A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Institut Denis Poisson, Université de Tours
Semaine des Jeunes de l'IDP,
Ferme de Courcimont, 20-23th July 2021.

Plan of the talk

Flags of vector spaces

Flag variety
Bruhat decomposition

Bruhat order

Nilpotent orbits

Flags of vector spaces

Flag variety
Bruhat
decomposition

Flags of vector spaces

Flags of vector spaces

- Let $n \geq 1$. A (complete) flag in $V=\mathbb{C}^{n}$ is a sequence

$$
V_{0}=\{0\} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{n}=V
$$

of subspaces of V such that $\operatorname{dim}_{\mathbb{C}}\left(V_{i}\right)=i$ for all
$0 \leq i \leq n$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Flags of vector spaces

- Let $n \geq 1$. A (complete) flag in $V=\mathbb{C}^{n}$ is a sequence

$$
V_{0}=\{0\} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{n}=V
$$

of subspaces of V such that $\operatorname{dim}_{\mathbb{C}}\left(V_{i}\right)=i$ for all $0 \leq i \leq n$.

- Example : for $n=2$, a flag in $V=\mathbb{C}^{2}$ is simply given by a line. Thus the set of flags is given by $\mathbb{P}(V)$ in that case.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Flags of vector spaces

- Let $n \geq 1$. A (complete) flag in $V=\mathbb{C}^{n}$ is a sequence

$$
V_{0}=\{0\} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{n}=V
$$

of subspaces of V such that $\operatorname{dim}_{\mathbb{C}}\left(V_{i}\right)=i$ for all $0 \leq i \leq n$.

- Example : for $n=2$, a flag in $V=\mathbb{C}^{2}$ is simply given by a line. Thus the set of flags is given by $\mathbb{P}(V)$ in that case.
- Since the group $G=\mathrm{GL}_{n}(\mathbb{C})$ of complex invertible matrices of size $n \times n$ acts transitively on bases of $V=\mathbb{C}^{n}$, it also acts transitively on the set of flags in V

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Flags of vector spaces

- Let $n \geq 1$. A (complete) flag in $V=\mathbb{C}^{n}$ is a sequence

$$
V_{0}=\{0\} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{n}=V
$$

of subspaces of V such that $\operatorname{dim}_{\mathbb{C}}\left(V_{i}\right)=i$ for all $0 \leq i \leq n$.

- Example : for $n=2$, a flag in $V=\mathbb{C}^{2}$ is simply given by a line. Thus the set of flags is given by $\mathbb{P}(V)$ in that case.
- Since the group $G=\mathrm{GL}_{n}(\mathbb{C})$ of complex invertible matrices of size $n \times n$ acts transitively on bases of $V=\mathbb{C}^{n}$, it also acts transitively on the set of flags in V (for if $\operatorname{dim}_{\mathbb{C}}\left(V_{i}\right)=i$ and $g \in G$, we have $\operatorname{dim}_{\mathbb{C}}\left(g\left(V_{i}\right)\right)=i$ as g is invertible $)$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety

Flags of vector spaces, II

Flags of vector spaces, II

- Consider the canonical basis $\left(e_{i}\right)$ of \mathbb{C}^{n} and the standard flag

$$
\mathbf{s}=0 \subseteq\left\langle e_{1}\right\rangle \subseteq\left\langle e_{1}, e_{2}\right\rangle \subseteq \cdots \subseteq\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle=V
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Flags of vector spaces, II

- Consider the canonical basis $\left(e_{i}\right)$ of \mathbb{C}^{n} and the standard flag

$$
\mathbf{s}=0 \subseteq\left\langle e_{1}\right\rangle \subseteq\left\langle e_{1}, e_{2}\right\rangle \subseteq \cdots \subseteq\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle=V
$$

- Since $G=\mathrm{GL}_{n}(\mathbb{C})$ acts transitively on the set of flags, by basic group theory we can identify the set of flags with $G / \operatorname{Stab}_{G}(\mathbf{s})$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety

Flags of vector spaces, II

- Consider the canonical basis $\left(e_{i}\right)$ of \mathbb{C}^{n} and the standard flag

$$
\mathbf{s}=0 \subseteq\left\langle e_{1}\right\rangle \subseteq\left\langle e_{1}, e_{2}\right\rangle \subseteq \cdots \subseteq\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle=V
$$

- Since $G=\mathrm{GL}_{n}(\mathbb{C})$ acts transitively on the set of flags, by basic group theory we can identify the set of flags with $G / \operatorname{Stab}_{G}(\mathbf{s})$.
- The stabilizer of the standard flag is nothing but the subgroup $B \subseteq G$ of upper-triangular matrices.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Flags of vector spaces, II

- Consider the canonical basis $\left(e_{i}\right)$ of \mathbb{C}^{n} and the standard flag

$$
\mathbf{s}=0 \subseteq\left\langle e_{1}\right\rangle \subseteq\left\langle e_{1}, e_{2}\right\rangle \subseteq \cdots \subseteq\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle=V
$$

- Since $G=\mathrm{GL}_{n}(\mathbb{C})$ acts transitively on the set of flags, by basic group theory we can identify the set of flags with $G / \operatorname{Stab}_{G}(\mathbf{s})$.
- The stabilizer of the standard flag is nothing but the subgroup $B \subseteq G$ of upper-triangular matrices.
- Therefore, we have a one-to-one correspondence

$$
\{\text { Complete flags in } V\} \stackrel{1: 1}{\longleftrightarrow} G / B=\{g B \mid g \in G\}
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Focusing on $n=2$

Focusing on $n=2$

- We already noticed that G / B is in bijection with $\mathbb{P}(V)$ in that case...

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Focusing on $n=2$

- We already noticed that G / B is in bijection with $\mathbb{P}(V)$ in that case... For geometrically-minded people this is nothing but the Riemann sphere $=\mathbb{C} \coprod\{\infty\}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Focusing on $n=2$

- We already noticed that G / B is in bijection with $\mathbb{P}(V)$ in that case... For geometrically-minded people this is nothing but the Riemann sphere $=\mathbb{C} \coprod\{\infty\}$.
- Note that

$$
\{(1,0)\} \cup\{(a, 1) \mid a \in \mathbb{C}\}
$$

yields a parametrizing set for $\mathbb{P}(V)$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Focusing on $n=2$

- We already noticed that G / B is in bijection with $\mathbb{P}(V)$ in that case... For geometrically-minded people this is nothing but the Riemann sphere $=\mathbb{C} \coprod\{\infty\}$.
- Note that

$$
\{(1,0)\} \cup\{(a, 1) \mid a \in \mathbb{C}\}
$$

yields a parametrizing set for $\mathbb{P}(V)$. Note that, for $a, b \in \mathbb{C}$, we have

$$
\left(\begin{array}{cc}
1 & b-a \\
0 & 1
\end{array}\right) \cdot\binom{a}{1}=\binom{b}{1}
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Focusing on $n=2$

- We already noticed that G / B is in bijection with $\mathbb{P}(V)$ in that case... For geometrically-minded people this is nothing but the Riemann sphere $=\mathbb{C} \coprod\{\infty\}$.
- Note that

$$
\{(1,0)\} \cup\{(a, 1) \mid a \in \mathbb{C}\}
$$

yields a parametrizing set for $\mathbb{P}(V)$. Note that, for $a, b \in \mathbb{C}$, we have

$$
\left(\begin{array}{cc}
1 & b-a \\
0 & 1
\end{array}\right) \cdot\binom{a}{1}=\binom{b}{1}
$$

- So, the action of B on $\mathbb{P}(V)$ has two orbits : the singleton $\left\{\mathbf{s}=\left(0 \subseteq\left\langle e_{1}\right\rangle \subseteq V\right)\right\}$, and a dense orbit $\mathbb{C}=\mathbb{P}(V) \backslash\{\mathbf{s}\}$.

Zariski topology on V and $\mathbb{P}(V)$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Zariski topology on V and $\mathbb{P}(V)$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

- A subset W of $V=\mathbb{C}^{n}$ is algebraic if there is a family

Thomas Gobet $\left(P_{i}\right)_{i \in I}$ of polynomials in $\mathbb{C}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ such that
$W=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in V \mid P_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \forall i\right\}$.
Flags of vector spaces

Flag variety
Bruhat
decomposition

Zariski topology on V and $\mathbb{P}(V)$

- A subset W of $V=\mathbb{C}^{n}$ is algebraic if there is a family $\left(P_{i}\right)_{i \in I}$ of polynomials in $\mathbb{C}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ such that

$$
W=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in V \mid P_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \forall i\right\} .
$$

"Solutions of polynomial equations"

A nontrivial order on the symmetric on the symmetric
group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Zariski topology on V and $\mathbb{P}(V)$

- A subset W of $V=\mathbb{C}^{n}$ is algebraic if there is a family $\left(P_{i}\right)_{i \in I}$ of polynomials in $\mathbb{C}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ such that

$$
W=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in V \mid P_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \forall i\right\}
$$

"Solutions of polynomial equations"

- Example : $n=1$. Every nonzero polynomial has finitely many roots.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Zariski topology on V and $\mathbb{P}(V)$

- A subset W of $V=\mathbb{C}^{n}$ is algebraic if there is a family $\left(P_{i}\right)_{i \in I}$ of polynomials in $\mathbb{C}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ such that

$$
W=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in V \mid P_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \forall i\right\} .
$$

"Solutions of polynomial equations"

- Example : $n=1$. Every nonzero polynomial has finitely many roots. Conversely, for every finite subset W of \mathbb{C}, there is a polynomial in \mathbb{C} whose roots are exactly the elements of W.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Zariski topology on V and $\mathbb{P}(V)$

- A subset W of $V=\mathbb{C}^{n}$ is algebraic if there is a family $\left(P_{i}\right)_{i \in I}$ of polynomials in $\mathbb{C}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ such that

$$
W=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in V \mid P_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \forall i\right\}
$$

"Solutions of polynomial equations"

- Example : $n=1$. Every nonzero polynomial has finitely many roots. Conversely, for every finite subset W of \mathbb{C}, there is a polynomial in \mathbb{C} whose roots are exactly the elements of W. Hence the algebraic subsets of \mathbb{C} are \mathbb{C}, the empty set, and finite subsets of \mathbb{C}.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Zariski topology on V and $\mathbb{P}(V)$

- A subset W of $V=\mathbb{C}^{n}$ is algebraic if there is a family $\left(P_{i}\right)_{i \in I}$ of polynomials in $\mathbb{C}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ such that

$$
W=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in V \mid P_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \forall i\right\} .
$$

"Solutions of polynomial equations"

- Example : $n=1$. Every nonzero polynomial has finitely many roots. Conversely, for every finite subset W of \mathbb{C}, there is a polynomial in \mathbb{C} whose roots are exactly the elements of W. Hence the algebraic subsets of \mathbb{C} are \mathbb{C}, the empty set, and finite subsets of \mathbb{C}.
- Similarly, one can define algebraic subsets of $\mathbb{P}(V)$: one just replaces polynomials by homogeneous polynomials.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Zariski topology on V and $\mathbb{P}(V)$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Zariski topology on V and $\mathbb{P}(V)$

- Exercise : the set of algebraic subsets of V (or $\mathbb{P}(V))$ are the closed subsets of a topology on $V($ or $\mathbb{P}(V))$, the Zariski topology.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Zariski topology on V and $\mathbb{P}(V)$

- Exercise : the set of algebraic subsets of V (or $\mathbb{P}(V))$ are the closed subsets of a topology on $V($ or $\mathbb{P}(V))$, the Zariski topology.
- Every Zariski-open (or closed) subset of V is open (or closed) for the usual topology on V.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Zariski topology on V and $\mathbb{P}(V)$

- Exercise : the set of algebraic subsets of V (or $\mathbb{P}(V))$ are the closed subsets of a topology on $V($ or $\mathbb{P}(V))$, the Zariski topology.
- Every Zariski-open (or closed) subset of V is open (or closed) for the usual topology on V. The converse is false, there are many more open subsets than Zariski-open subsets.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Zariski topology on V and $\mathbb{P}(V)$

- Exercise : the set of algebraic subsets of V (or $\mathbb{P}(V)$) are the closed subsets of a topology on V (or $\mathbb{P}(V)$), the Zariski topology.
- Every Zariski-open (or closed) subset of V is open (or closed) for the usual topology on V. The converse is false, there are many more open subsets than Zariski-open subsets.
- For instance, for $n=1$, every nonempty Zariski-open subset of $V=\mathbb{C}$ is dense !

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Zariski topology on V and $\mathbb{P}(V)$

- Exercise : the set of algebraic subsets of V (or $\mathbb{P}(V)$) are the closed subsets of a topology on V (or $\mathbb{P}(V)$), the Zariski topology.
- Every Zariski-open (or closed) subset of V is open (or closed) for the usual topology on V. The converse is false, there are many more open subsets than Zariski-open subsets.
- For instance, for $n=1$, every nonempty Zariski-open subset of $V=\mathbb{C}$ is dense! In fact, this is true in general: every nonempty Zariski-open subset of \mathbb{C}^{n} is dense.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Zariski topology on V and $\mathbb{P}(V)$

- Exercise : the set of algebraic subsets of V (or $\mathbb{P}(V)$) are the closed subsets of a topology on V (or $\mathbb{P}(V)$), the Zariski topology.
- Every Zariski-open (or closed) subset of V is open (or closed) for the usual topology on V. The converse is false, there are many more open subsets than Zariski-open subsets.
- For instance, for $n=1$, every nonempty Zariski-open subset of $V=\mathbb{C}$ is dense! In fact, this is true in general: every nonempty Zariski-open subset of \mathbb{C}^{n} is dense.
- Algebraic subsets of V are called affine algebraic varieties.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Zariski topology on V and $\mathbb{P}(V)$

- Exercise : the set of algebraic subsets of V (or $\mathbb{P}(V)$) are the closed subsets of a topology on $V($ or $\mathbb{P}(V))$, the Zariski topology.
- Every Zariski-open (or closed) subset of V is open (or closed) for the usual topology on V. The converse is false, there are many more open subsets than Zariski-open subsets.
- For instance, for $n=1$, every nonempty Zariski-open subset of $V=\mathbb{C}$ is dense! In fact, this is true in general: every nonempty Zariski-open subset of \mathbb{C}^{n} is dense.
- Algebraic subsets of V are called affine algebraic varieties. Algebraic subsets of $\mathbb{P}(V)$ are called projective algebraic varieties.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

More structure on the set of flags

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

More structure on the set of flags

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

More structure on the set of flags

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$. In general, one can embed G / B into $\mathbb{P}\left(V^{\prime}\right)$ for some complex vector space V^{\prime} (in general bigger than V) in such a way that the image is an algebraic subset of $\mathbb{P}\left(V^{\prime}\right)$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

More structure on the set of flags

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$. In general, one can embed G / B into $\mathbb{P}\left(V^{\prime}\right)$ for some complex vector space V^{\prime} (in general bigger than V) in such a way that the image is an algebraic subset of $\mathbb{P}\left(V^{\prime}\right)$. This allows one to view G / B as a projective algebraic variety.

More structure on the set of flags

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$. In general, one can embed G / B into $\mathbb{P}\left(V^{\prime}\right)$ for some complex vector space V^{\prime} (in general bigger than V) in such a way that the image is an algebraic subset of $\mathbb{P}\left(V^{\prime}\right)$. This allows one to view G / B as a projective algebraic variety. And this is why G / B is called the flag variety.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

More structure on the set of flags

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$. In general, one can embed G / B into $\mathbb{P}\left(V^{\prime}\right)$ for some complex vector space V^{\prime} (in general bigger than V) in such a way that the image is an algebraic subset of $\mathbb{P}\left(V^{\prime}\right)$. This allows one to view G / B as a projective algebraic variety. And this is why G / B is called the flag variety.
A few questions naturally arise:

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

More structure on the set of flags

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$. In general, one can embed G / B into $\mathbb{P}\left(V^{\prime}\right)$ for some complex vector space V^{\prime} (in general bigger than V) in such a way that the image is an algebraic subset of $\mathbb{P}\left(V^{\prime}\right)$. This allows one to view G / B as a projective algebraic variety. And this is why G / B is called the flag variety.
A few questions naturally arise:
- What can be said about orbits of B on $X=G / B$ for $n>2$?

More structure on the set of flags

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$. In general, one can embed G / B into $\mathbb{P}\left(V^{\prime}\right)$ for some complex vector space V^{\prime} (in general bigger than V) in such a way that the image is an algebraic subset of $\mathbb{P}\left(V^{\prime}\right)$. This allows one to view G / B as a projective algebraic variety. And this is why G / B is called the flag variety.
A few questions naturally arise:
- What can be said about orbits of B on $X=G / B$ for $n>2$? Are there always finitely many orbits ?

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

More structure on the set of flags

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$. In general, one can embed G / B into $\mathbb{P}\left(V^{\prime}\right)$ for some complex vector space V^{\prime} (in general bigger than V) in such a way that the image is an algebraic subset of $\mathbb{P}\left(V^{\prime}\right)$. This allows one to view G / B as a projective algebraic variety. And this is why G / B is called the flag variety.
A few questions naturally arise:
- What can be said about orbits of B on $X=G / B$ for $n>2$? Are there always finitely many orbits ? Is there a nice parametrizing set ?

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

More structure on the set of flags

- For $n=2$, we observed that the set of flags in $V=\mathbb{C}^{2}$ is in bijection with $\mathbb{P}(V)$. In general, one can embed G / B into $\mathbb{P}\left(V^{\prime}\right)$ for some complex vector space V^{\prime} (in general bigger than V) in such a way that the image is an algebraic subset of $\mathbb{P}\left(V^{\prime}\right)$. This allows one to view G / B as a projective algebraic variety. And this is why G / B is called the flag variety.
A few questions naturally arise:
- What can be said about orbits of B on $X=G / B$ for $n>2$? Are there always finitely many orbits ? Is there a nice parametrizing set ?
- Can we describe the partial order induced by inclusions of B-orbit closures ?

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat decomposition of GL_{n}

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat decomposition of GL_{n}

- Let

$$
w \in \mathfrak{S}_{n}=\{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \sigma \text { bijective }\}
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat decomposition of GL_{n}

- Let
$w \in \mathfrak{S}_{n}=\{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \sigma$ bijective $\}$.
One can represent w by the attached permutation matrix in $\mathrm{GL}_{n}(\mathbb{C})$, which we still denote w.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat decomposition of GL_{n}

- Let
$w \in \mathfrak{S}_{n}=\{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \sigma$ bijective $\}$.
One can represent w by the attached permutation matrix in $\mathrm{GL}_{n}(\mathbb{C})$, which we still denote w. It is defined by $w \cdot e_{i}=e_{w(i)}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Bruhat decomposition of GL_{n}

- Let
$w \in \mathfrak{S}_{n}=\{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \sigma$ bijective $\}$.
One can represent w by the attached permutation matrix in $\mathrm{GL}_{n}(\mathbb{C})$, which we still denote w. It is defined by $w \cdot e_{i}=e_{w(i)}$.
- For $n=2$, we already observed that there are two B-orbits on G / B, namely the singleton $\mathcal{O}_{1}:=\{\mathbf{s}\}$, and a dense orbit $\mathcal{O}_{2}:=\mathbb{P}(V) \backslash\{\mathbf{s}\}$.

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Bruhat decomposition of GL_{n}

- Let
$w \in \mathfrak{S}_{n}=\{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \sigma$ bijective $\}$.
One can represent w by the attached permutation matrix in $\mathrm{GL}_{n}(\mathbb{C})$, which we still denote w. It is defined by $w \cdot e_{i}=e_{w(i)}$.
- For $n=2$, we already observed that there are two B-orbits on G / B, namely the singleton $\mathcal{O}_{1}:=\{\mathbf{s}\}$, and a dense orbit $\mathcal{O}_{2}:=\mathbb{P}(V) \backslash\{\mathbf{s}\}$. Note that a representative of \mathcal{O}_{2} is given by the other "permutation" flag

$$
\mathbf{s}^{\prime}: 0 \subseteq\left\langle e_{2}\right\rangle \subseteq V
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Bruhat decomposition of GL_{n}

- Let
$w \in \mathfrak{S}_{n}=\{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \sigma$ bijective $\}$.
One can represent w by the attached permutation matrix in $\mathrm{GL}_{n}(\mathbb{C})$, which we still denote w. It is defined by $w \cdot e_{i}=e_{w(i)}$.
- For $n=2$, we already observed that there are two B-orbits on G / B, namely the singleton $\mathcal{O}_{1}:=\{\mathbf{s}\}$, and a dense orbit $\mathcal{O}_{2}:=\mathbb{P}(V) \backslash\{\mathbf{s}\}$. Note that a representative of \mathcal{O}_{2} is given by the other "permutation" flag

$$
\mathbf{s}^{\prime}: 0 \subseteq\left\langle e_{2}\right\rangle \subseteq V
$$

Setting $w=s_{1}=(1,2)$, with corresponding matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, we have $w \cdot \mathbf{s}=\mathbf{s}^{\prime}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Bruhat decomposition of GL_{n}

- Let
$w \in \mathfrak{S}_{n}=\{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \sigma$ bijective $\}$.
One can represent w by the attached permutation matrix in $\mathrm{GL}_{n}(\mathbb{C})$, which we still denote w. It is defined by $w \cdot e_{i}=e_{w(i)}$.
- For $n=2$, we already observed that there are two B-orbits on G / B, namely the singleton $\mathcal{O}_{1}:=\{\mathbf{s}\}$, and a dense orbit $\mathcal{O}_{2}:=\mathbb{P}(V) \backslash\{\mathbf{s}\}$. Note that a representative of \mathcal{O}_{2} is given by the other "permutation" flag

$$
\mathbf{s}^{\prime}: 0 \subseteq\left\langle e_{2}\right\rangle \subseteq V
$$

Setting $w=s_{1}=(1,2)$, with corresponding matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, we have $w \cdot \mathbf{s}=\mathbf{s}^{\prime}$. In other words, the B-orbits on G / B are parametrized by the elements of \mathfrak{S}_{2}.

Bruhat decomposition of GL_{n}

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat decomposition of GL_{n}

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet
Theorem (Bruhat decomposition of GL_{n})
For $x \in G=\mathrm{GL}_{n}(\mathbb{C})$, let $B x B:=\left\{b x b^{\prime} \mid b, b^{\prime} \in B\right\}$. We have

$$
\mathrm{GL}_{n}(\mathbb{C})=\coprod_{w \in \mathfrak{S}_{n}} B w B .
$$

Bruhat decomposition of GL_{n}

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet
Theorem (Bruhat decomposition of GL_{n})
For $x \in G=\mathrm{GL}_{n}(\mathbb{C})$, let $B x B:=\left\{b x b^{\prime} \mid b, b^{\prime} \in B\right\}$. We have

$$
\mathrm{GL}_{n}(\mathbb{C})=\coprod_{w \in \mathfrak{S}_{n}} B w B .
$$

Flags of vector

 spacesFlag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Corollary

We have

$$
G / B=\coprod_{w \in \mathfrak{S}_{n}} B w B / B
$$

and hence, the B-orbits on G / B are parametrized by \mathfrak{S}_{n}.

Bruhat decomposition of $\mathrm{GL}_{n}: n=2$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat decomposition of $\mathrm{GL}_{n}: n=2$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

- For $n=2$ we thus have $\mathrm{GL}_{2}(\mathbb{C})=B \coprod B s_{1} B$.

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat decomposition of $\mathrm{GL}_{n}: n=2$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Bruhat decomposition of $\mathrm{GL}_{n}: n=2$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector

 spaces- For $n=2$ we thus have $\mathrm{GL}_{2}(\mathbb{C})=B \coprod B s_{1} B$. Indeed, let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{C})$. If $c=0$ then $A \in B$.

```
Flag variety
```

Bruhat
decomposition

Bruhat decomposition of $\mathrm{GL}_{n}: n=2$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector

 spacesFlag variety

- For $n=2$ we thus have $\mathrm{GL}_{2}(\mathbb{C})=B \coprod B s_{1} B$. Indeed,
let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{C})$. If $c=0$ then $A \in B$.
Otherwise, note that

Bruhat

decomposition

$$
A=\underbrace{\left(\begin{array}{cc}
\frac{b c-a d}{c} & \frac{a}{c} \\
0 & 1
\end{array}\right)}_{\in B} \underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)}_{=s_{1}} \underbrace{\left(\begin{array}{ll}
c & d \\
0 & 1
\end{array}\right)}_{\in B}
$$

Orbit closures $(n=2)$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let

$$
v=(a, b) \in V \backslash\{(0,0)\} .
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$.

> A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$.

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$. Hence points in $\mathbb{P}(V)$ are closed.

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$. Hence points in $\mathbb{P}(V)$ are closed. In particular, \mathcal{O}_{1} is a closed orbit.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$. Hence points in $\mathbb{P}(V)$ are closed. In particular, \mathcal{O}_{1} is a closed orbit. And hence $\mathcal{O}_{2}=\mathbb{P}(V) \backslash\left\{\mathcal{O}_{1}\right\}$ is open.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$. Hence points in $\mathbb{P}(V)$ are closed. In particular, \mathcal{O}_{1} is a closed orbit. And hence $\mathcal{O}_{2}=\mathbb{P}(V) \backslash\left\{\mathcal{O}_{1}\right\}$ is open.
- If \mathcal{O}_{2} was closed, then there would be a family $\left(P_{i}\right)_{i \in I}$ of two-variable homogeneous polynomials having as common vanishing set the complement $V \backslash L$ of the line $L:=\left\langle e_{1}\right\rangle$. Let $Q=P_{i}(i \in I)$ be nonzero.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$. Hence points in $\mathbb{P}(V)$ are closed. In particular, \mathcal{O}_{1} is a closed orbit. And hence $\mathcal{O}_{2}=\mathbb{P}(V) \backslash\left\{\mathcal{O}_{1}\right\}$ is open.
- If \mathcal{O}_{2} was closed, then there would be a family $\left(P_{i}\right)_{i \in I}$ of two-variable homogeneous polynomials having as common vanishing set the complement $V \backslash L$ of the line $L:=\left\langle e_{1}\right\rangle$. Let $Q=P_{i}(i \in I)$ be nonzero. It vanishes on $V \backslash L$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$. Hence points in $\mathbb{P}(V)$ are closed. In particular, \mathcal{O}_{1} is a closed orbit. And hence $\mathcal{O}_{2}=\mathbb{P}(V) \backslash\left\{\mathcal{O}_{1}\right\}$ is open.
- If \mathcal{O}_{2} was closed, then there would be a family $\left(P_{i}\right)_{i \in I}$ of two-variable homogeneous polynomials having as common vanishing set the complement $V \backslash L$ of the line $L:=\left\langle e_{1}\right\rangle$. Let $Q=P_{i}(i \in I)$ be nonzero. It vanishes on $V \backslash L$. Now we already saw that there is a nonzero polynomial R in $\mathbb{C}[X, Y]$ vanishing on L.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$. Hence points in $\mathbb{P}(V)$ are closed. In particular, \mathcal{O}_{1} is a closed orbit. And hence $\mathcal{O}_{2}=\mathbb{P}(V) \backslash\left\{\mathcal{O}_{1}\right\}$ is open.
- If \mathcal{O}_{2} was closed, then there would be a family $\left(P_{i}\right)_{i \in I}$ of two-variable homogeneous polynomials having as common vanishing set the complement $V \backslash L$ of the line $L:=\left\langle e_{1}\right\rangle$. Let $Q=P_{i}(i \in I)$ be nonzero. It vanishes on $V \backslash L$. Now we already saw that there is a nonzero polynomial R in $\mathbb{C}[X, Y]$ vanishing on L. Hence $Q R$ is a nonzero polynomial vanishing on V, which is impossible.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Orbit closures $(n=2)$

- Let us come back to the case where $n=2$. Let $v=(a, b) \in V \backslash\{(0,0)\}$. Let $P=b X-a Y \in \mathbb{C}[X, Y]$. Then P is homogeneous, and the corresponding algebraic set in $\mathbb{P}(V)$ is given by the singleton $\{\langle v\rangle\}$. Hence points in $\mathbb{P}(V)$ are closed. In particular, \mathcal{O}_{1} is a closed orbit. And hence $\mathcal{O}_{2}=\mathbb{P}(V) \backslash\left\{\mathcal{O}_{1}\right\}$ is open.
- If \mathcal{O}_{2} was closed, then there would be a family $\left(P_{i}\right)_{i \in I}$ of two-variable homogeneous polynomials having as common vanishing set the complement $V \backslash L$ of the line $L:=\left\langle e_{1}\right\rangle$. Let $Q=P_{i}(i \in I)$ be nonzero. It vanishes on $V \backslash L$. Now we already saw that there is a nonzero polynomial R in $\mathbb{C}[X, Y]$ vanishing on L. Hence $Q R$ is a nonzero polynomial vanishing on V, which is impossible. Hence \mathcal{O}_{2} is not closed, and $\overline{\mathcal{O}_{2}}=\mathcal{O}_{1} \cup \mathcal{O}_{2}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Orbit closures

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet
 Flags of vector spaces
 Flag variety
 Bruhat
 decomposition
 Bruhat order
 Nilpotent orbits

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$. Set $w \leq w^{\prime}$ if

$$
\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$. Set $w \leq w^{\prime}$ if

$$
\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Then \leq defines a partial order on \mathfrak{S}_{n}.

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$. Set $w \leq w^{\prime}$ if

$$
\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}
$$

Then \leq defines a partial order on \mathfrak{S}_{n}. Reflexivity and transitivity are clear.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$. Set $w \leq w^{\prime}$ if

$$
\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}
$$

Then \leq defines a partial order on \mathfrak{S}_{n}. Reflexivity and transitivity are clear. For antisymmetry, let w, w^{\prime} such that $w \leq w^{\prime}$ and $w^{\prime} \leq w$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$. Set $w \leq w^{\prime}$ if

$$
\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}
$$

Then \leq defines a partial order on \mathfrak{S}_{n}. Reflexivity and transitivity are clear. For antisymmetry, let w, w^{\prime} such that $w \leq w^{\prime}$ and $w^{\prime} \leq w$. Then $\overline{\mathcal{O}_{w}}=\overline{\mathcal{O}_{w^{\prime}}}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$. Set $w \leq w^{\prime}$ if

$$
\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}
$$

Then \leq defines a partial order on \mathfrak{S}_{n}. Reflexivity and transitivity are clear. For antisymmetry, let w, w^{\prime} such that $w \leq w^{\prime}$ and $w^{\prime} \leq w$. Then $\overline{\mathcal{O}_{w}}=\overline{\mathcal{O}_{w^{\prime}}}$. There is a unique orbit of maximal dimension in both closures, given by $\mathcal{O}_{w}=\mathcal{O}_{w^{\prime}}$. Hence $w=w^{\prime}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$. Set $w \leq w^{\prime}$ if

$$
\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}
$$

Then \leq defines a partial order on \mathfrak{S}_{n}. Reflexivity and transitivity are clear. For antisymmetry, let w, w^{\prime} such that $w \leq w^{\prime}$ and $w^{\prime} \leq w$. Then $\overline{\mathcal{O}_{w}}=\overline{\mathcal{O}_{w^{\prime}}}$. There is a unique orbit of maximal dimension in both closures, given by $\mathcal{O}_{w}=\mathcal{O}_{w^{\prime}}$. Hence $w=w^{\prime}$.

- The above-defined partial order was first introduced by Ehresmann in 1934.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Orbit closures

- It is possible to show, in the general case, that the Zariski-closure of a B-orbit on G / B is a union of B-orbits. Moreover, all orbits appearing in $\overline{\mathcal{O}} \backslash \mathcal{O}$ (where \mathcal{O} is an orbit) are of smaller dimension than \mathcal{O}.
- Let $\mathcal{O}_{w}:=B w B / B$ ("Schubert cell") be the B-orbit of G / B parametrized by $w \in \mathfrak{S}_{n}$. Let $w^{\prime} \in \mathfrak{S}_{n}$. Set $w \leq w^{\prime}$ if

$$
\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}
$$

Then \leq defines a partial order on \mathfrak{S}_{n}. Reflexivity and transitivity are clear. For antisymmetry, let w, w^{\prime} such that $w \leq w^{\prime}$ and $w^{\prime} \leq w$. Then $\overline{\mathcal{O}_{w}}=\overline{\mathcal{O}_{w^{\prime}}}$. There is a unique orbit of maximal dimension in both closures, given by $\mathcal{O}_{w}=\mathcal{O}_{w^{\prime}}$. Hence $w=w^{\prime}$.

- The above-defined partial order was first introduced by Ehresmann in 1934. It is called the (strong) Bruhat order in reference to the Bruhat decomposition of G.

Bruhat order : combinatorial description

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let $w, w^{\prime} \in \mathfrak{S}_{n}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let $w, w^{\prime} \in \mathfrak{S}_{n}$. We have $w \leq w^{\prime}$ if and only if $(w(1), w(2), \ldots, w(d))_{r . t . i . v .} \leq\left(w^{\prime}(1), w^{\prime}(2), \ldots, w^{\prime}(d)\right)_{\text {r.t.i.v. }}$ for all $1 \leq d \leq n-1$, where r.t.i.v. $=$ reordered to increasing values.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let $w, w^{\prime} \in \mathfrak{S}_{n}$. We have $w \leq w^{\prime}$ if and only if $(w(1), w(2), \ldots, w(d))_{r . t . i . v .} \leq\left(w^{\prime}(1), w^{\prime}(2), \ldots, w^{\prime}(d)\right)_{\text {r.t.i.v. }}$ for all $1 \leq d \leq n-1$, where r.t.i.v. $=$ reordered to increasing values.

- Example : Bruhat order on \mathfrak{S}_{3} :

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety

Bruhat

decomposition
Bruhat order
Nilpotent orbits

Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let $w, w^{\prime} \in \mathfrak{S}_{n}$. We have $w \leq w^{\prime}$ if and only if $(w(1), w(2), \ldots, w(d))_{\text {r.t.i.v. }} \leq\left(w^{\prime}(1), w^{\prime}(2), \ldots, w^{\prime}(d)\right)_{\text {r.t.i.v. }}$ for all $1 \leq d \leq n-1$, where r.t.i.v. $=$ reordered to increasing values.

- Example: Bruhat order on \mathfrak{S}_{3} :

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety

Bruhat

decomposition
Bruhat order
Nilpotent orbits

Bruhat order : more combinatorial descriptions

Bruhat order : more combinatorial descriptions

- The group \mathfrak{S}_{n} is generated by $s_{1}=(1,2), s_{2}=(2,3)$, $\ldots, s_{n-1}=(n-1, n)$. Let $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n-1\}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet We say that the word $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ is a reduced expression for $w \in \mathfrak{S}_{n}$ if $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ and if w is never equal to a product of s_{i} 's with $<k$ factors.

Bruhat order : more combinatorial descriptions

- The group \mathfrak{S}_{n} is generated by $s_{1}=(1,2), s_{2}=(2,3)$, $\ldots, s_{n-1}=(n-1, n)$. Let $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n-1\}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations We say that the word $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ is a reduced expression for $w \in \mathfrak{S}_{n}$ if $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ and if w is never equal to a product of s_{i} 's with $<k$ factors.

Theorem (Deodhar)

Let $w, w^{\prime} \in \mathfrak{S}_{n}$. Then the following are equivalent.

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Bruhat order : more combinatorial descriptions

- The group \mathfrak{S}_{n} is generated by $s_{1}=(1,2), s_{2}=(2,3)$, $\ldots, s_{n-1}=(n-1, n)$. Let $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n-1\}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations We say that the word $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ is a reduced expression for $w \in \mathfrak{S}_{n}$ if $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ and if w is never equal to a product of s_{i} 's with $<k$ factors.

Theorem (Deodhar)

Let $w, w^{\prime} \in \mathfrak{S}_{n}$. Then the following are equivalent.

1. $w \leq w^{\prime}$,

Bruhat order : more combinatorial descriptions

- The group \mathfrak{S}_{n} is generated by $s_{1}=(1,2), s_{2}=(2,3)$, $\ldots, s_{n-1}=(n-1, n)$. Let $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n-1\}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet We say that the word $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ is a reduced expression for $w \in \mathfrak{S}_{n}$ if $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ and if w is never equal to a product of s_{i} 's with $<k$ factors.

Theorem (Deodhar)

Let $w, w^{\prime} \in \mathfrak{S}_{n}$. Then the following are equivalent.

1. $w \leq w^{\prime}$,
2. There is a reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w^{\prime} and $1 \leq j_{1}<j_{2}<\cdots<j_{\ell} \leq k$ such that $s_{i_{j_{1}}} s_{i_{j_{2}}} \cdots s_{i_{j_{\ell}}}$ is a reduced expression of w. ("There is a reduced expression of w^{\prime} having a subword which is a reduced expression of $w^{\prime \prime}$),

Bruhat order : more combinatorial descriptions

- The group \mathfrak{S}_{n} is generated by $s_{1}=(1,2), s_{2}=(2,3)$, $\ldots, s_{n-1}=(n-1, n)$. Let $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n-1\}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet
We say that the word $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ is a reduced expression for $w \in \mathfrak{S}_{n}$ if $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ and if w is never equal to a product of s_{i} 's with $<k$ factors.

Theorem (Deodhar)

Let $w, w^{\prime} \in \mathfrak{S}_{n}$. Then the following are equivalent.

1. $w \leq w^{\prime}$,
2. There is a reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w^{\prime} and $1 \leq j_{1}<j_{2}<\cdots<j_{\ell} \leq k$ such that $s_{i_{j_{1}}} s_{i_{j_{2}}} \cdots s_{i_{j_{\ell}}}$ is a reduced expression of w. ("There is a reduced expression of w^{\prime} having a subword which is a reduced expression of $w^{\prime \prime}$),
3. For every reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w^{\prime}, there are $1 \leq j_{1}<j_{2}<\cdots<j_{\ell} \leq k$ such that $s_{i_{j_{1}}} s_{i_{j_{2}}} \cdots s_{i_{j_{\ell}}}$ is a reduced expression of w. ("Every reduced expression of w^{\prime} admits a subword which is a reduced expression of $w^{\prime \prime}$).

Bruhat order : more combinatorial descriptions

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
Thomas Gobet

Flags of vector spaces

Flag variety

Bruhat

decomposition
Bruhat order
Nilpotent orbits

Generalizations

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet
 Flags of vector spaces
 Flag variety
 Bruhat
 decomposition
 Bruhat order
 Nilpotent orbits

Generalizations

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

- The results presented above were presented in the case where G is the general linear group $\mathrm{GL}_{n}(\mathbb{C})$.

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Generalizations

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

- The results presented above were presented in the case where G is the general linear group $\mathrm{GL}_{n}(\mathbb{C})$. In fact, they can be generalized to the case of a so-called connected reductive algebraic group G.

Generalizations

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

- The results presented above were presented in the case where G is the general linear group $\mathrm{GL}_{n}(\mathbb{C})$. In fact, they can be generalized to the case of a so-called connected reductive algebraic group G. The group B ("upper triangular matrices") can still be defined ("Borel subgroup"), as well as the flag variety G / B.

Generalizations

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

- The results presented above were presented in the case where G is the general linear group $\mathrm{GL}_{n}(\mathbb{C})$. In fact, they can be generalized to the case of a so-called connected reductive algebraic group G. The group B ("upper triangular matrices") can still be defined ("Borel subgroup"), as well as the flag variety G / B.
- There are still finitely many B-orbits on G / B, and they are parametrized by a group W ("Weyl group") generalizing the symmetric group.

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Generalizations

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

- The results presented above were presented in the case where G is the general linear group $\mathrm{GL}_{n}(\mathbb{C})$. In fact, they can be generalized to the case of a so-called connected reductive algebraic group G. The group B ("upper triangular matrices") can still be defined ("Borel subgroup"), as well as the flag variety G / B.
- There are still finitely many B-orbits on G / B, and they are parametrized by a group W ("Weyl group") generalizing the symmetric group. The Weyl group is generated by a set S of involutions (in fact, it is a Coxeter group), and Deodhar's criterion is still valid to describe inclusions of orbit closures in G / B.

A similar situation : nilpotent orbits

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

Bruhat order

Nilpotent orbits

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.
- Let $u \in \mathrm{M}_{n}(\mathbb{C})$ be a nilpotent matrix such that $u^{2}=0$ and $u \neq 0$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.
- Let $u \in \mathrm{M}_{n}(\mathbb{C})$ be a nilpotent matrix such that $u^{2}=0$ and $u \neq 0$. Let $r:=\operatorname{rank}(u)$. Consider the subgroup $Z:=\{g \in G \mid g u=u g\}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.
- Let $u \in \mathrm{M}_{n}(\mathbb{C})$ be a nilpotent matrix such that $u^{2}=0$ and $u \neq 0$. Let $r:=\operatorname{rank}(u)$. Consider the subgroup $Z:=\{g \in G \mid g u=u g\}$. Then it can be shown that the action of Z on G / B has finitely many orbits.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.
- Let $u \in \mathrm{M}_{n}(\mathbb{C})$ be a nilpotent matrix such that $u^{2}=0$ and $u \neq 0$. Let $r:=\operatorname{rank}(u)$. Consider the subgroup $Z:=\{g \in G \mid g u=u g\}$. Then it can be shown that the action of Z on G / B has finitely many orbits.
- Let W_{r} be the subset of \mathfrak{S}_{n} containing those w such that $w(r+1)<\cdots<w(n-r)$ and $w(n-r+1)<\cdots<w(n)$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.
- Let $u \in \mathrm{M}_{n}(\mathbb{C})$ be a nilpotent matrix such that $u^{2}=0$ and $u \neq 0$. Let $r:=\operatorname{rank}(u)$. Consider the subgroup $Z:=\{g \in G \mid g u=u g\}$. Then it can be shown that the action of Z on G / B has finitely many orbits.
- Let W_{r} be the subset of \mathfrak{S}_{n} containing those w such that $w(r+1)<\cdots<w(n-r)$ and $w(n-r+1)<\cdots<w(n)$.
- Let $P_{r}:=\left\langle s_{r+1}, \ldots, s_{n-r-1}, s_{n-r+1}, \ldots, s_{n-1}\right\rangle \cong$ $\mathfrak{S}_{n-2 r} \times \mathfrak{S}_{r}$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.
- Let $u \in \mathrm{M}_{n}(\mathbb{C})$ be a nilpotent matrix such that $u^{2}=0$ and $u \neq 0$. Let $r:=\operatorname{rank}(u)$. Consider the subgroup $Z:=\{g \in G \mid g u=u g\}$. Then it can be shown that the action of Z on G / B has finitely many orbits.
- Let W_{r} be the subset of \mathfrak{S}_{n} containing those w such that $w(r+1)<\cdots<w(n-r)$ and $w(n-r+1)<\cdots<w(n)$.
- Let $P_{r}:=\left\langle s_{r+1}, \ldots, s_{n-r-1}, s_{n-r+1}, \ldots, s_{n-1}\right\rangle \cong$ $\mathfrak{S}_{n-2 r} \times \mathfrak{S}_{r}$. It is isomorphic to the subgroup

$$
P_{r}^{\prime}:=\left\{(x, w, x) \mid x \in \mathfrak{S}_{r}, w \in \mathfrak{S}_{n-2 r}\right\} \subseteq \mathfrak{S}_{n}
$$

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.
- Let $u \in \mathrm{M}_{n}(\mathbb{C})$ be a nilpotent matrix such that $u^{2}=0$ and $u \neq 0$. Let $r:=\operatorname{rank}(u)$. Consider the subgroup $Z:=\{g \in G \mid g u=u g\}$. Then it can be shown that the action of Z on G / B has finitely many orbits.
- Let W_{r} be the subset of \mathfrak{S}_{n} containing those w such that $w(r+1)<\cdots<w(n-r)$ and $w(n-r+1)<\cdots<w(n)$.
- Let $P_{r}:=\left\langle s_{r+1}, \ldots, s_{n-r-1}, s_{n-r+1}, \ldots, s_{n-1}\right\rangle \cong$ $\mathfrak{S}_{n-2 r} \times \mathfrak{S}_{r}$. It is isomorphic to the subgroup

$$
P_{r}^{\prime}:=\left\{(x, w, x) \mid x \in \mathfrak{S}_{r}, w \in \mathfrak{S}_{n-2 r}\right\} \subseteq \mathfrak{S}_{n}
$$

- We have

$$
\mathfrak{S}_{n}=\coprod_{w \in W_{r}} w P_{r}=\coprod_{w \in W_{r}} w P_{r}^{\prime}
$$

A similar situation : nilpotent orbits

- There are similar situations arising when considering the action of other subgroups of $G=\mathrm{GL}_{n}(\mathbb{C})$ on G / B.
- Let $u \in \mathrm{M}_{n}(\mathbb{C})$ be a nilpotent matrix such that $u^{2}=0$ and $u \neq 0$. Let $r:=\operatorname{rank}(u)$. Consider the subgroup $Z:=\{g \in G \mid g u=u g\}$. Then it can be shown that the action of Z on G / B has finitely many orbits.
- Let W_{r} be the subset of \mathfrak{S}_{n} containing those w such that $w(r+1)<\cdots<w(n-r)$ and $w(n-r+1)<\cdots<w(n)$.
- Let $P_{r}:=\left\langle s_{r+1}, \ldots, s_{n-r-1}, s_{n-r+1}, \ldots, s_{n-1}\right\rangle \cong$ $\mathfrak{S}_{n-2 r} \times \mathfrak{S}_{r}$. It is isomorphic to the subgroup

$$
P_{r}^{\prime}:=\left\{(x, w, x) \mid x \in \mathfrak{S}_{r}, w \in \mathfrak{S}_{n-2 r}\right\} \subseteq \mathfrak{S}_{n}
$$

- We have

$$
\mathfrak{S}_{n}=\coprod_{w \in W_{r}} w P_{r}=\coprod_{w \in W_{r}} w P_{r}^{\prime}
$$

For $w \in W_{r}$ we set $[w]:=w P_{r}^{\prime}$

Parametrization and orbit closures of a family of nilpotent orbits

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety
Bruhat
decomposition
Bruhat order
Nilpotent orbits

Parametrization and orbit closures of a family of nilpotent orbits

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Theorem (Boos-Reineke 2012, Bender-Perrin 2019, Chaput-Fresse-G. 2020)

We have the following:

Flags of vector spaces

Flag variety
Bruhat
decomposition

Parametrization and orbit closures of a family of nilpotent orbits

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Theorem (Boos-Reineke 2012, Bender-Perrin 2019, Chaput-Fresse-G. 2020)

We have the following:

1. The Z-orbits on G / B are parametrized by the set W_{r}. For $w \in W_{r}$ we denote by \mathcal{O}_{w} the corresponding orbit.

Parametrization and orbit closures of a family of nilpotent orbits

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Theorem (Boos-Reineke 2012, Bender-Perrin 2019, Chaput-Fresse-G. 2020)

We have the following:

1. The Z-orbits on G / B are parametrized by the set W_{r}. For $w \in W_{r}$ we denote by \mathcal{O}_{w} the corresponding orbit.
2. For $w, w^{\prime} \in W_{r}$, we have $\mathcal{O}_{w} \subseteq \overline{\mathcal{O}_{w^{\prime}}}$ if and only if there is $u \in[w]=w P_{r}^{\prime}$ such that $u \leq w^{\prime}$ (strong Bruhat order).

Example : $n=4, r=2$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations
 Thomas Gobet

Flags of vector spaces

Flag variety

Bruhat
decomposition
Bruhat order
Nilpotent orbits

Example : $n=4, r=2$.

A nontrivial order on the symmetric group: the Bruhat order, and generalizations

Thomas Gobet

Flags of vector spaces

Flag variety

Bruhat

decomposition

Bruhat order

Nilpotent orbits

Figure: Partial order describing inclusions of orbit closures for $n=4, r=2$.

