On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups
and Artin groups

joint with B. Baumeister
Institut Elie Cartan de Lorraine, Nancy

Winterbraids VII, Caen, 2nd March 2017

Coxeter groups and their Artin-Tits groups

On simple dual

 braids and Mikado braids of type D_{n}Thomas Gobet

Coxeter groups

 and Artin groupsMikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Coxeter groups and their Artin-Tits groups

- Let (W, S) be a Coxeter system, i.e., W is a group generated by $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with a presentation

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet
Coxeter groups and Artin groups

Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Coxeter groups and their Artin-Tits groups

- Let (W, S) be a Coxeter system, i.e., W is a group generated by $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with a presentation

$$
W=\left\langle s_{1}, \ldots, s_{n}\right| s_{i}^{2}=e, \underbrace{s_{i} s_{j} \cdots}_{m_{i j} \text { copies }}=\underbrace{s_{j} s_{i} \cdots}_{m_{j i} \text { copies }} \text { if } i \neq j\rangle,
$$

where $m_{i j}=m_{j i} \in\{2,3, \ldots\} \cup\{\infty\}$.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups

and Artin groups
Mikado braids

Dual braid

 monoidsSimple dual braids
Simple dual braids are Mikado braids

Coxeter groups and their Artin-Tits groups

- Let (W, S) be a Coxeter system, i.e., W is a group generated by $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with a presentation

$$
W=\left\langle s_{1}, \ldots, s_{n}\right| s_{i}^{2}=e, \underbrace{s_{i} s_{j} \cdots}_{m_{i j} \text { copies }}=\underbrace{s_{j} s_{i} \cdots}_{m_{j i} \text { copies }} \text { if } i \neq j\rangle,
$$

where $m_{i j}=m_{j i} \in\{2,3, \ldots\} \cup\{\infty\}$.

- Denote by $\ell: W \rightarrow \mathbb{Z}_{\geq 0}$ the length function wrt the generating set S.

Coxeter groups

and Artin groups
Mikado braids

Dual braid

 monoidsSimple dual braids
Simple dual braids are Mikado braids

Coxeter groups and their Artin-Tits groups

- Let (W, S) be a Coxeter system, i.e., W is a group generated by $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with a presentation

$$
W=\left\langle s_{1}, \ldots, s_{n}\right| s_{i}^{2}=e, \underbrace{s_{i} s_{j} \cdots}_{m_{i j} \text { copies }}=\underbrace{s_{j} s_{i} \cdots}_{m_{j i} \text { copies }} \text { if } i \neq j\rangle,
$$

where $m_{i j}=m_{j i} \in\{2,3, \ldots\} \cup\{\infty\}$.

- Denote by $\ell: W \rightarrow \mathbb{Z}_{\geq 0}$ the length function wrt the generating set S.
- Let $B(W)=B(W, S)$ be the Artin-Tits group attached to (W, S), that is, $B(W)$ is generated by a copy $\left\{\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right\}$ of the elements of S and has a presentation

Coxeter groups and their Artin-Tits groups

- Let (W, S) be a Coxeter system, i.e., W is a group generated by $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with a presentation

$$
W=\left\langle s_{1}, \ldots, s_{n}\right| s_{i}^{2}=e, \underbrace{s_{i} s_{j} \cdots}_{m_{i j} \text { copies }}=\underbrace{s_{j} s_{i} \cdots}_{m_{j i} \text { copies }} \text { if } i \neq j\rangle,
$$

where $m_{i j}=m_{j i} \in\{2,3, \ldots\} \cup\{\infty\}$.

- Denote by $\ell: W \rightarrow \mathbb{Z}_{\geq 0}$ the length function wrt the generating set S.
- Let $B(W)=B(W, S)$ be the Artin-Tits group attached to (W, S), that is, $B(W)$ is generated by a copy $\left\{\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right\}$ of the elements of S and has a presentation

$$
B(W)=\left\langle\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right| \underbrace{\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{j}} \cdots}_{m_{i j} \text { copies }}=\underbrace{\mathbf{s}_{\mathbf{j}} \mathbf{s}_{\mathbf{i}} \cdots}_{m_{j i} \text { copies }} \text { if } i \neq j\rangle
$$

Coxeter groups and their Artin-Tits groups

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Example

Coxeter groups and Artin groups

Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Some questions

Coxeter groups and their Artin-Tits groups

Example

- The symmetric group $W=\mathfrak{S}_{n}$ is a Coxeter group with $S=\left\{s_{i}=(i, i+1) \mid i=1, \ldots, n-1\right\}, m_{i j}=3$ if $|i-j|=1, m_{i j}=2$ if $|i-j|>1$.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups and Artin groups

Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Coxeter groups and their Artin-Tits groups

Example

- The symmetric group $W=\mathfrak{S}_{n}$ is a Coxeter group with $S=\left\{s_{i}=(i, i+1) \mid i=1, \ldots, n-1\right\}, m_{i j}=3$ if $|i-j|=1, m_{i j}=2$ if $|i-j|>1$.
- The corresponding Artin-Tits group $B(W)$ is the Artin braid group \mathcal{B}_{n} on n strands.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups and Artin groups

Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Coxeter groups and their Artin-Tits groups

Example

- The symmetric group $W=\mathfrak{S}_{n}$ is a Coxeter group with $S=\left\{s_{i}=(i, i+1) \mid i=1, \ldots, n-1\right\}, m_{i j}=3$ if $|i-j|=1, m_{i j}=2$ if $|i-j|>1$.
- The corresponding Artin-Tits group $B(W)$ is the Artin braid group \mathcal{B}_{n} on n strands.

Coxeter groups and their Artin-Tits groups

Example

- The symmetric group $W=\mathfrak{S}_{n}$ is a Coxeter group with $S=\left\{s_{i}=(i, i+1) \mid i=1, \ldots, n-1\right\}, m_{i j}=3$ if $|i-j|=1, m_{i j}=2$ if $|i-j|>1$.
- The corresponding Artin-Tits group $B(W)$ is the Artin braid group \mathcal{B}_{n} on n strands.

- For $w=s_{1} s_{2} \cdots s_{k} \in W$ with $\ell(w)=k$, the lift $\mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \cdots \mathbf{s}_{\mathbf{k}}$ in $B(W)$ is well-defined and denoted by \mathbf{w}.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Mikado braids

On simple dual braids and Mikado braids of type D_{n}
 Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Some questions
\square

Mikado braids

Definition

Let (W, S) be a finite Coxeter system. An element $\beta \in B(W)$ is a Mikado braid if it exists $x, y \in W$ such that $\beta=\mathbf{x}^{-1} \mathbf{y}$. Equivalently, if it exists $x, y \in W$ such that $\beta=\mathbf{x y}^{-1}$. We denote by $\operatorname{Mik}(W)$ the set of Mikado braids in $B(W)$.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Mikado braids

Definition

Let (W, S) be a finite Coxeter system. An element $\beta \in B(W)$ is a Mikado braid if it exists $x, y \in W$ such that $\beta=\mathbf{x}^{-1} \mathbf{y}$. Equivalently, if it exists $x, y \in W$ such that $\beta=\mathbf{x y}^{-1}$. We denote by $\operatorname{Mik}(W)$ the set of Mikado braids in $B(W)$.

- These braids appeared in work of Dehornoy (1999) and Dyer (unpublished).

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups and Artin groups

Mikado braids

Definition

Let (W, S) be a finite Coxeter system. An element $\beta \in B(W)$ is a Mikado braid if it exists $x, y \in W$ such that $\beta=\mathbf{x}^{-1} \mathbf{y}$. Equivalently, if it exists $x, y \in W$ such that $\beta=\mathbf{x y}^{-1}$. We denote by $\operatorname{Mik}(W)$ the set of Mikado braids in $B(W)$.

- These braids appeared in work of Dehornoy (1999) and Dyer (unpublished).
- There is a definition of Mikado braids for arbitrary Coxeter systems, which requires root systems.

Mikado braids

Definition

Let (W, S) be a finite Coxeter system. An element $\beta \in B(W)$ is a Mikado braid if it exists $x, y \in W$ such that $\beta=\mathbf{x}^{-1} \mathbf{y}$. Equivalently, if it exists $x, y \in W$ such that $\beta=\mathbf{x y}^{-1}$. We denote by $\operatorname{Mik}(W)$ the set of Mikado braids in $B(W)$.

- These braids appeared in work of Dehornoy (1999) and Dyer (unpublished).
- There is a definition of Mikado braids for arbitrary Coxeter systems, which requires root systems.
- In \mathcal{B}_{n}, a braid is a Mikado braid iff it has a braid diagram where one can inductively remove a strand which lies above all the other strands.

Mikado braids

Definition

Let (W, S) be a finite Coxeter system. An element $\beta \in B(W)$ is a Mikado braid if it exists $x, y \in W$ such that $\beta=\mathbf{x}^{-1} \mathbf{y}$. Equivalently, if it exists $x, y \in W$ such that $\beta=\mathbf{x y}^{-1}$. We denote by $\operatorname{Mik}(W)$ the set of Mikado braids in $B(W)$.

- These braids appeared in work of Dehornoy (1999) and Dyer (unpublished).
- There is a definition of Mikado braids for arbitrary Coxeter systems, which requires root systems.
- In \mathcal{B}_{n}, a braid is a Mikado braid iff it has a braid diagram where one can inductively remove a strand which lies above all the other strands.
- Mikado braids have nice categorifications in Rouquier's 2-braid group. The images of these braids in the Hecke algebra of the Coxeter system satisfy nice positivity properties.

Simple dual braids

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids
are Mikado braids
Some questions

Simple dual braids

- Let $T=\bigcup_{w \in W} w S w^{-1}$ (the reflections of W).

Consider the length function $\ell_{T}: W \longrightarrow \mathbb{Z}_{\geq 0}$ wrt to T.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups

and Artin groups
Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Simple dual braids

- Let $T=\bigcup_{w \in W} w S w^{-1}$ (the reflections of W).

Consider the length function $\ell_{T}: W \longrightarrow \mathbb{Z}_{\geq 0}$ wrt to T. Let c be a Coxeter element in W, i.e., a product of all the elements of S in some order.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Simple dual braids

- Let $T=\bigcup_{w \in W} w S w^{-1}$ (the reflections of W).

Consider the length function $\ell_{T}: W \longrightarrow \mathbb{Z}_{\geq 0}$ wrt to T. Let c be a Coxeter element in W, i.e., a product of all the elements of S in some order. Define

$$
P_{c}:=\left\{x \in W \mid \ell_{T}(x)+\ell_{T}\left(x^{-1} c\right)=\ell_{T}(c)\right\}
$$

Simple dual braids

- Let $T=\bigcup_{w \in W} w S w^{-1}$ (the reflections of W). Consider the length function $\ell_{T}: W \longrightarrow \mathbb{Z}_{\geq 0}$ wrt to T. Let c be a Coxeter element in W, i.e., a product of all the elements of S in some order. Define

$$
P_{c}:=\left\{x \in W \mid \ell_{T}(x)+\ell_{T}\left(x^{-1} c\right)=\ell_{T}(c)\right\} .
$$

- (Bessis) The dual braid monoid B_{c}^{*} associated to (W, T, c) is generated by a copy $\left\{i_{c}(t) \mid t \in T\right\}$ of the elements of T with the relations:

Simple dual braids

- Let $T=\bigcup_{w \in W} w S w^{-1}$ (the reflections of W).

Consider the length function $\ell_{T}: W \longrightarrow \mathbb{Z}_{\geq 0}$ wrt to T. Let c be a Coxeter element in W, i.e., a product of all the elements of S in some order. Define

$$
P_{c}:=\left\{x \in W \mid \ell_{T}(x)+\ell_{T}\left(x^{-1} c\right)=\ell_{T}(c)\right\} .
$$

- (Bessis) The dual braid monoid B_{c}^{*} associated to (W, T, c) is generated by a copy $\left\{i_{c}(t) \mid t \in T\right\}$ of the elements of T with the relations:

$$
\left.B_{c}^{*}=\left\langle i_{c}(t)\right| i_{c}(t) i_{c}\left(t^{\prime}\right)=i_{c}\left(t^{\prime}\right) i_{c}\left(t^{\prime} t t^{\prime}\right) \text { if } t t^{\prime} \in P_{c}\right\rangle_{\text {mon }}
$$

Simple dual braids

- Let $T=\bigcup_{w \in W} w S w^{-1}$ (the reflections of W).

Consider the length function $\ell_{T}: W \longrightarrow \mathbb{Z}_{\geq 0}$ wrt to T. Let c be a Coxeter element in W, i.e., a product of all the elements of S in some order. Define

$$
P_{c}:=\left\{x \in W \mid \ell_{T}(x)+\ell_{T}\left(x^{-1} c\right)=\ell_{T}(c)\right\} .
$$

- (Bessis) The dual braid monoid B_{c}^{*} associated to (W, T, c) is generated by a copy $\left\{i_{c}(t) \mid t \in T\right\}$ of the elements of T with the relations:

$$
\left.B_{c}^{*}=\left\langle i_{c}(t)\right| i_{c}(t) i_{c}\left(t^{\prime}\right)=i_{c}\left(t^{\prime}\right) i_{c}\left(t^{\prime} t t^{\prime}\right) \text { if } t t^{\prime} \in P_{c}\right\rangle_{\text {mon }}
$$

- One can show that $B_{c}^{*} \hookrightarrow \operatorname{Frac}\left(B_{c}^{*}\right) \cong B(W)$ and that B_{c}^{*} is a Garside monoid. The image of $i_{c}(s)$ in $B(W)$ is \mathbf{s} for all $s \in S$. It is difficult in general to have formulas for elements $i_{c}(t), t \in T \backslash\{S\}$ in the classical Artin generators.

Example: the Birman-Ko-Lee braid monoid

- Let $W=\mathfrak{S}_{n}$.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups

and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Example: the Birman-Ko-Lee braid monoid

- Let $W=\mathfrak{S}_{n}$. Then T is the set $\{(i, j) \mid 1 \leq i<j \leq n\}$ of transpositions.

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups

and Artin groups
Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Example: the Birman-Ko-Lee braid monoid

- Let $W=\mathfrak{S}_{n}$. Then T is the set $\{(i, j) \mid 1 \leq i<j \leq n\}$ of transpositions. Let $c=s_{1} s_{2} \cdots s_{n-1}=(12 \cdots n)$. Then B_{c}^{*} is isomorphic to the Birman-Ko-Lee braid monoid (1998). If $t=(i, j) \in T$ with $i<j$, then $i_{c}(t)$ is represented inside $B(W) \cong \mathcal{B}_{n}$ by the braid

Example: the Birman-Ko-Lee braid monoid

- Let $W=\mathfrak{S}_{n}$. Then T is the set $\{(i, j) \mid 1 \leq i<j \leq n\}$ of transpositions. Let $c=s_{1} s_{2} \cdots s_{n-1}=(12 \cdots n)$. Then B_{c}^{*} is isomorphic to the Birman-Ko-Lee braid monoid (1998). If $t=(i, j) \in T$ with $i<j$, then $i_{c}(t)$ is represented inside $B(W) \cong \mathcal{B}_{n}$ by the braid

Figure 1: The Birman-Ko-Lee generator corresponding to the transposition (i, j).

Simple dual braids

On simple dual braids and Mikado braids of type D_{n}
Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids
are Mikado braids
Some questions

Simple dual braids

- As a Garside monoid, B_{c}^{*} has a set of simple elements. They are in one-to-one correspondence with P_{c} and can be described combinatorially as follows (Bessis, 2004).

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Simple dual braids

- As a Garside monoid, B_{c}^{*} has a set of simple elements. They are in one-to-one correspondence with P_{c} and can be described combinatorially as follows (Bessis, 2004). Let $x \in P_{c}$ with T-reduced expression $t_{1} t_{2} \cdots t_{k}$. The simple element corresponding to x is given by $i_{c}\left(t_{1}\right) i_{c}\left(t_{2}\right) \cdots i_{c}\left(t_{k}\right)$. It is independent of the chosen T-reduced expression and is therefore denoted by $i_{c}(x)$. Set $\mathbf{D}_{c}:=\left\{i_{c}(x) \mid x \in P_{c}\right\}$.

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Simple dual braids

- As a Garside monoid, B_{c}^{*} has a set of simple elements. They are in one-to-one correspondence with P_{c} and can be described combinatorially as follows (Bessis, 2004). Let $x \in P_{c}$ with T-reduced expression $t_{1} t_{2} \cdots t_{k}$. The simple element corresponding to x is given by $i_{c}\left(t_{1}\right) i_{c}\left(t_{2}\right) \cdots i_{c}\left(t_{k}\right)$. It is independent of the chosen T-reduced expression and is therefore denoted by $i_{c}(x)$. Set $\mathbf{D}_{c}:=\left\{i_{c}(x) \mid x \in P_{c}\right\}$. Then if \leq denotes the (left) divisibility order on B_{c}^{*}, we have that

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

$$
\left(\mathbf{D}_{c}, \leq\right) \cong\left(P_{c}, \leq_{T}\right)
$$

as posets, where $u \leq_{T} v$ iff $\ell_{T}(u)+\ell_{T}\left(u^{-1} v\right)=\ell_{T}(v)$.

Simple dual braids

- As a Garside monoid, B_{c}^{*} has a set of simple elements. They are in one-to-one correspondence with P_{c} and can be described combinatorially as follows (Bessis, 2004). Let $x \in P_{c}$ with T-reduced expression $t_{1} t_{2} \cdots t_{k}$. The simple element corresponding to x is given by $i_{c}\left(t_{1}\right) i_{c}\left(t_{2}\right) \cdots i_{c}\left(t_{k}\right)$. It is independent of the chosen T-reduced expression and is therefore denoted by $i_{c}(x)$. Set $\mathbf{D}_{c}:=\left\{i_{c}(x) \mid x \in P_{c}\right\}$. Then if \leq denotes the (left) divisibility order on B_{c}^{*}, we have that

$$
\left(\mathbf{D}_{c}, \leq\right) \cong\left(P_{c}, \leq_{T}\right)
$$

as posets, where $u \leq_{T} v$ iff $\ell_{T}(u)+\ell_{T}\left(u^{-1} v\right)=\ell_{T}(v)$. The poset on the right is the lattice of noncrossing partitions of c. In particular, noncrossing partitions provide a combinatorial model for studying simple dual braids.

Simple dual braids

- As a Garside monoid, B_{c}^{*} has a set of simple elements. They are in one-to-one correspondence with P_{c} and can be described combinatorially as follows (Bessis, 2004). Let $x \in P_{c}$ with T-reduced expression $t_{1} t_{2} \cdots t_{k}$. The simple element corresponding to x is given by $i_{c}\left(t_{1}\right) i_{c}\left(t_{2}\right) \cdots i_{c}\left(t_{k}\right)$. It is independent of the chosen T-reduced expression and is therefore denoted by $i_{c}(x)$. Set $\mathbf{D}_{c}:=\left\{i_{c}(x) \mid x \in P_{c}\right\}$. Then if \leq denotes the (left) divisibility order on B_{c}^{*}, we have that

$$
\left(\mathbf{D}_{c}, \leq\right) \cong\left(P_{c}, \leq_{T}\right)
$$

as posets, where $u \leq_{T} v$ iff $\ell_{T}(u)+\ell_{T}\left(u^{-1} v\right)=\ell_{T}(v)$. The poset on the right is the lattice of noncrossing partitions of c. In particular, noncrossing partitions provide a combinatorial model for studying simple dual braids.

- We call the elements of \mathbf{D}_{c} the simple dual braids.

Coxeter groups
and Artin groups
Mikado braids

Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Example: Birman-Ko-Lee braid monoid

On simple dual

 braids and Mikado braids of type D_{n}Thomas Gobet

Coxeter groups

and Artin groups
Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Example: Birman-Ko-Lee braid monoid

On simple dual braids and Mikado braids of type D_{n}

- Assume again that W has type A_{n}. Then for any Coxeter element c, the monoid B_{c}^{*} is isomorphic to the Birman-Ko-Lee braid monoid. Simple elements may be represented by noncrossing partitions (wrt the chosen Coxeter element c) and vice-versa.

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Example: Birman-Ko-Lee braid monoid

- Assume again that W has type A_{n}. Then for any Coxeter element c, the monoid B_{c}^{*} is isomorphic to the Birman-Ko-Lee braid monoid. Simple elements may be represented by noncrossing partitions (wrt the chosen Coxeter element c) and vice-versa.

Figure 2: A noncrossing partition of $c=\left(\begin{array}{ll}134652)\end{array}\right)$ and the corresponding simple dual braid viewed in $B(W)$.

Simple dual braids and Mikado braids

Thomas Gobet

Coxeter groups

and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Simple dual braids and Mikado braids

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Theorem (Digne-G., 2017)

Let (W, S) be a finite irreducible Coxeter system of type different from D_{n} and $c \in W$ a Coxeter element. Let $x \in \mathbf{D}_{c}$. Then x is a Mikado braid.

Simple dual braids are Mikado braids

Simple dual braids and Mikado braids

Theorem (Digne-G., 2017)
Let (W, S) be a finite irreducible Coxeter system of type different from D_{n} and $c \in W$ a Coxeter element. Let $x \in \mathbf{D}_{c}$. Then x is a Mikado braid.

Conjecture (Digne-G., 2017)
The Theorem above also holds in type D_{n}.

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Simple dual braids and Mikado braids

Theorem (Digne-G., 2017)
Let (W, S) be a finite irreducible Coxeter system of type different from D_{n} and $c \in W$ a Coxeter element. Let $x \in \mathbf{D}_{c}$. Then x is a Mikado braid.

Conjecture (Digne-G., 2017)

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Some questions

The Theorem above also holds in type D_{n}.

Theorem (Baumeister-G., 2017)

The Conjecture above is true.

Simple dual braids and Mikado braids

On simple dual braids and Mikado braids of type D_{n}

Theorem (Digne-G., 2017)
Let (W, S) be a finite irreducible Coxeter system of type different from D_{n} and $c \in W$ a Coxeter element. Let $x \in \mathbf{D}_{c}$. Then x is a Mikado braid.

Conjecture (Digne-G., 2017)
Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

The Theorem above also holds in type D_{n}.

Theorem (Baumeister-G., 2017)

The Conjecture above is true.
In particular, every simple dual braid in every Artin-Tits group of spherical type is a Mikado braid.

Artin groups of type B_{n} and D_{n}

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Some questions

Artin groups of type B_{n} and D_{n}

- Let $n \geq 3$. The Coxeter group ($W_{D_{n}}, S_{D_{n}}$) of type D_{n} can be realized as an index two subgroup of the Coxeter group ($W_{B_{n}}, S_{B_{n}}$) of type B_{n}. This embedding is not induced by an embedding (satisfying some expected properties) of the corresponding Artin-Tits groups (Crisp-Paris, 2004).

On simple dual braids and Mikado braids of type D_{n}

Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Artin groups of type B_{n} and D_{n}

- Let $n \geq 3$. The Coxeter group ($W_{D_{n}}, S_{D_{n}}$) of type D_{n} can be realized as an index two subgroup of the Coxeter group $\left(W_{B_{n}}, S_{B_{n}}\right)$ of type B_{n}. This embedding is not induced by an embedding (satisfying some expected properties) of the corresponding Artin-Tits groups (Crisp-Paris, 2004).
- Let $N \unlhd B\left(W_{B_{n}}\right)$ be the smallest normal subgroup containing \mathbf{s}_{0}^{2}, where $s_{0} \in S_{B_{n}}$ is the reflection along the short root. Set $\overline{B\left(W_{B_{n}}\right)}:=B\left(W_{B_{n}}\right) / N$. Then Allcock (2002) noticed that $B\left(W_{D_{n}}\right)$ can be realized as an index two subgroup of $\overline{B\left(W_{B_{n}}\right)}$.

Artin groups of type B_{n} and D_{n}

- Let $n \geq 3$. The Coxeter group ($W_{D_{n}}, S_{D_{n}}$) of type D_{n} can be realized as an index two subgroup of the Coxeter group $\left(W_{B_{n}}, S_{B_{n}}\right.$) of type B_{n}. This embedding is not induced by an embedding (satisfying some expected properties) of the corresponding Artin-Tits groups (Crisp-Paris, 2004).
- Let $N \unlhd B\left(W_{B_{n}}\right)$ be the smallest normal subgroup containing \mathbf{s}_{0}^{2}, where $s_{0} \in S_{B_{n}}$ is the reflection along the short root. Set $\overline{B\left(W_{B_{n}}\right)}:=B\left(W_{B_{n}}\right) / N$. Then Allcock (2002) noticed that $B\left(W_{D_{n}}\right)$ can be realized as an index two subgroup of $\overline{B\left(W_{B_{n}}\right)}$.

Lemma

There is a commutative diagram

$$
B\left(W_{B_{n}}\right) \xrightarrow{\pi_{1}} \overline{B\left(W_{B_{n}}\right)} \longleftrightarrow B\left(W_{D_{n}}\right)
$$

Mikado braids of type B_{n} and D_{n}

On simple dual

 braids and Mikado braids of type D_{n}Thomas Gobet

Coxeter groups

and Artin groups
Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Some questions

Mikado braids of type B_{n} and D_{n}

Theorem

The Mikado braids of type D_{n} viewed inside $\overline{B\left(W_{D_{n}}\right)}$ are precisely the images of those Mikado braids of type B_{n} which surject onto elements of $W_{D_{n}}$, that is, we have
$\operatorname{Mik}\left(\mathrm{W}_{\mathrm{D}_{\mathrm{n}}}\right)=\left\{\pi_{1}(\beta) \mid \beta \in \operatorname{Mik}\left(\mathrm{W}_{\mathrm{B}_{\mathrm{n}}}\right)\right.$ and $\left.\pi_{\mathrm{B}_{\mathrm{n}}}(\beta) \in \mathrm{W}_{\mathrm{D}_{\mathrm{n}}}\right\}$.

Mikado braids of type B_{n} and D_{n}

Theorem

The Mikado braids of type D_{n} viewed inside $\overline{B\left(W_{D_{n}}\right)}$ are precisely the images of those Mikado braids of type B_{n} which surject onto elements of $W_{D_{n}}$, that is, we have
$\operatorname{Mik}\left(\mathrm{W}_{\mathrm{D}_{\mathrm{n}}}\right)=\left\{\pi_{1}(\beta) \mid \beta \in \operatorname{Mik}\left(\mathrm{W}_{\mathrm{B}_{\mathrm{n}}}\right)\right.$ and $\left.\pi_{\mathrm{B}_{\mathrm{n}}}(\beta) \in \mathrm{W}_{\mathrm{D}_{\mathrm{n}}}\right\}$.

Coxeter groups and Artin groups

Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

- This allows one to characterize Mikado braids topologically (in terms of Artin braids in $B\left(W_{B_{n}}\right)$ or rather in $\left.B\left(W_{A_{2 n-1}}\right)\right)$.

Mikado braids of type B_{n} and D_{n}

Theorem

The Mikado braids of type D_{n} viewed inside $\overline{B\left(W_{D_{n}}\right)}$ are precisely the images of those Mikado braids of type B_{n} which surject onto elements of $W_{D_{n}}$, that is, we have
$\operatorname{Mik}\left(\mathrm{W}_{\mathrm{D}_{\mathrm{n}}}\right)=\left\{\pi_{1}(\beta) \mid \beta \in \operatorname{Mik}\left(\mathrm{W}_{\mathrm{B}_{\mathrm{n}}}\right)\right.$ and $\left.\pi_{\mathrm{B}_{\mathrm{n}}}(\beta) \in \mathrm{W}_{\mathrm{D}_{\mathrm{n}}}\right\}$.

- This allows one to characterize Mikado braids topologically (in terms of Artin braids in $B\left(W_{B_{n}}\right)$ or rather in $\left.B\left(W_{A_{2 n-1}}\right)\right)$.
- The proof that simple dual braids are Mikado braids in types A_{n} and B_{n} is topological: for $x \in P_{c}$, starting from the corresponding noncrossing partition one associates to it an Artin braid representing $i_{c}(x)$. This Artin braid is then topologically shown to be Mikado.

Simple dual braids are Mikado braids

On simple dual
braids and Mikado braids and Mikado
braids of type D_{n}

Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid
monoids
Simple dual braids
Simple dual braids are Mikado braids

Simple dual braids are Mikado braids

On simple dual

 braids and Mikado braids of type D_{n}- For elements of P_{c} in $W_{D_{n}}$, there is also a model by noncrossing-like partitions (Athanasiadis-Reiner, 2004). Using a slight adaptation of it, the philosophy of the proof is then the same as in the other classical types.

Simple dual braids are Mikado braids

On simple dual

 braids and Mikado braids of type D_{n}- For elements of P_{c} in $W_{D_{n}}$, there is also a model by noncrossing-like partitions (Athanasiadis-Reiner, 2004). Using a slight adaptation of it, the philosophy of the proof is then the same as in the other classical types.

Figure 3: A noncrossing partition x in $W_{D_{n}}$

Simple dual braids are Mikado braids

Coxeter groups and Artin groups

Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Figure 4: The simple dual braid corresponding to the noncrossing partition x. The braid on the right is a type B_{n} $(n=8)$ braid which is Mikado. Its image in $\overline{B\left(W_{B_{n}}\right)}$ is the simple dual braid corresponding to x. It is Mikado in $B\left(W_{D_{n}}\right)$ since its preimage in $B\left(W_{B_{n}}\right)$ is.

Some questions

On simple dual

 braids and Mikado braids of type D_{n}
Thomas Gobet

Coxeter groups
and Artin groups
Mikado braids
Dual braid monoids

Simple dual braids
Simple dual braids are Mikado braids

Some questions

Some questions

- Simple dual braids are Mikado braids for every finite Coxeter group W, but the proof is case-by-case (and checked by computer for the exceptional types). Is there a uniform proof?

Some questions

- Simple dual braids are Mikado braids for every finite Coxeter group W, but the proof is case-by-case (and checked by computer for the exceptional types). Is there a uniform proof?
- Is there a nice algebraic description of the embedding $B_{c}^{*} \hookrightarrow B(W)$? Are there uniform formulas for simple dual braids viewed inside $B(W)$?

Some questions

- Simple dual braids are Mikado braids for every finite Coxeter group W, but the proof is case-by-case (and checked by computer for the exceptional types). Is there a uniform proof?
- Is there a nice algebraic description of the embedding $B_{c}^{*} \hookrightarrow B(W)$? Are there uniform formulas for simple dual braids viewed inside $B(W)$?
- Can we relate Mikado braids to simple dual braids in Artin groups of non-spherical types where dual braid monoids exist (free groups, Artin groups of affine type \widetilde{A}_{n} and $\widetilde{C}_{n}, \ldots$)?

Thank you !

And happy "birthday" Patrick!

