈ Pc

represented by a single polygon having as vertices the points indexed by
{i1, i2, . . . , ik}. There exists a word mc′

x ′ representing x ′ in the Coxeter
group and such that

the number of occurrences of si in mc′

x ′ is equal to xi , ∀i ,

the word mc′

x ′ is an S-reduced expression of x ′,

if {i1, . . . , ik} = {d1, . . . , dk} where di < di+1, then mc′

x ′ is obtained by
concatenating the syllables [di , di+1] in some order (depending on c ′).

Such a word mc′

x ′ is called a standard form of x ′. It is not unique in general
(products of the words [di , di+1] in different orders may yield words
representing the same element of the Coxeter group). If t ∈ T ⊂ Pc ∩ Pc′

we have mt = mc′

t .
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Vectors with parity conditions and lattice property

To summarize: if x ′ ∈ Pc′ is a cycle, we can associate to x ′ a tuple
v c

′

x ′ = (x ′c
′

1 , . . . , x
′c

′

n ) ∈ V where x ′c
′

i is the number of occurrences of si in
mc′

x ′ .
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To summarize: if x ′ ∈ Pc′ is a cycle, we can associate to x ′ a tuple
v c

′

x ′ = (x ′c
′

1 , . . . , x
′c

′

n ) ∈ V where x ′c
′

i is the number of occurrences of si in
mc′

x ′ .

Example
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Vectors with parity conditions and lattice property

To summarize: if x ′ ∈ Pc′ is a cycle, we can associate to x ′ a tuple
v c

′

x ′ = (x ′c
′

1 , . . . , x
′c

′

n ) ∈ V where x ′c
′

i is the number of occurrences of si in
mc′

x ′ .

Example

b

b

bb

b

b

•

•

•

•

•

•

3

4

65

2

1

b

b

bb

b

b

•

•

•

•

•

•

2

3

45

6

1

c ′ = s2s1s3s5s4 = (1, 3, 4, 6, 5, 2) c = s1s2s3s4s5
x ′ = (1, 3, 6, 2) = (2, 3)(3, 6)(2, 1) x = (1, 2, 3, 6) = (1, 2)(2, 3)(3, 6)

mc′

x′ = s2(s5s4s3s4s5)s1 mx = s1s2(s5s4s3s4s5)

v c′

x′ = (1, 1, 1, 2, 2) vx = (1, 1, 1, 2, 2)

Noncrossing partitions and Bruhat order
Noncrossing partitions in representation

theory Bielefeld, June 2014



Vectors with parity conditions and lattice property

The aim now is to associate a tuple v c
′

x ′ ∈ V to any x ′ ∈ Pc′ . In that case
we decompose x ′ into a product y1y2 . . . ym of disjoint cycles and define a
standard form of x ′ as the product

mc′

y1
· · ·mc′

y2
.

Such a word will be called a standard form of x ′. Counting the number of
simple reflections in it gives rise to a tuple v c

′

x ′ but it is not clear that it lies
in V.
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Vectors with parity conditions and lattice property

The aim now is to associate a tuple v c
′

x ′ ∈ V to any x ′ ∈ Pc′ . In that case
we decompose x ′ into a product y1y2 . . . ym of disjoint cycles and define a
standard form of x ′ as the product

mc′

y1
· · ·mc′

y2
.

Such a word will be called a standard form of x ′. Counting the number of
simple reflections in it gives rise to a tuple v c

′

x ′ but it is not clear that it lies
in V. To prove that v c

′

x ′ ∈ V for any x ′ ∈ Pc′ , we first define a map
Pc′ → Pc .
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Vectors with parity conditions and lattice property

Step 1: let yi = (i1, . . . , ik) be any cycle in the decomposition of x ′. Write
{i1, . . . , ik} = {d1, . . . , dk} where dj < dj+1. We represent each yi on a
line with marked points from 1 to n + 1 by arcs joining the point dj to the
point dj+1, j = 1, . . . , k − 1. The resulting diagram may have crossings.
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Step 1: let yi = (i1, . . . , ik) be any cycle in the decomposition of x ′. Write
{i1, . . . , ik} = {d1, . . . , dk} where dj < dj+1. We represent each yi on a
line with marked points from 1 to n + 1 by arcs joining the point dj to the
point dj+1, j = 1, . . . , k − 1. The resulting diagram may have crossings.

Example

Let c ′ = s4s3s1s2s5 = (1, 2, 5, 6, 4, 3) and x ′ = (2, 5)
︸ ︷︷ ︸

y1

(1, 6, 3)
︸ ︷︷ ︸

y2

. Then we

represent x ′ in the following way

•

x ′  

• • • • •
1 2 3 4 5 6
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Vectors with parity conditions and lattice property

Step 2: we resolve each crossing of the diagram.

Example

•

x ′  

• • • • •
1 2 3 4 5 6
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Step 2: we resolve each crossing of the diagram.

Example

• • • • • •
1 2 3 4 5 6

Noncrossing partitions and Bruhat order
Noncrossing partitions in representation

theory Bielefeld, June 2014



Vectors with parity conditions and lattice property

Step 2: we resolve each crossing of the diagram.

Example

• • • • • •

• •
• • • •

• •

1 2 3 4 5 6
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Step 2: we resolve each crossing of the diagram.

Example

• • • • • •

• •
• • • •

• •

1 2 3 4 5 6
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Step 2: we resolve each crossing of the diagram.

Example

• • • • • •
1 2 3 4 5 6
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Vectors with parity conditions and lattice property

Step 2: we resolve each crossing of the diagram.

Example

 x

• • • • • •
1 2 3 4 5 6
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Vectors with parity conditions and lattice property

Lemma

The geometrical process described above defines a bijective map
φc′,c : Pc′ → Pc which fixes the set of reflections. Moreover, one has that

xi = x ′c
′

i for any i ∈ {1, . . . , n}.

As a consequence,

Corollary

The map Pc′ → V, x ′ 7→ (x ′c
′

1 , . . . , x
′c

′

n ) is a well-defined bijection.

We therefore can consider the order < induced on Pc′ by the natural order
on V. In case c ′ = c , this is the Bruhat order.
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Vectors with parity conditions and lattice property

A new order on Pc ′

e

s1 s2 s3

s2s1 s1s3 s2s3

s2s1s3s2s1s2 s3s2s3

s2s1s2s3 s3s2s3s1

s3s2s1s2s3

s2s1s2s3s2s3

e

s1 s2 s3

s2s1 s1s3 s2s3

s2s1s3s2s1s2 s3s2s3

s2s1s2s3 s3s2s3s1

s2s1s3s2

s3s2s1s2s3
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Vectors with parity conditions and lattice property

Application: bases of Temperley-Lieb algebras
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Vectors with parity conditions and lattice property

Application: bases of Temperley-Lieb algebras

Using this new order we can show the triangularity of the change of basis
matrix for abritrary Zinno bases:
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Vectors with parity conditions and lattice property

Application: bases of Temperley-Lieb algebras

Using this new order we can show the triangularity of the change of basis
matrix for abritrary Zinno bases:

Theorem

For any Coxeter element c ′, there exist inverse bijections

ψc′ : Wf → Pc′ , ϕc′ : Pc′ → Wf

such that
Zx = cxbϕc′(x)

+
∑

y∈Pc′

cy ,xbϕc′ (y)
,

where cx is invertible. Moreover,

cy ,x 6= 0 ⇒ y < x ,

where < is the order induced by V on Pc′ .
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