Noncrossing partitions and Bruhat order

Thomas Gobet

LAMFA, Université de Picardie Jules Verne, Amiens

Workshop "Non-crossing partitions in representation theory" Bielefeld, June 2014.

Motivation:bases of Temperley-Lieb algebras

Motivation:bases of Temperley-Lieb algebras

- Temperley-Lieb algebra $\mathrm{TL}_{n}=\mathrm{TL}_{n}\left(v+v^{-1}\right)$: associative, unital $\mathbb{Z}\left[v, v^{-1}\right]$-algebra.

Motivation:bases of Temperley-Lieb algebras

- Temperley-Lieb algebra $\mathrm{TL}_{n}=\mathrm{TL}_{n}\left(v+v^{-1}\right)$: associative, unital $\mathbb{Z}\left[v, v^{-1}\right]$-algebra.
- Basis of TL_{n} indexed by the set \mathcal{W}_{f} of fully commutative elements of \mathfrak{S}_{n+1}. We denote this basis by $\left\{b_{w}\right\}_{w \in \mathcal{W}_{f}}$.

$$
\Rightarrow \operatorname{dim}\left(\mathrm{TL}_{n}\right)=C_{n+1}=\frac{1}{n+2}\binom{2(n+1)}{n+1}
$$

Motivation:bases of Temperley-Lieb algebras

- Temperley-Lieb algebra $\mathrm{TL}_{n}=\mathrm{TL}_{n}\left(v+v^{-1}\right)$: associative, unital $\mathbb{Z}\left[v, v^{-1}\right]$-algebra.
- Basis of TL_{n} indexed by the set \mathcal{W}_{f} of fully commutative elements of \mathfrak{S}_{n+1}. We denote this basis by $\left\{b_{w}\right\}_{w \in \mathcal{W}_{f}}$.

$$
\Rightarrow \operatorname{dim}\left(\mathrm{TL}_{n}\right)=C_{n+1}=\frac{1}{n+2}\binom{2(n+1)}{n+1}
$$

\rightsquigarrow Diagram or Kazhdan - Lusztig basis.

Motivation:bases of Temperley-Lieb algebras

- Temperley-Lieb algebra $\mathrm{TL}_{n}=\mathrm{TL}_{n}\left(v+v^{-1}\right)$: associative, unital $\mathbb{Z}\left[v, v^{-1}\right]$-algebra.
- Basis of TL_{n} indexed by the set \mathcal{W}_{f} of fully commutative elements of \mathfrak{S}_{n+1}. We denote this basis by $\left\{b_{w}\right\}_{w \in \mathcal{W}_{f}}$.

$$
\Rightarrow \operatorname{dim}\left(\mathrm{TL}_{n}\right)=C_{n+1}=\frac{1}{n+2}\binom{2(n+1)}{n+1}
$$

\rightsquigarrow Diagram or Kazhdan - Lusztig basis.

- Multiplicative homomorphism

$$
B_{n+1} \rightarrow \mathrm{TL}_{n}
$$

where $B_{n+1}=$ braid group on $n+1$ strands.

Motivation:bases of Temperley-Lieb algebras

Motivation:bases of Temperley-Lieb algebras

Let $(\mathcal{W}, \mathcal{S})$ be a Coxeter system of type A_{n}, where $\mathcal{W}=\mathfrak{S}_{n+1}$, $\mathcal{S}=\left\{s_{i}=(i, i+1)\right\}_{i=1}^{n}$. Let c be any Coxeter element, i.e., any product of all the elements of \mathcal{S}. Let $\mathcal{T}=\bigcup_{w \in \mathcal{W}} w \mathcal{S} w^{-1}$ be the set of reflections.

Motivation:bases of Temperley-Lieb algebras

Let $(\mathcal{W}, \mathcal{S})$ be a Coxeter system of type A_{n}, where $\mathcal{W}=\mathfrak{S}_{n+1}$, $\mathcal{S}=\left\{s_{i}=(i, i+1)\right\}_{i=1}^{n}$. Let c be any Coxeter element, i.e., any product of all the elements of \mathcal{S}. Let $\mathcal{T}=\bigcup_{w \in \mathcal{W}} w \mathcal{S} w^{-1}$ be the set of reflections.

- Partial order $<_{\mathcal{T}}$ on $\mathcal{W}: u<_{\mathcal{T}} v$ if and only if

$$
\ell_{\mathcal{T}}(u)+\ell_{\mathcal{T}}\left(u^{-1} v\right)=\ell_{\mathcal{T}}(v),
$$

where $\ell_{\mathcal{T}}$ is the reflection or absolute length. The poset $\mathcal{P}_{c}=\{x<\mathcal{T} c\}$ is isomorphic to the lattice of noncrossing partitions.

Motivation:bases of Temperley-Lieb algebras

Let $(\mathcal{W}, \mathcal{S})$ be a Coxeter system of type A_{n}, where $\mathcal{W}=\mathfrak{S}_{n+1}$,
$\mathcal{S}=\left\{s_{i}=(i, i+1)\right\}_{i=1}^{n}$. Let c be any Coxeter element, i.e., any product of all the elements of \mathcal{S}. Let $\mathcal{T}=\bigcup_{w \in \mathcal{W}} w \mathcal{S} w^{-1}$ be the set of reflections.

- Partial order $<_{\mathcal{T}}$ on $\mathcal{W}: u<\mathcal{T} v$ if and only if

$$
\ell_{\mathcal{T}}(u)+\ell_{\mathcal{T}}\left(u^{-1} v\right)=\ell_{\mathcal{T}}(v),
$$

where $\ell_{\mathcal{T}}$ is the reflection or absolute length. The poset $\mathcal{P}_{c}=\{x<\mathcal{T} c\}$ is isomorphic to the lattice of noncrossing partitions.

- Dual braid monoid associated to $(\mathcal{W}, \mathcal{T}, c)$: it has one generator $i_{c}(t)$ per element t of \mathcal{T} and relations

$$
i_{c}(t) i_{c}\left(t^{\prime}\right)=i_{c}\left(t t^{\prime} t\right) i_{c}(t) \text { whenever } t t^{\prime}<_{\mathcal{T}} c
$$

called dual braid relations.

- Embedding

$$
B_{c}^{*} \hookrightarrow \operatorname{Frac}\left(B_{c}^{*}\right) \cong B_{n+1}=\text { braid group on } n+1 \text { strands. }
$$

- Embedding

$$
B_{c}^{*} \hookrightarrow \operatorname{Frac}\left(B_{c}^{*}\right) \cong B_{n+1}=\text { braid group on } n+1 \text { strands. }
$$

- For any $x<\mathcal{T} c$, consider a \mathcal{T}-reduced expression $t_{1} t_{2} \cdots t_{k}$ of x. Then

$$
i_{c}(x):=i_{c}\left(t_{1}\right) i_{c}\left(t_{2}\right) \cdots i_{c}\left(t_{k}\right)
$$

is independent of the choice of the \mathcal{T}-reduced expression.

- Embedding

$$
B_{c}^{*} \hookrightarrow \operatorname{Frac}\left(B_{c}^{*}\right) \cong B_{n+1}=\text { braid group on } n+1 \text { strands. }
$$

- For any $x<\mathcal{T} c$, consider a \mathcal{T}-reduced expression $t_{1} t_{2} \cdots t_{k}$ of x. Then

$$
i_{c}(x):=i_{c}\left(t_{1}\right) i_{c}\left(t_{2}\right) \cdots i_{c}\left(t_{k}\right)
$$

is independent of the choice of the \mathcal{T}-reduced expression.

- The set $\left\{i_{c}(x) \mid x<\mathcal{T} c\right\}$ is the set of simple elements of the dual braid monoid. It has Catalan enumeration
- Embedding

$$
B_{c}^{*} \hookrightarrow \operatorname{Frac}\left(B_{c}^{*}\right) \cong B_{n+1}=\text { braid group on } n+1 \text { strands. }
$$

- For any $x<\mathcal{T} c$, consider a \mathcal{T}-reduced expression $t_{1} t_{2} \cdots t_{k}$ of x. Then

$$
i_{c}(x):=i_{c}\left(t_{1}\right) i_{c}\left(t_{2}\right) \cdots i_{c}\left(t_{k}\right)
$$

is independent of the choice of the \mathcal{T}-reduced expression.

- The set $\left\{i_{c}(x) \mid x<\mathcal{T} c\right\}$ is the set of simple elements of the dual braid monoid. It has Catalan enumeration
\rightarrow IDEA (Zinno): map the simple elements to the Temperley-Lieb algebra via the composition

$$
\begin{gathered}
B_{c}^{*} \hookrightarrow B_{n+1} \rightarrow \mathrm{TL}_{n}, \\
i_{c}(x) \mapsto Z_{x} .
\end{gathered}
$$

- It turns out that in case $c=s_{1} s_{2} \cdots s_{n}$, the $\left\{Z_{x}\right\}_{x \in \mathcal{P}_{c}}$ is a set of linearly independent elements of TL_{n}, giving a basis of it=Zinno basis.
- It turns out that in case $c=s_{1} s_{2} \cdots s_{n}$, the $\left\{Z_{x}\right\}_{x \in \mathcal{P}_{c}}$ is a set of linearly independent elements of TL_{n}, giving a basis of it=Zinno basis.
- Zinno shows that there exists a total order on the set $\mathcal{P}_{c}:=\left\{x<_{\mathcal{T}} c\right\}$ and a bijection $a: \mathcal{P}_{c} \rightarrow \mathcal{W}_{f}$ such that if you endow \mathcal{W}_{f} with the order induced by a, then for $x \in \mathcal{P}_{c}$,

$$
Z_{x}=c_{x} b_{a(x)}+\sum_{y \in \mathcal{P}_{c}, y<x} c_{y, x} b_{a(y)}
$$

where c_{x} is invertible.

- It turns out that in case $c=s_{1} s_{2} \cdots s_{n}$, the $\left\{Z_{x}\right\}_{x \in \mathcal{P}_{c}}$ is a set of linearly independent elements of TL_{n}, giving a basis of it=Zinno basis.
- Zinno shows that there exists a total order on the set $\mathcal{P}_{c}:=\left\{x<_{\mathcal{T}} c\right\}$ and a bijection $a: \mathcal{P}_{c} \rightarrow \mathcal{W}_{f}$ such that if you endow \mathcal{W}_{f} with the order induced by a, then for $x \in \mathcal{P}_{c}$,

$$
Z_{x}=c_{x} b_{a(x)}+\sum_{y \in \mathcal{P}_{c}, y<x} c_{y, x} b_{a(y)}
$$

where c_{x} is invertible. From Zinno's work it is not difficult to see that

$$
c_{y, x} \neq 0 \Rightarrow y<_{\mathcal{S}} x
$$

where $<_{\mathcal{S}}$ is the restriction of the Bruhat order to \mathcal{P}_{c} !

- There is another proof that Z_{x} is a basis by Lee and Lee; however they don't prove triangularity. As shown by Vincenti, one can then derive a proof that we get a basis by mapping the simple elements of any dual braid monoid (that is, for any Coxeter element c) to the TL algebra.
- There is another proof that Z_{X} is a basis by Lee and Lee; however they don't prove triangularity. As shown by Vincenti, one can then derive a proof that we get a basis by mapping the simple elements of any dual braid monoid (that is, for any Coxeter element c) to the TL algebra.
- Digne made computations of the change of basis matrix for various n and various Coxeter elements. It seems that there still exist orders making the change of basis matrix upper triangular. Also, positivity phenomenons appear in the change of basis matrix.
- There is another proof that Z_{x} is a basis by Lee and Lee; however they don't prove triangularity. As shown by Vincenti, one can then derive a proof that we get a basis by mapping the simple elements of any dual braid monoid (that is, for any Coxeter element c) to the TL algebra.
- Digne made computations of the change of basis matrix for various n and various Coxeter elements. It seems that there still exist orders making the change of basis matrix upper triangular. Also, positivity phenomenons appear in the change of basis matrix.
- Question: It there a "general" explanation of these phenomenons (triangularity, positivity + preserved when changing the Coxeter element) by a nice categorification of the TL algebra?
- There is another proof that Z_{x} is a basis by Lee and Lee; however they don't prove triangularity. As shown by Vincenti, one can then derive a proof that we get a basis by mapping the simple elements of any dual braid monoid (that is, for any Coxeter element c) to the TL algebra.
- Digne made computations of the change of basis matrix for various n and various Coxeter elements. It seems that there still exist orders making the change of basis matrix upper triangular. Also, positivity phenomenons appear in the change of basis matrix.
- Question: It there a "general" explanation of these phenomenons (triangularity, positivity + preserved when changing the Coxeter element) by a nice categorification of the TL algebra? \rightarrow open problem.
- There is another proof that Z_{x} is a basis by Lee and Lee; however they don't prove triangularity. As shown by Vincenti, one can then derive a proof that we get a basis by mapping the simple elements of any dual braid monoid (that is, for any Coxeter element c) to the TL algebra.
- Digne made computations of the change of basis matrix for various n and various Coxeter elements. It seems that there still exist orders making the change of basis matrix upper triangular. Also, positivity phenomenons appear in the change of basis matrix.
- Question: It there a "general" explanation of these phenomenons (triangularity, positivity + preserved when changing the Coxeter element) by a nice categorification of the TL algebra? \rightarrow open problem. Or in case you have one, please inform me

However:

However:

- Positivity of the coefficients can be proven for some choices of Coxeter elements using positivity results in the Hecke algebra,

However:

- Positivity of the coefficients can be proven for some choices of Coxeter elements using positivity results in the Hecke algebra,
- There are explicit formulas for some of the coefficients in case $c=s_{1} s_{2} \cdots s_{n}$ but not for all and in general we don't even know exactly when they are nonzero,

However:

- Positivity of the coefficients can be proven for some choices of Coxeter elements using positivity results in the Hecke algebra,
- There are explicit formulas for some of the coefficients in case $c=s_{1} s_{2} \cdots s_{n}$ but not for all and in general we don't even know exactly when they are nonzero,
- Triangularity can be proven in general (that is, for arbitrary Coxeter elements). For this, we need to understand the Bruhat order on \mathcal{P}_{c} in case $c=s_{1} s_{2} \cdots s_{n}$ and understand the way of ordering the (generalized) Zinno basis for arbitrary Coxeter elements.

However:

- Positivity of the coefficients can be proven for some choices of Coxeter elements using positivity results in the Hecke algebra,
- There are explicit formulas for some of the coefficients in case $c=s_{1} s_{2} \cdots s_{n}$ but not for all and in general we don't even know exactly when they are nonzero,
- Triangularity can be proven in general (that is, for arbitrary Coxeter elements). For this, we need to understand the Bruhat order on \mathcal{P}_{c} in case $c=s_{1} s_{2} \cdots s_{n}$ and understand the way of ordering the (generalized) Zinno basis for arbitrary Coxeter elements. We will focuse on that point for today.

Bruhat order on noncrossing partitions, two examples

Bruhat order on noncrossing partitions, two examples

$$
c^{\prime}=s_{2} s_{1} s_{3}
$$

Bruhat order on noncrossing partitions, two examples

$c=s_{1} s_{2} s_{3}$

$$
c^{\prime}=s_{2} s_{1} s_{3}
$$

Bruhat order on noncrossing partitions, two examples

Bruhat order on noncrossing partitions, two examples

Bruhat order on noncrossing partitions, two examples

$c=s_{1} s_{2} s_{3}$

$c^{\prime}=s_{2} s_{1} s_{3}$

- Is it a general fact that for $c=s_{1} \cdots s_{n}$, the set of noncrossing partitions together with the restriction of the Bruhat order gives rise to the lattice structure coming from the root poset?
- Is it a general fact that for $c=s_{1} \cdots s_{n}$, the set of noncrossing partitions together with the restriction of the Bruhat order gives rise to the lattice structure coming from the root poset?
- If the answer is yes, why does it fail for other Coxeter elements? Is Bruhat order still the order to consider to prove triangularity of the change of basis matrix in the Temperley-Lieb algebras in case we change the Coxeter element?
- Is it a general fact that for $c=s_{1} \cdots s_{n}$, the set of noncrossing partitions together with the restriction of the Bruhat order gives rise to the lattice structure coming from the root poset?
- If the answer is yes, why does it fail for other Coxeter elements? Is Bruhat order still the order to consider to prove triangularity of the change of basis matrix in the Temperley-Lieb algebras in case we change the Coxeter element?

Standard forms

Let us assume that $c=s_{1} s_{2} \cdots s_{n}$. Noncrossing partitions are represented by disjoing unions of polygons having as vertices marked points on a circle:

Standard forms

Let us assume that $c=s_{1} s_{2} \cdots s_{n}$. Noncrossing partitions are represented by disjoing unions of polygons having as vertices marked points on a circle:

Geometric representation of the noncrossing partition $x=(1,6)(2,3,5)$. Here $n=5$. We represent a polygon by the ordered sequence of numbers indexing its vertices. In the example above, there are two polygons [16] and [235].

Standard forms

Standard forms

Let $x \in \mathcal{P}_{c}$. Consider any polygon $P=\left[i_{1} i_{2} \cdots i_{k}\right]$ occuring in the geometric representation of x. It corresponds to the cycle $y=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \mathcal{P}_{c}$. One has

$$
y=\left(i_{1}, i_{2}\right)\left(i_{2}, i_{3}\right) \cdots\left(i_{k-1}, i_{k}\right)
$$

Standard forms

Let $x \in \mathcal{P}_{c}$. Consider any polygon $P=\left[i_{1} i_{2} \cdots i_{k}\right]$ occuring in the geometric representation of x. It corresponds to the cycle $y=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \mathcal{P}_{c}$. One has

$$
y=\left(i_{1}, i_{2}\right)\left(i_{2}, i_{3}\right) \cdots\left(i_{k-1}, i_{k}\right)
$$

We then replace each transposition $\left(j, j^{\prime}\right), j<j^{\prime}$ in the product above by the Coxeter word

$$
\left[j, j^{\prime}\right]:=s_{j^{\prime}-1} s_{j^{\prime}-2} \cdots s_{j+1} s_{j} s_{j+1} \cdots s_{j^{\prime}-2} s_{j^{\prime}-1}
$$

and denote by m_{y} the obtained Coxeter word.

Standard forms

Let $x \in \mathcal{P}_{c}$. Consider any polygon $P=\left[i_{1} i_{2} \cdots i_{k}\right]$ occuring in the geometric representation of x. It corresponds to the cycle $y=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \mathcal{P}_{c}$. One has

$$
y=\left(i_{1}, i_{2}\right)\left(i_{2}, i_{3}\right) \cdots\left(i_{k-1}, i_{k}\right)
$$

We then replace each transposition $\left(j, j^{\prime}\right), j<j^{\prime}$ in the product above by the Coxeter word

$$
\left[j, j^{\prime}\right]:=s_{j^{\prime}-1} s_{j^{\prime}-2} \cdots s_{j+1} s_{j} s_{j+1} \cdots s_{j^{\prime}-2} s_{j^{\prime}-1}
$$

and denote by m_{y} the obtained Coxeter word. This is the standard form of $y \in \mathcal{P}_{c}$. The various subwords $\left[d_{i_{1}}, d_{i_{2}}\right], \ldots,\left[d_{i_{k-1}}, d_{i_{k}}\right]$ are called the syllables of m_{y}.

Standard forms

Let $x \in \mathcal{P}_{c}$. Consider any polygon $P=\left[i_{1} i_{2} \cdots i_{k}\right]$ occuring in the geometric representation of x. It corresponds to the cycle $y=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \mathcal{P}_{c}$. One has

$$
y=\left(i_{1}, i_{2}\right)\left(i_{2}, i_{3}\right) \cdots\left(i_{k-1}, i_{k}\right)
$$

We then replace each transposition $\left(j, j^{\prime}\right), j<j^{\prime}$ in the product above by the Coxeter word

$$
\left[j, j^{\prime}\right]:=s_{j^{\prime}-1} s_{j^{\prime}-2} \cdots s_{j+1} s_{j} s_{j+1} \cdots s_{j^{\prime}-2} s_{j^{\prime}-1}
$$

and denote by m_{y} the obtained Coxeter word. This is the standard form of $y \in \mathcal{P}_{c}$. The various subwords $\left[d_{i_{1}}, d_{i_{2}}\right], \ldots,\left[d_{i_{k-1}}, d_{i_{k}}\right]$ are called the syllables of m_{y}. Now if we order the polygons of x by ascending order of their maximal index and concatenate the standard forms of the various associated elements in this order, we obtain the standard form m_{x} of x.

Example

Let $x=(1,6)(2,3,5), n=5$. Let $P_{1}=[235], P_{2}=[16]$. Let $y_{1}=(2,3,5), y_{2}=(1,6)$. The standard form of y_{1} is $s_{2} s_{4} s_{3} s_{4}$. The standard form of y_{2} is $s_{5} s_{4} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{5}$.

Example

Let $x=(1,6)(2,3,5), n=5$. Let $P_{1}=[235], P_{2}=[16]$. Let $y_{1}=(2,3,5), y_{2}=(1,6)$. The standard form of y_{1} is $s_{2} s_{4} s_{3} s_{4}$. The standard form of y_{2} is $s_{5} s_{4} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{5}$. Hence the standard form of x is

$$
m_{x}=\underbrace{s_{2} S_{4} S_{3} S_{4}}_{m_{y_{1}}} \underbrace{S_{5} S_{4} S_{3} S_{2} S_{1} S_{2} S_{3} S_{4} S_{5}}_{m_{y_{2}}}
$$

Example

Let $x=(1,6)(2,3,5), n=5$. Let $P_{1}=[235], P_{2}=[16]$. Let $y_{1}=(2,3,5), y_{2}=(1,6)$. The standard form of y_{1} is $s_{2} s_{4} s_{3} s_{4}$. The standard form of y_{2} is $s_{5} s_{4} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{5}$. Hence the standard form of x is

We associate to x a vector $v_{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\left(\mathbb{Z}_{\geq 0}\right)^{n}$ having as i-th component x_{i} the number of occurrences of s_{i} in m_{x}.

Example

Let $x=(1,6)(2,3,5), n=5$. Let $P_{1}=[235], P_{2}=[16]$. Let $y_{1}=(2,3,5), y_{2}=(1,6)$. The standard form of y_{1} is $s_{2} s_{4} s_{3} s_{4}$. The standard form of y_{2} is $s_{5} s_{4} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{5}$. Hence the standard form of x is

$$
m_{x}=\underbrace{s_{2} S_{4} S_{3} S_{4}}_{m_{y_{1}}} \underbrace{s_{5} S_{4} S_{3} S_{2} s_{1} s_{2} S_{3} S_{4} S_{5}}_{m_{y_{2}}}
$$

We associate to x a vector $v_{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\left(\mathbb{Z}_{\geq 0}\right)^{n}$ having as i-th component x_{i} the number of occurrences of s_{i} in m_{x}. For x as in the example above we have

$$
v_{x}=(1,3,3,4,2) .
$$

Consider the set \mathcal{V} of tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ with the following properties:

Consider the set \mathcal{V} of tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ with the following properties:

- The first nonzero component of $\left(x_{1}, \ldots, x_{n}\right)$ is equal to 1 ,

Consider the set \mathcal{V} of tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ with the following properties:

- The first nonzero component of $\left(x_{1}, \ldots, x_{n}\right)$ is equal to 1 ,
- The last nonzero component of $\left(x_{1}, \ldots, x_{n}\right)$ is equal to 1 or 2 ,

Consider the set \mathcal{V} of tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ with the following properties:

- The first nonzero component of $\left(x_{1}, \ldots, x_{n}\right)$ is equal to 1 ,
- The last nonzero component of $\left(x_{1}, \ldots, x_{n}\right)$ is equal to 1 or 2 ,
- We have the following conditions on the differences $x_{k+1}-x_{k}$, for each $1 \leq k<n$:

$x_{m+1}-x_{m}$	x_{m+1} even	x_{m+1} odd
x_{m} even	-2 or 0	1 or -1
x_{m} odd	1 or -1	2 or 0

Consider the set \mathcal{V} of tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ with the following properties:

- The first nonzero component of $\left(x_{1}, \ldots, x_{n}\right)$ is equal to 1 ,
- The last nonzero component of $\left(x_{1}, \ldots, x_{n}\right)$ is equal to 1 or 2 ,
- We have the following conditions on the differences $x_{k+1}-x_{k}$, for each $1 \leq k<n$:

$x_{m+1}-x_{m}$	x_{m+1} even	x_{m+1} odd
x_{m} even	-2 or 0	1 or -1
x_{m} odd	1 or -1	2 or 0

Example
If $n=2$, one has $\mathcal{V}=\{(0,0),(1,0),(0,1),(1,1),(1,2)\}$.

Example
If $n=3$, one has
$\mathcal{V}=\{(0,0,0),(1,0,0),(0,1,0)$,
$(0,0,1),(1,1,0),(1,0,1),(0,1,1)$,
$(1,1,1),(1,2,0),(0,1,2),(1,2,1)$,
$(1,1,2),(1,2,2),(1,3,2)\}$.

Example

If $n=3$, one has
$\mathcal{V}=\{(0,0,0),(1,0,0),(0,1,0)$,
$(0,0,1),(1,1,0),(1,0,1),(0,1,1)$,
$(1,1,1),(1,2,0),(0,1,2),(1,2,1)$,
$(1,1,2),(1,2,2),(1,3,2)\}$.
We order \mathcal{V} in the following way: let $\left(x_{1}, \ldots, x_{n}\right),\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{V}$. Then

$$
\left(x_{1}, \ldots, x_{n}\right)<\left(w_{1}, \ldots, w_{n}\right)
$$

if for each $1 \leq i \leq n$, one has

$$
x_{i} \leq w_{i} .
$$

Example

Hasse diagram of $(\mathcal{V},<)$ for $n=3$:
If $n=3$, one has
$\mathcal{V}=\{(0,0,0),(1,0,0),(0,1,0)$,
$(0,0,1),(1,1,0),(1,0,1),(0,1,1)$,
$(1,1,1),(1,2,0),(0,1,2),(1,2,1)$,
$(1,1,2),(1,2,2),(1,3,2)\}$.
We order \mathcal{V} in the following way: let $\left(x_{1}, \ldots, x_{n}\right),\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{V}$. Then

$$
\left(x_{1}, \ldots, x_{n}\right)<\left(w_{1}, \ldots, w_{n}\right)
$$

if for each $1 \leq i \leq n$, one has

$$
x_{i} \leq w_{i}
$$

Example

Hasse diagram of $(\mathcal{V},<)$ for $n=3$:
If $n=3$, one has
$\mathcal{V}=\{(0,0,0),(1,0,0),(0,1,0)$,
$(0,0,1),(1,1,0),(1,0,1),(0,1,1)$, $(1,1,1),(1,2,0),(0,1,2),(1,2,1)$, $(1,1,2),(1,2,2),(1,3,2)\}$.

We order \mathcal{V} in the following way: let $\left(x_{1}, \ldots, x_{n}\right),\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{V}$. Then

$$
\left(x_{1}, \ldots, x_{n}\right)<\left(w_{1}, \ldots, w_{n}\right)
$$

if for each $1 \leq i \leq n$, one has

$$
x_{i} \leq w_{i}
$$

The criterion

We denote by $<_{\mathcal{S}}$ the Bruhat order on $\mathcal{P}_{\mathcal{C}}$

The criterion

We denote by $<_{\mathcal{S}}$ the Bruhat order on $\mathcal{P}_{\mathcal{C}}$
Theorem
The map $\left(\mathcal{P}_{c},<\mathcal{S}\right) \rightarrow(\mathcal{V},<)$ defined by

$$
x \mapsto v_{x}
$$

is an isomorphism of posets. That is, for $x, y \in \mathcal{P}_{c}$, we have

$$
x<\mathcal{S} y \text { if and only if } \forall i, x_{i} \leq y_{i} .
$$

The criterion

We denote by $<_{\mathcal{S}}$ the Bruhat order on $\mathcal{P}_{\mathcal{C}}$
Theorem
The map $\left(\mathcal{P}_{c},<\mathcal{S}\right) \rightarrow(\mathcal{V},<)$ defined by

$$
x \mapsto v_{x}
$$

is an isomorphism of posets. That is, for $x, y \in \mathcal{P}_{c}$, we have

$$
x<\mathcal{S} y \text { if and only if } \forall i, x_{i} \leq y_{i} .
$$

Lemma
The poset $(\mathcal{V},<)$ is a lattice.

The criterion

We denote by $<_{\mathcal{S}}$ the Bruhat order on $\mathcal{P}_{\mathcal{C}}$
Theorem
The map $\left(\mathcal{P}_{c},<\mathcal{S}\right) \rightarrow(\mathcal{V},<)$ defined by

$$
x \mapsto v_{x}
$$

is an isomorphism of posets. That is, for $x, y \in \mathcal{P}_{c}$, we have

$$
x<\mathcal{S} y \text { if and only if } \forall i, x_{i} \leq y_{i} .
$$

Lemma

The poset $(\mathcal{V},<)$ is a lattice.
Corollary
The poset $\left(\mathcal{P}_{c},<_{\mathcal{S}}\right)$ is a lattice.

- Is it a general fact that for $c=s_{1} \cdots s_{n}$, the set of noncrossing partitions together with the restriction of the Bruhat order gives rise to the lattice structure coming from the root poset?
- If the answer is yes, why does it fail for other Coxeter elements? Is Bruhat order still the order to consider to prove triangularity of the change of basis matrix in the Temperley-Lieb algebras in case we change the Coxeter element?
- IDEA 1: the Coxeter element $c=s_{1} s_{2} \cdots s_{n}$ has a single \mathcal{S}-reduced expression, which fails for other Coxeter elements (except c^{-1}).
- IDEA 1: the Coxeter element $c=s_{1} s_{2} \cdots s_{n}$ has a single \mathcal{S}-reduced expression, which fails for other Coxeter elements (except c^{-1}).

One may then look outside type A, for example in type B. But the lattice property fails there.

- IDEA 1: the Coxeter element $c=s_{1} s_{2} \cdots s_{n}$ has a single \mathcal{S}-reduced expression, which fails for other Coxeter elements (except c^{-1}).

One may then look outside type A, for example in type B. But the lattice property fails there.

- IDEA 1: the Coxeter element $c=s_{1} s_{2} \cdots s_{n}$ has a single \mathcal{S}-reduced expression, which fails for other Coxeter elements (except c^{-1}).

One may then look outside type A, for example in type B. But the lattice property fails there.

- IDEA 2: any $x \in \mathcal{P}_{c}$ has a reduced \mathcal{T}-decomposition $t_{1} \cdots t_{k}$ where if you replace any t_{i} by an \mathcal{S}-reduced decomposition of t_{i}, you obtain an \mathcal{S}-reduced decomposition of x. It is exactly the process we used to build the "standard form" of x. Such a property fails for $c^{\prime} \neq c$.
- IDEA 1: the Coxeter element $c=s_{1} s_{2} \cdots s_{n}$ has a single \mathcal{S}-reduced expression, which fails for other Coxeter elements (except c^{-1}).

One may then look outside type A, for example in type B. But the lattice property fails there.

- IDEA 2: any $x \in \mathcal{P}_{c}$ has a reduced \mathcal{T}-decomposition $t_{1} \cdots t_{k}$ where if you replace any t_{i} by an \mathcal{S}-reduced decomposition of t_{i}, you obtain an \mathcal{S}-reduced decomposition of x. It is exactly the process we used to build the "standard form" of x. Such a property fails for $c^{\prime} \neq c$.

Standard forms (arbitrary Coxeter elements)

Let c^{\prime} be an arbitrary Coxeter element, $c=s_{1} s_{2} \cdots s_{n}$.

Standard forms (arbitrary Coxeter elements)

Let c^{\prime} be an arbitrary Coxeter element, $c=s_{1} s_{2} \cdots s_{n}$. Lemma Let $x^{\prime} \in \mathcal{P}_{c^{\prime}}$. Assume that $x^{\prime}=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a cycle. Consider $x \in \mathcal{P}_{c}$ represented by a single polygon having as vertices the points indexed by $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. There exists a word $m_{x^{\prime}}^{c^{\prime}}$ representing x^{\prime} in the Coxeter group and such that

Standard forms (arbitrary Coxeter elements)

Let c^{\prime} be an arbitrary Coxeter element, $c=s_{1} s_{2} \cdots s_{n}$. Lemma Let $x^{\prime} \in \mathcal{P}_{c^{\prime}}$. Assume that $x^{\prime}=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a cycle. Consider $x \in \mathcal{P}_{c}$ represented by a single polygon having as vertices the points indexed by $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. There exists a word $m_{x^{\prime}}^{c^{\prime}}$ representing x^{\prime} in the Coxeter group and such that

- the number of occurrences of s_{i} in $m_{x^{\prime}}^{c^{\prime}}$ is equal to $x_{i}, \forall i$,

Standard forms (arbitrary Coxeter elements)

Let c^{\prime} be an arbitrary Coxeter element, $c=s_{1} s_{2} \cdots s_{n}$. Lemma Let $x^{\prime} \in \mathcal{P}_{c^{\prime}}$. Assume that $x^{\prime}=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a cycle. Consider $x \in \mathcal{P}_{c}$ represented by a single polygon having as vertices the points indexed by $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. There exists a word $m_{x^{\prime}}^{c^{\prime}}$ representing x^{\prime} in the Coxeter group and such that

- the number of occurrences of s_{i} in $m_{x^{\prime}}^{c^{\prime}}$ is equal to $x_{i}, \forall i$,
- the word $m_{x^{\prime}}^{c^{\prime}}$ is an \mathcal{S}-reduced expression of x^{\prime},

Standard forms (arbitrary Coxeter elements)

Let c^{\prime} be an arbitrary Coxeter element, $c=s_{1} s_{2} \cdots s_{n}$. Lemma Let $x^{\prime} \in \mathcal{P}_{c^{\prime}}$. Assume that $x^{\prime}=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a cycle. Consider $x \in \mathcal{P}_{c}$ represented by a single polygon having as vertices the points indexed by $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. There exists a word $m_{x^{\prime}}^{c^{\prime}}$ representing x^{\prime} in the Coxeter group and such that

- the number of occurrences of s_{i} in $m_{x^{\prime}}^{c^{\prime}}$ is equal to $x_{i}, \forall i$,
- the word $m_{x^{\prime}}^{c^{\prime}}$ is an \mathcal{S}-reduced expression of x^{\prime},
- if $\left\{i_{1}, \ldots, i_{k}\right\}=\left\{d_{1}, \ldots, d_{k}\right\}$ where $d_{i}<d_{i+1}$, then $m_{x^{\prime}}^{c^{\prime}}$ is obtained by concatenating the syllables $\left[d_{i}, d_{i+1}\right]$ in some order (depending on c^{\prime}).

Standard forms (arbitrary Coxeter elements)

Let c^{\prime} be an arbitrary Coxeter element, $c=s_{1} s_{2} \cdots s_{n}$.

Lemma

Let $x^{\prime} \in \mathcal{P}_{c^{\prime}}$. Assume that $x^{\prime}=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a cycle. Consider $x \in \mathcal{P}_{c}$ represented by a single polygon having as vertices the points indexed by $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. There exists a word $m_{x^{\prime}}^{c^{\prime}}$ representing x^{\prime} in the Coxeter group and such that

- the number of occurrences of s_{i} in $m_{x^{\prime}}^{c^{\prime}}$ is equal to $x_{i}, \forall i$,
- the word $m_{x^{\prime}}^{c^{\prime}}$ is an \mathcal{S}-reduced expression of x^{\prime},
- if $\left\{i_{1}, \ldots, i_{k}\right\}=\left\{d_{1}, \ldots, d_{k}\right\}$ where $d_{i}<d_{i+1}$, then $m_{x^{\prime}}^{c^{\prime}}$ is obtained by concatenating the syllables $\left[d_{i}, d_{i+1}\right]$ in some order (depending on c^{\prime}).

Such a word $m_{x^{\prime}}^{c^{\prime}}$ is called a standard form of x^{\prime}. It is not unique in general (products of the words $\left[d_{i}, d_{i+1}\right]$ in different orders may yield words representing the same element of the Coxeter group). If $t \in \mathcal{T} \subset \mathcal{P}_{c} \cap \mathcal{P}_{c^{\prime}}$ we have $m_{t}=m_{t}^{c^{\prime}}$.

To summarize: if $x^{\prime} \in \mathcal{P}_{C^{\prime}}$ is a cycle, we can associate to x^{\prime} a tuple $v_{x^{\prime}}^{c^{\prime}}=\left(x_{1}^{\prime c^{\prime}}, \ldots, x_{n}^{\prime c^{\prime}}\right) \in \mathcal{V}$ where $x_{i}^{\prime c^{\prime}}$ is the number of occurrences of s_{i} in $m_{x^{\prime}}^{c^{\prime}}$.

To summarize: if $x^{\prime} \in \mathcal{P}_{C^{\prime}}$ is a cycle, we can associate to x^{\prime} a tuple $v_{x^{\prime}}^{c^{\prime}}=\left(x_{1}^{\prime c^{\prime}}, \ldots, x_{n}^{\prime c^{\prime}}\right) \in \mathcal{V}$ where $x_{i}^{\prime c^{\prime}}$ is the number of occurrences of s_{i} in $m_{x^{\prime}}^{c^{\prime}}$.

Example

To summarize: if $x^{\prime} \in \mathcal{P}_{c^{\prime}}$ is a cycle, we can associate to x^{\prime} a tuple $v_{x^{\prime}}^{c^{\prime}}=\left(x_{1}^{\prime c^{\prime}}, \ldots, x_{n}^{\prime c^{\prime}}\right) \in \mathcal{V}$ where $x_{i}^{\prime c^{\prime}}$ is the number of occurrences of s_{i} in $m_{x^{\prime}}^{c^{\prime}}$.

Example

$c^{\prime}=s_{2} s_{1} s_{3} s_{5} s_{4}=(1,3,4,6,5,2)$	$c=s_{1} s_{2} s_{3} s_{4} s_{5}$
$x^{\prime}=(1,3,6,2)=(2,3)(3,6)(2,1)$	$x=(1,2,3,6)=(1,2)(2,3)(3,6)$
$m_{x^{\prime}}^{c^{\prime}}=s_{2}\left(s_{5} s_{4} s_{3} s_{4} s_{5}\right) s_{1}$	$m_{x}=s_{1} s_{2}\left(s_{5} s_{4} s_{3} s_{4} s_{5}\right)$
$v_{x^{\prime}}^{c^{\prime}}=(1,1,1,2,2)$	$v_{x}=(1,1,1,2,2)$

The aim now is to associate a tuple $v_{x^{\prime}}^{c^{\prime}} \in \mathcal{V}$ to any $x^{\prime} \in \mathcal{P}_{c^{\prime}}$. In that case we decompose x^{\prime} into a product $y_{1} y_{2} \ldots y_{m}$ of disjoint cycles and define a standard form of x^{\prime} as the product

$$
m_{y_{1}}^{c^{\prime}} \cdots m_{y_{2}}^{c^{\prime}}
$$

Such a word will be called a standard form of x^{\prime}. Counting the number of simple reflections in it gives rise to a tuple $v_{x^{\prime}}^{c^{\prime}}$ but it is not clear that it lies in \mathcal{V}.

The aim now is to associate a tuple $v_{x^{\prime}}^{c^{\prime}} \in \mathcal{V}$ to any $x^{\prime} \in \mathcal{P}_{c^{\prime}}$. In that case we decompose x^{\prime} into a product $y_{1} y_{2} \ldots y_{m}$ of disjoint cycles and define a standard form of x^{\prime} as the product

$$
m_{y_{1}}^{c^{\prime}} \cdots m_{y_{2}}^{c^{\prime}}
$$

Such a word will be called a standard form of x^{\prime}. Counting the number of simple reflections in it gives rise to a tuple $v_{x^{\prime}}^{c^{\prime}}$ but it is not clear that it lies in \mathcal{V}. To prove that $v_{x^{\prime}}^{c^{\prime}} \in \mathcal{V}$ for any $x^{\prime} \in \mathcal{P}_{c^{\prime}}$, we first define a map $\mathcal{P}_{c^{\prime}} \rightarrow \mathcal{P}_{c}$.

Step 1: let $y_{i}=\left(i_{1}, \ldots, i_{k}\right)$ be any cycle in the decomposition of x^{\prime}. Write $\left\{i_{1}, \ldots, i_{k}\right\}=\left\{d_{1}, \ldots, d_{k}\right\}$ where $d_{j}<d_{j+1}$. We represent each y_{i} on a line with marked points from 1 to $n+1$ by arcs joining the point d_{j} to the point $d_{j+1}, j=1, \ldots, k-1$. The resulting diagram may have crossings.

Step 1: let $y_{i}=\left(i_{1}, \ldots, i_{k}\right)$ be any cycle in the decomposition of x^{\prime}. Write $\left\{i_{1}, \ldots, i_{k}\right\}=\left\{d_{1}, \ldots, d_{k}\right\}$ where $d_{j}<d_{j+1}$. We represent each y_{i} on a line with marked points from 1 to $n+1$ by arcs joining the point d_{j} to the point $d_{j+1}, j=1, \ldots, k-1$. The resulting diagram may have crossings.

Example

Let $c^{\prime}=s_{4} s_{3} s_{1} s_{2} s_{5}=(1,2,5,6,4,3)$ and $x^{\prime}=\underbrace{(2,5)}_{y_{1}} \underbrace{(1,6,3)}_{y_{2}}$. Then we represent x^{\prime} in the following way

Step 2: we resolve each crossing of the diagram.
Example

Step 2: we resolve each crossing of the diagram.
Example

Step 2: we resolve each crossing of the diagram.
Example

Step 2: we resolve each crossing of the diagram.
Example

Step 2: we resolve each crossing of the diagram.
Example

Step 2: we resolve each crossing of the diagram.
Example

Lemma

The geometrical process described above defines a bijective map
$\phi_{c^{\prime}, c}: \mathcal{P}_{c^{\prime}} \rightarrow \mathcal{P}_{c}$ which fixes the set of reflections. Moreover, one has that $x_{i}=x_{i}^{\prime c^{\prime}}$ for any $i \in\{1, \ldots, n\}$.

As a consequence,
Corollary
The map $\mathcal{P}_{c^{\prime}} \rightarrow \mathcal{V}, x^{\prime} \mapsto\left(x_{1}^{\prime c^{\prime}}, \ldots, x_{n}^{\prime c^{\prime}}\right)$ is a well-defined bijection.
We therefore can consider the order $<$ induced on $\mathcal{P}_{c^{\prime}}$ by the natural order on \mathcal{V}. In case $c^{\prime}=c$, this is the Bruhat order.

A new order on $\mathcal{P}_{c^{\prime}}$

Application: bases of Temperley-Lieb algebras

Application: bases of Temperley-Lieb algebras

Using this new order we can show the triangularity of the change of basis matrix for abritrary Zinno bases:

Application: bases of Temperley-Lieb algebras

Using this new order we can show the triangularity of the change of basis matrix for abritrary Zinno bases:

Theorem
For any Coxeter element c^{\prime}, there exist inverse bijections

$$
\psi_{c^{\prime}}: \mathcal{W}_{f} \rightarrow \mathcal{P}_{c^{\prime}}, \varphi_{c^{\prime}}: \mathcal{P}_{c^{\prime}} \rightarrow \mathcal{W}_{f}
$$

such that

$$
Z_{x}=c_{x} b_{\varphi_{c^{\prime}}(x)}+\sum_{y \in \mathcal{P}_{c^{\prime}}} c_{y, x} b_{\varphi_{c^{\prime}}(y)}
$$

where c_{x} is invertible. Moreover,

$$
c_{y, x} \neq 0 \Rightarrow y<x,
$$

where $<$ is the order induced by \mathcal{V} on $\mathcal{P}_{c^{\prime}}$.

