## Toric reflection groups

#### Thomas Gobet

Institut Denis Poisson, Université de Tours

Conference Algebraic Combinatorics of the Symmetric Groups and Coxeter Groups II, Cetraro, July 2022.

#### Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are *J*-groups

Center and classification

## The symmetric group $\mathfrak{S}_3$ and various constructions of its braid group $B_3$

► The symmetric group 𝔅<sub>3</sub> is a quotient of the 3-strand braid group B<sub>3</sub>:

$$\mathfrak{S}_3 = \langle s_1, s_2 \mid s_1^2 = 1 = s_2^2, \ s_1 s_2 s_1 = s_2 s_1 s_2 \rangle$$
$$B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$$

- ► The group B<sub>3</sub> is obtained from S<sub>3</sub> by removing the relations s<sub>1</sub><sup>2</sup> = 1 = s<sub>2</sub><sup>2</sup> in the above presentation. "Artin-Tits group"
- ► The group G<sub>3</sub> also acts by reflections on a 2-dim. (real, or complex) vector space V, and B<sub>3</sub> = π<sub>1</sub>(V<sub>reg</sub>/W). "Complex braid group"
- ► The group B<sub>3</sub> is also the fundamental group of the complement of the trefoil knot in R<sup>3</sup>. Does this fit into a more general theory as for the above two situations ?

Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are *J*-groups

Center and classification

## Torus knot groups and reflection groups

▶ Let  $n, m \ge 2$ , n < m, (n, m) = 1. The *torus knot* group G(n, m) can be defined by the presentation

$$\langle x_1, x_2, \dots, x_n \mid \underbrace{x_1 x_2 \cdots}_{m \text{ factors}} = \underbrace{x_2 x_3 \cdots}_{m \text{ factors}} = \cdots = \underbrace{x_n x_1 \cdots}_{m \text{ factors}} \rangle$$

• Example: for n = 2 and m = 3 we have  $G(2,3) \cong B_3$ . The finite CRG with braid group a torus knot group:

| W                                  | $B_W$                                          |
|------------------------------------|------------------------------------------------|
| $\mathfrak{S}_3, G_4, G_8, G_{16}$ | $G(2,3) = B_3$                                 |
| $I_2(\ell)$ with odd $\ell$        | $G(2,\ell) = $ Artin group of type $I_2(\ell)$ |
| $G_{12}$                           | G(3,4)                                         |
| $G_{20}$                           | $G(2,5) = $ Artin group of type $I_2(5)$       |
| $G_{22}$                           | G(3,5)                                         |

W is obtained from B<sub>W</sub> = G(n, m) by adding rel. of the form x<sup>k</sup><sub>i</sub> = 1 for some k ≥ 2. We get all the finite CRG of rank 2 with a single conjugacy class of reflecting hyperplanes. Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are *J*-groups

Center and classification

## Toric reflection groups

▶ Question: Let  $n, m \ge 2$  as above,  $k \ge 2$ . What can be said about the group W(k, n, m) with presentation

$$\left\langle x_1, x_2, \dots, x_n \middle| \begin{array}{c} x_i^k = 1 \text{ for } i = 1, \dots, n, \\ \underbrace{x_1 x_2 \cdots}_{m \text{ factors}} = \underbrace{x_2 x_3 \cdots}_{m \text{ factors}} = \cdots = \underbrace{x_n x_1 \cdots}_{m \text{ factors}} \right\rangle.$$

### More precise questions:

ł

- When is W(k, n, m) finite ?
- Does W(k, n, m) admit a structure of (complex) reflection group (of rank two) in any reasonable sense? If yes, can we classify them as reflection groups?
- ▶ Is G(n,m) the "braid group" of W(k,n,m)?
- Example (Coxeter 1957): the group W(k, 2, 3), i.e., the quotient of the three-strand braid group  $B_3$  by the relations  $\sigma_1^k = 1 = \sigma_2^k$ , is finite if and only if  $k \le 5$ .
- ► We call a group of the form W(k, n, m) a toric reflection group.

#### Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are *J*-groups

Center and classification

#### NOTE

The invited lecture by A. D. Alexandrov, "Uniqueness Theorem for Surfaces in the Large," has been enlarged by the author and is to be published elsewhere. It is therefore not included in these Proceedings.

#### FACTOR GROUPS OF THE BRAID GROUP

H. S. M. COXETER, University of Toronto

Introduction. The relation  $R_1R_2 = R_2R_1$ , or

 $R_1 \rightleftharpoons R_2$ ,

which says that two elements commute, has been studied ever since 1852, when Hamilton first recognized the possibility of denying it. If  $R_1$  and  $R_2$  commute,  $R_2$  transforms  $R_1$  into itself; thus a natural generalization is the relation

 $R_1R_2R_1 = R_2R_1R_2$ 

which says that R<sub>b</sub>I transforms R<sub>1</sub> into R<sub>5</sub>. In 1926, Arria conindered a sequence of elements R<sub>1</sub>, R<sub>1</sub>, ..., R<sub>2-1</sub> in which conscuttive members are so related while non-consecutive members commut. He observed that such elements of period 2 generate the symmetric group  $\mathbb{R}_{2}$ . The chief purpose of this paper is to consider the effect of changing the period of the generators from 2 to  $\rho$ . Representing the generators by unitary reflections, we find (in 4 12) that the order is changed from at to

(1V) = n!,

where V is the number of vertices of the regular polyhedron or tessellation  $\{p, n\}$ .

As a by-product we obtain, for the simple group of order 25920, the presentation 5.5 or

 $R^{4} = R_{1}^{4} = (RR_{1})^{4} = E, \qquad R_{1} \rightleftharpoons R^{-2}R_{1}R^{2},$ 

which is more concise than that of Dickson (15, pp. 293, 296).

 Artin's braid group. The simplest braid, say E, consists of n vertical strands (or strings) joining two horizontal rows of n points (or pegs). Other n-strand braids are variants of this: the strands remain vertical in general, but at certain levels two neigh-

Two lectures (§1-6 and 7-12) delivered at Banff, September 5 and 6, 1957.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

#### Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are J-groups

Center and classification

#### Toric reflection groups

Thomas Gobet

Motivation and definitions

#### H. S. M. COXETER

- 19. F. Klein, Lectures on the icosahedron (London, 1913).
- G. A. Miller, Collected works, vol. 2 (Urbana, 1938).
  Collected works, vol. 3 (Urbana, 1946).
  A. F. Möbius, Gesammelte Werke, vol. 1 (Leipzig, 1886).

122

- 23. G. C. Shenhard, Regular complex polytopes, Proc. London Math. Soc. (3). C. C. Shephard and J. A. Todd, Finite unitary reflection groups, Can. J. Math., 6 (1954), 274-304.
- 25. O. Veblen and I. W. Young, Projective geometry, vol. 1 (Boston, 1910).

#### QUELQUES PROBLÈMES ACTUELS CONCERNANT L'ENSEIGNEMENT MATHÉMATIQUE EN FRANCE

J. DIXMIER, University of Paris

Si vous aimez le changement, je vous conseille d'aller en France et d'y devenir professeur de mathématiques. Tous les trois mois, l'organisation de l'enseignement est modifiée. Depuis deux ans, un nouvel examen d'entrée dans les facultés des sciences françaises a été créé; les méthodes de travail dans les classes primaires et l'examen d'entrée dans les lycées ont été changés: un nouveau cycle d'enseignement, dit "de recherche" est apparu dans les facultés des sciences; de nouveaux programmes sont appliqués dans les classes secondaires de mathématiques spéciales; l'enseignement technique se développe considérablement; l'an prochain, les horaires des classes de mathématiques dans les lycées vont changer; un nouveau système de recrutement des professeurs sera mis en place; les programmes de licence seront réformés. Dominant tout cela, la réforme générale de l'enseignement, qui fournit depuis dix ans et plus des sujets de controverse, semble approcher de sa réalisation.

Avant d'examiner cette situation en detail, je crois qu'il est utile de bien nous entendre sur le sens de certains mots qui appartiennent au vocabulaire scolaire français. Comme vous le savez sans doute, l'enseignement comporte chez nous trois étages superposés: l'enseignement primaire, le secondaire et le supérieur. On appelle école (tout simplement), l'établissement où les enfants reçoivent l'enseignement primaire; on appelle lycée (ou dans certains cas collège), l'établissement propre à l'enseignement secondaire, et on appelle faculté celui que fréquentent les étudiants de l'enseignement supérieur. Dans les facultés des lettres, des sciences et de droit. on délivre aux étudiants plusieurs sortes de diplômes, dont les plus importants sont la licence et le doctorat. Le mot université s'applique chez nous à l'ensemble administratif de tous les établissements scolaires publics

Je disais tout à l'heure que l'enseignement des mathématiques

## J-groups

Achar and Aubert introduced a family of (in general infinite) groups, called *J*-groups.

Let a, b, c three integers  $\geq 1$ . Let  $J\begin{pmatrix} a & b & c \\ & & \end{pmatrix}$  be the group

defined by the presentation

$$\langle \ s,t,u \ | \ s^a = t^b = u^c = 1, \ stu = tus = ust \ \rangle$$

Let a', b' and c' be three pairwise coprime integers, dividing a, b and c respectively. Let  $J\begin{pmatrix}a & b & c\\a' & b' & c'\end{pmatrix}$  be the normal subgroup of  $J \begin{pmatrix} a & b & c \\ & & \end{pmatrix}$  generated by  $s^{a'}, t^{b'}$  and  $u^{c'}.$  We omit 1's in the second row of parameters, consistently with

$$J\begin{pmatrix}a & b & c\\1 & 1 & 1\end{pmatrix} = J\begin{pmatrix}a & b & c\\ & & \end{pmatrix}.$$

Toric reflection groups

Thomas Gobet

Toric reflection groups are J-groups

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ ・ シ \* や \*

## Theorem (Achar-Aubert, 2008)

A J-group is finite if and only if it is a finite complex reflection group of rank 2.

- Achar and Aubert also showed that every *J*-group *G* admits a rep.  $\rho: G \longrightarrow \operatorname{GL}_2(\mathbb{C})$ , where  $\rho(s)$ ,  $\rho(t)$  and  $\rho(u)$  are reflections preserving a Hermitian form (so that the image is a CRG). When *G* is not finite, this representation is *not* faithful in general.
- ► This result is somewhat reminiscent of the following theorem : let W be a Coxeter group. Then W is a real reflection group if and only if W is finite.

## Theorem (Toric reflection groups are *J*-groups)

Let k, n, m be three integers  $\geq 2$  with n < m and n, m coprime. We have  $W(k, n, m) \cong J \begin{pmatrix} k & n & m \\ n & m \end{pmatrix}$ .

Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are J-groups

Center and classification

### Corollary

A toric reflection group is finite if and only if it is a finite CRG of rank two with a single conjugacy class of reflecting hyperplanes (we listed all of them above).

- The isom. above maps conjugates of nontrivial powers of s,t and u to conjugates of nontrivial powers of the x<sub>i</sub>'s. In the case where W(k, n, m) is finite, these are precisely the reflections in W(k, n, m).
- Call an element of W(k, n, m) a reflection if it is a conjugate of a nontrivial power of some x<sub>i</sub>.
- ► In this way we can put a "reflection-like" group structure on W(k, n, m).

Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are *J*-groups

Center and classification

## Center of toric reflection groups and classification

- ► It is known that the center of G(n, m) is infinite cyclic, generated by (x<sub>1</sub>x<sub>2</sub>···x<sub>n</sub>)<sup>m</sup> (Schreier, 1923).
- Let  $c = (x_1 x_2 \cdots x_n)^m$  be the image of the above element in W(k, n, m).
- Denote by  $W_{k,n,m}$  the rank-three Coxeter group

$$\left\langle r_1, r_2, r_3 \middle| \begin{array}{c} r_1^2 = r_2^2 = r_3^2 = 1, \\ (r_1 r_2)^k = (r_2 r_3)^n = (r_3 r_1)^m = 1 \end{array} \right\rangle$$

• Denote by  $W_{k,n,m}^+$  the alternating subgroup of  $W_{k,n,m}$ , i.e., the kernel of the homomorphism  $W_{k,n,m} \longrightarrow \mathbb{Z}/2\mathbb{Z}$ ,  $r_i \mapsto 1$ .

#### Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are J-groups

Center and classification

## Center of toric reflection groups and classification, II

#### Theorem

1. There is a short exact sequence

$$1 \longrightarrow \langle c \rangle \longrightarrow W(k, n, m) \longrightarrow W^+_{k, n, m} \longrightarrow 1.$$

2. We have 
$$Z(W^+_{k,n,m}) = \{1\}.$$

## Corollary

The center of W(k, n, m) is cyclic, generated by c.

### Questions

- 1. When W(k, n, m) is infinite, is c of finite order?
- 2. Does W(k, n, m) have a solvable word problem?

イロト イロト イモト イモト

-21

#### Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are *J*-groups

Center and classification

## Center of toric reflection groups and classification, III

Say that two toric reflection groups W(k, n, m) and W(k', n', m') are isomorphic as reflection groups (≅<sub>ref</sub>) if there is an isomorphism φ between them such that both φ and φ<sup>-1</sup> map reflections to reflections.

#### Theorem

Let W(k, n, m) and W(k', n', m') be two toric reflection groups. Then  $W(k, n, m) \cong_{\text{ref}} W(k', n', m')$  if and only if (k, n, m) = (k', n', m').

#### Corollary

Let W = W(k, n, m). Define  $B_W$  as G(n, m). Then  $B_W$  is well-defined, i.e., only depends on the reflection group structure of W(k, n, m). Moreover, if W is finite, then  $B_W$ is the complex braid group of W(k, n, m).

#### Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are *J*-groups

Center and classification

## Example and questions

Consider W(6, 2, 3), i.e., Coxeter's truncated braid group at k = 6 (it is an infinite group)

$$\langle \ s,t \ | \ s^6 = 1 = t^6, \ sts = tst \ \rangle$$

The map to

$$W_{6,2,3} = \left\langle r_1, r_2, r_3 \middle| \begin{array}{c} r_1^2 = r_2^2 = r_3^2 = 1, \\ (r_1 r_2)^6 = (r_2 r_3)^3 = (r_3 r_1)^2 = 1 \end{array} \right\rangle$$

sends s to  $r_1r_2$  and t to  $r_2r_1r_2r_3$ .

- ▶ We do not know if c = (sts)<sup>2</sup> = (st)<sup>3</sup> has finite order or not in W(6,2,3) (equiv., if st has finite order or not).
- ► The group W(6,2,3) has no faithful two-dimensional complex reflection representation. Hence one cannot define B<sub>W</sub> as π<sub>1</sub>(V<sub>reg</sub>/W).
- Questions: Is there a geometric definition of the braid group of a TRG ? Does c have finite order ? Do TRG have a solvable word problem ?

#### Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are J-groups

Center and classification

Toric reflection groups

Thomas Gobet

Motivation and definitions

Toric reflection groups are *J*-groups

Center and classification

Example and questions

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ ・ シ \* や \*

# Thank you for your attention!