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> Let n > 1. A (complete) flagin V' = C" is a sequence Thomas Gobet
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Flags of vector spaces

» Let n > 1. A (complete) flagin V = C" is a sequence
Ww={0}CcVcCcWhc...CV,=V
of subspaces of V' such that dim¢(V;) = i for all

0<7<n.

» Example : for n =2, a flagin V = C? is simply given
by a line. Thus the set of flags is given by P(V) in that
case.
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» Let n > 1. A (complete) flagin V = C" is a sequence

Flags of vector
spaces

Vo={0tcncwnc - CV,=V
of subspaces of V' such that dim¢(V;) = i for all
0<7<n.

» Example : for n =2, a flagin V = C? is simply given
by a line. Thus the set of flags is given by P(V) in that
case.

» Since the group G = GL,(C) of complex invertible

matrices of size n x n acts transitively on bases of
V = C", it also acts transitively on the set of flags in V
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» Let n > 1. A (complete) flagin V = C" is a sequence

Flags of vector
spaces

Ww={0tcWVchc...CV,=V

of subspaces of V' such that dim¢(V;) = i for all
0<7<n.

» Example : for n =2, a flagin V = C? is simply given
by a line. Thus the set of flags is given by P(V) in that
case.

» Since the group G = GL,(C) of complex invertible
matrices of size n x n acts transitively on bases of
V = C", it also acts transitively on the set of flags in V
(for if dimc(V;) =i and g € G, we have
dimg(g(V;)) =i as g is invertible).
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» Consider the canonical basis (¢;) of C" and the Thomas Gobet
standard flag Flogs of vector
Flag variety
s = 0C (e1) C(er,e2) T Cley,en,....en)=V. ..
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» Consider the canonical basis (e;) of C™ and the
Flags of vector

standard flag spaces
s = 0C(e1) C(e1,e2) S~ Cler,en,...,eq) =V.

» Since G = GL,,(C) acts transitively on the set of flags,
by basic group theory we can identify the set of flags

with G/Stabg(s).



A nontrivial order

Flags of vector spaces, Il on the symmetric

group: the Bruhat
order, and
generalizations

Thomas Gobet
» Consider the canonical basis (e;) of C™ and the
Flags of vector

standard flag spaces
s = 0C(e1) C(e1,e2) S~ Cler,en,...,eq) =V.

» Since G = GL,,(C) acts transitively on the set of flags,
by basic group theory we can identify the set of flags
with G/Stabg(s).

» The stabilizer of the standard flag is nothing but the
subgroup B C G of upper-triangular matrices.
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» Consider the canonical basis (e;) of C™ and the
Flags of vector

standard flag spaces
s = 0C(e1) C(e1,e2) S~ Cler,en,...,eq) =V.

» Since G = GL,,(C) acts transitively on the set of flags,
by basic group theory we can identify the set of flags
with G/Stabg(s).

» The stabilizer of the standard flag is nothing but the
subgroup B C G of upper-triangular matrices.

» Therefore, we have a one-to-one correspondence

{Complete flags in V'} SN G/B={gB|gecG}.
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Focusing on n = 2

» \We already noticed that G/B is in bijection with P(V)
in that case... For geometrically-minded people this is
nothing but the Riemann sphere = C[[{oc}.
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» \We already noticed that G/B is in bijection with P(V)

in that case... For geometrically-minded people this is pECERS
nothing but the Riemann sphere = C[[{o0}.
> Note that

{(1,0)} U{(a,1) [ a € C}

yields a parametrizing set for P(V).
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» \We already noticed that G/B is in bijection with P(V)

in that case... For geometrically-minded people this is pECERS
nothing but the Riemann sphere = C[[{o0}.
> Note that

{(1,0)} U{(a,1) [ a € C}

yields a parametrizing set for P(V'). Note that, for
a,b € C, we have

6 ") ()=6)
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» \We already noticed that G/B is in bijection with P(V)

in that case... For geometrically-minded people this is pECERS
nothing but the Riemann sphere = C[[{o0}.
> Note that

{(1,0)} U{(a,1) [ a € C}

yields a parametrizing set for P(V'). Note that, for
a,b € C, we have

1 b—a\ fa) _ (b
0 1 1) \1
» So, the action of B on P(V') has two orbits : the
Vv

singleton {s = (0 C (e1) C V)}, and a dense orbit
C=P(V)\{s}.
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» A subset W of V' = C" is algebraic if there is a family
(P;);er of polynomials in C[X7, X, -+, X,,] such that

W ={z = (z1,..

S Zp) €V | Pi(x,..
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» A subset W of V' = C" is algebraic if there is a family
(P;);er of polynomials in C[X7, X, -+, X,,] such that

Thomas Gobet

Flags of vector
spaces

W = {Ix = (Ix]_,. . ,Ixn) evVv | _Pi(x]_,. .. ,Ixn) =0 Vl} Flag variety
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» A subset W of V = C" is algebraic if there is a family Thomas Gobet

(P;);er of polynomials in C[X7, X, -+, X,,] such that

W = {.’1}' = (.’1}'1,... ,.’En) c V | B(.’El,... ,.’En) = 0 VZ} Flag variety

» Example : n = 1. Every nonzero polynomial has finitely
many roots.
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» A subset W of V = C" is algebraic if there is a family Thomas Gobet

(P;);er of polynomials in C[X7, X, -+, X,,] such that

W = {.’13 = (.’131,... ,.’En) c V | B(.’El,... ,.’En) = 0 VZ} Flag variety

» Example : n = 1. Every nonzero polynomial has finitely
many roots. Conversely, for every finite subset W of C,
there is a polynomial in C whose roots are exactly the
elements of .
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» A subset W of V = C" is algebraic if there is a family Thomas Gobet

(P;);er of polynomials in C[X7, X, -+, X,,] such that

W = {.’13 = (.’131,... ,.’En) c V | .Pi(.’]jl,... ,.’En) = 0 VZ} Flag variety

» Example : n = 1. Every nonzero polynomial has finitely
many roots. Conversely, for every finite subset W of C,
there is a polynomial in C whose roots are exactly the
elements of W. Hence the algebraic subsets of C are C,
the empty set, and finite subsets of C.
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» A subset W of V = C" is algebraic if there is a family Thomas Gobet

(P;);er of polynomials in C[X7, X, -+, X,,] such that

W = {.’13 = (.’131,... ,.’En) c V | .Pi(.’]jl,... ,.’En) = 0 VZ} Flag variety

» Example : n = 1. Every nonzero polynomial has finitely
many roots. Conversely, for every finite subset W of C,
there is a polynomial in C whose roots are exactly the
elements of W. Hence the algebraic subsets of C are C,
the empty set, and finite subsets of C.

» Similarly, one can define algebraic subsets of P(V'): one
just replaces polynomials by homogeneous polynomials.
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Zariski topology on V' and P(V)

» Exercise : the set of algebraic subsets of V' (or P(V))
are the closed subsets of a topology on V' (or P(V)),
the Zariski topology.

» Every Zariski-open (or closed) subset of V' is open (or
closed) for the usual topology on V.
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Zariski topology on V' and P(V)

» Exercise : the set of algebraic subsets of V' (or P(V))
are the closed subsets of a topology on V' (or P(V)),
the Zariski topology.

» Every Zariski-open (or closed) subset of V' is open (or
closed) for the usual topology on V. The converse is
false, there are many more open subsets than
Zariski-open subsets.
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Zariski topology on V' and P(V)

» Exercise : the set of algebraic subsets of V' (or P(V))
are the closed subsets of a topology on V' (or P(V)),
the Zariski topology.

» Every Zariski-open (or closed) subset of V' is open (or
closed) for the usual topology on V. The converse is
false, there are many more open subsets than
Zariski-open subsets.

» For instance, for n = 1, every nonempty Zariski-open
subset of V' = C is dense !

A nontrivial order
on the symmetric
group: the Bruhat
order, and
generalizations

Thomas Gobet

Flag variety



A nontrivial order

Zariski topology on V and P(V) o e et

group: the Bruhat

order, and
generalizations
» Exercise : the set of algebraic subsets of V' (or P(V)) Thomas Gobet
are the closed subsets of a topology on V' (or P(V)),
the Zariski topology. S
ag variety

» Every Zariski-open (or closed) subset of V' is open (or
closed) for the usual topology on V. The converse is
false, there are many more open subsets than
Zariski-open subsets.

» For instance, for n = 1, every nonempty Zariski-open
subset of V' = C is dense ! In fact, this is true in
general: every nonempty Zariski-open subset of C” is
dense.
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» Exercise : the set of algebraic subsets of V' (or P(V)) Thomas Gobet
are the closed subsets of a topology on V' (or P(V)),
the Zariski topology. S
ag variety

» Every Zariski-open (or closed) subset of V' is open (or
closed) for the usual topology on V. The converse is
false, there are many more open subsets than
Zariski-open subsets.

» For instance, for n = 1, every nonempty Zariski-open
subset of V' = C is dense ! In fact, this is true in
general: every nonempty Zariski-open subset of C” is
dense.

» Algebraic subsets of V' are called affine algebraic
varieties.
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» Exercise : the set of algebraic subsets of V' (or P(V)) Thomas Gobet
are the closed subsets of a topology on V' (or P(V)),
the Zariski topology. S
ag variety

» Every Zariski-open (or closed) subset of V' is open (or
closed) for the usual topology on V. The converse is
false, there are many more open subsets than
Zariski-open subsets.

» For instance, for n = 1, every nonempty Zariski-open
subset of V' = C is dense ! In fact, this is true in
general: every nonempty Zariski-open subset of C” is
dense.

» Algebraic subsets of V' are called affine algebraic
varieties. Algebraic subsets of P(V') are called projective
algebraic varieties.
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» For n = 2, we observed that the set of flagsin V' = C2
is in bijection with P(V). Flags of vector
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More structure on the set of flags

» For n = 2, we observed that the set of flags in V = C?
is in bijection with P(V'). In general, one can embed
G/B into P(V') for some complex vector space V' (in
general bigger than V') in such a way that the image is
an algebraic subset of P(V”).

A nontrivial order
on the symmetric
group: the Bruhat
order, and
generalizations

Thomas Gobet

Flag variety



More structure on the set of flags

» For n = 2, we observed that the set of flags in V = C?
is in bijection with P(V'). In general, one can embed
G/B into P(V') for some complex vector space V' (in
general bigger than V') in such a way that the image is
an algebraic subset of P(V'). This allows one to view
G/ B as a projective algebraic variety.
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More structure on the set of flags

» For n = 2, we observed that the set of flags in V = C?
is in bijection with P(V'). In general, one can embed
G/B into P(V') for some complex vector space V' (in
general bigger than V') in such a way that the image is
an algebraic subset of P(V'). This allows one to view
G /B as a projective algebraic variety. And this is why
G/B is called the flag variety.
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More structure on the set of flags

» For n = 2, we observed that the set of flags in V = C?
is in bijection with P(V'). In general, one can embed
G/B into P(V') for some complex vector space V' (in
general bigger than V') in such a way that the image is
an algebraic subset of P(V'). This allows one to view
G /B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:
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More structure on the set of flags

» For n = 2, we observed that the set of flags in V = C?
is in bijection with P(V'). In general, one can embed
G/B into P(V') for some complex vector space V' (in
general bigger than V') in such a way that the image is
an algebraic subset of P(V'). This allows one to view
G /B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:

» What can be said about orbits of B on X = G/B for
n>27
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More structure on the set of flags

» For n = 2, we observed that the set of flags in V = C?
is in bijection with P(V'). In general, one can embed
G/B into P(V') for some complex vector space V' (in
general bigger than V') in such a way that the image is
an algebraic subset of P(V'). This allows one to view
G /B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:

» What can be said about orbits of B on X = G/B for
n > 2 7 Are there always finitely many orbits 7
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» For n = 2, we observed that the set of flags in V = C?
is in bijection with P(V'). In general, one can embed
G/B into P(V') for some complex vector space V' (in Flag variety
general bigger than V') in such a way that the image is
an algebraic subset of P(V'). This allows one to view
G /B as a projective algebraic variety. And this is why

G/B is called the flag variety.
A few questions naturally arise:

» What can be said about orbits of B on X = G/B for
n > 2 7 Are there always finitely many orbits ? Is there
a nice parametrizing set 7
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More structure on the set of flags onithe symmetric
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» For n = 2, we observed that the set of flags in V = C?
is in bijection with P(V'). In general, one can embed
G/B into P(V') for some complex vector space V' (in Flag variety
general bigger than V') in such a way that the image is
an algebraic subset of P(V'). This allows one to view
G /B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:

» What can be said about orbits of B on X = G/B for
n > 2 7 Are there always finitely many orbits ? Is there
a nice parametrizing set 7

» Can we describe the partial order induced by inclusions
of B-orbit closures ?
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One can represent w by the attached permutation Flags of vector
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Bruhat decomposition of GL,,

> Let
we&,={o:{l,...,n} = {1,...,n} | o bijective}.
One can represent w by the attached permutation
matrix in GL,,(C), which we still denote w. It is defined
by w- e = ew(i).
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Bruhat decomposition of GL,,

> Let
we&,={o:{l,...,n} = {1,...,n} | o bijective}.
One can represent w by the attached permutation
matrix in GL,,(C), which we still denote w. It is defined
by w - €; = ey i)

» For n = 2, we already observed that there are two
B-orbits on G/B, namely the singleton O; := {s}, and
a dense orbit Oy := P(V)\{s}.
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> Let
we&,={o:{l,...,n} = {1,...,n} | o bijective}.
One can represent w by the attached permutation
matrix in GL,,(C), which we still denote w. It is defined
by w - €; = ey i) _

» For n = 2, we already observed that there are two decomposition
B-orbits on G/B, namely the singleton O; := {s}, and
a dense orbit Oy := P(V)\{s}. Note that a
representative of Oy is given by the other
"permutation” flag

Thomas Gobet
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Bruhat decomposition of GL,,

> Let

we&,={o:{l,...,n} = {1,...,n} | o bijective}.
One can represent w by the attached permutation
matrix in GL,,(C), which we still denote w. It is defined

by w - €; = ey i)

» For n = 2, we already observed that there are two
B-orbits on G/B, namely the singleton O; := {s}, and
a dense orbit Oy := P(V)\{s}. Note that a
representative of Oy is given by the other

"permutation” flag

Setting w = s1 = (1, 2), with corresponding matrix

(

0
10

s 0C(e) CV.

1
, we have w-s =¢'.
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we6,={c:{1,....,n} = {1,...,n} | o bijective}. Thomas Gobet
One can represent w by the attached permutation
matrix in GL,,(C), which we still denote w. It is defined
by w - €; = ey i) _
» For n = 2, we already observed that there are two decomposition
B-orbits on G/B, namely the singleton O; := {s}, and
a dense orbit Oy := P(V)\{s}. Note that a
representative of Oy is given by the other
"permutation” flag

s 0C(e) CV.
Setting w = s1 = (1, 2), with corresponding matrix
<(1) (1)> we have w - s = s, In other words, the

B-orbits on G/B are parametrized by the elements of
OSs.
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Theorem (Bruhat decomposition of GL,,)
For x € G = GL,(C), let BzB := {bxzb/ | b,b' € B}. We

have Bruhat N
GL”(C) = H B’LUB decomposition
weG,
Corollary
We have

G/B= [[ BwB/B

weS,

and hence, the B-orbits on G/B are parametrized by S,,.
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» For n = 2 we thus have GLy(C) = B[] Bs1 B.
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» For n = 2 we thus have GLo(C) = B[] Bs1B. Indeed,

Flag variety
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» For n = 2 we thus have GLy(C) = B[] Bs1B. Indeed,
Bruhat

let A= <Z Z) € GLQ(C) If c=0 then A € B. decomposition

Otherwise, note that

becad 4\ (0 1\ (¢ d
A‘(o 1)(1 0)(0 1)'

—_—
€B =s1 eB
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» Let us come back to the case where n = 2. Let

v = (a,b) € V\{(0,0)}.
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» Let us come back to the case where n = 2. Let
v =(a,b) € V\{(0,0)}. Let P=0bX —aY € C[X,Y].
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Orbit closures (n = 2)

P Let us come back to the case where n = 2. Let
v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].
Then P is homogeneous, and the corresponding
algebraic set in P(V) is given by the singleton {(v)}.
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Orbit closures (n = 2)

P Let us come back to the case where n = 2. Let
v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].
Then P is homogeneous, and the corresponding
algebraic set in P(V) is given by the singleton {(v)}.
Hence points in P(V') are closed.

A nontrivial order
on the symmetric
group: the Bruhat
order, and
generalizations

Thomas Gobet

Bruhat order



Orbit closures (n = 2)

P Let us come back to the case where n = 2. Let
v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].
Then P is homogeneous, and the corresponding
algebraic set in P(V) is given by the singleton {(v)}.
Hence points in P(V') are closed. In particular, Oy is a
closed orbit.
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Orbit closures (n = 2)

P Let us come back to the case where n = 2. Let
v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].
Then P is homogeneous, and the corresponding
algebraic set in P(V) is given by the singleton {(v)}.
Hence points in P(V') are closed. In particular, Oy is a
closed orbit. And hence Oy = P(V)\{O1} is open.
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Orbit closures (n = 2)

P Let us come back to the case where n = 2. Let
v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].
Then P is homogeneous, and the corresponding
algebraic set in P(V) is given by the singleton {(v)}.
Hence points in P(V') are closed. In particular, Oy is a
closed orbit. And hence Oy = P(V)\{O1} is open.

» If Oy was closed, then there would be a family (P;);es
of two-variable homogeneous polynomials having as
common vanishing set the complement V'\ L of the line
L := (e1). Let @ = P, (i € I) be nonzero.
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P Let us come back to the case where n = 2. Let
v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].
Then P is homogeneous, and the corresponding
algebraic set in P(V) is given by the singleton {(v)}.
Hence points in P(V') are closed. In particular, Oy is a
closed orbit. And hence Oy = P(V)\{O1} is open.

» If Oy was closed, then there would be a family (P;);es
of two-variable homogeneous polynomials having as
common vanishing set the complement V'\ L of the line
L := (e1). Let @ = P; (i € I) be nonzero. It vanishes
on V\L.
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Orbit closures (n = 2)

P Let us come back to the case where n = 2. Let
v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].
Then P is homogeneous, and the corresponding
algebraic set in P(V) is given by the singleton {(v)}.
Hence points in P(V') are closed. In particular, Oy is a
closed orbit. And hence Oy = P(V)\{O1} is open.

» If Oy was closed, then there would be a family (P;);es
of two-variable homogeneous polynomials having as
common vanishing set the complement V'\ L of the line
L := (e1). Let @ = P; (i € I) be nonzero. It vanishes
on V\L. Now we already saw that there is a nonzero
polynomial R in C[X,Y] vanishing on L.
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v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].

Then P is homogeneous, and the corresponding

algebraic set in P(V) is given by the singleton {(v)}.

Hence points in P(V') are closed. In particular, Oy is a

closed orbit. And hence Oy = P(V)\{O1} is open. Brohat order

» If Oy was closed, then there would be a family (P;);es
of two-variable homogeneous polynomials having as
common vanishing set the complement V'\ L of the line
L := (e1). Let @ = P; (i € I) be nonzero. It vanishes
on V\L. Now we already saw that there is a nonzero
polynomial R in C[X,Y] vanishing on L. Hence QR is
a nonzero polynomial vanishing on V', which is
impossible.
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» Let us come back to the case where n = 2. Let ! '

v =(a,b) € V\{(0,0)}. Let P =0bX —aY € C[X,Y].

Then P is homogeneous, and the corresponding

algebraic set in P(V) is given by the singleton {(v)}.

Hence points in P(V') are closed. In particular, Oy is a

closed orbit. And hence Oy = P(V)\{O1} is open. Brohat order

» If Oy was closed, then there would be a family (P;);es
of two-variable homogeneous polynomials having as
common vanishing set the complement V'\ L of the line
L := (e1). Let @ = P; (i € I) be nonzero. It vanishes
on V\L. Now we already saw that there is a nonzero
polynomial R in C[X,Y] vanishing on L. Hence QR is
a nonzero polynomial vanishing on V', which is
impossible. Hence O, is not closed, and Oy = O; U Os.
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G /B parametrized by w € &,,.
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G /B parametrized by w € G,,. Let v’ € &,,.
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G/ B parametrized by w € &,,. Let v’ € &,,. Set

w<w if

Ouw C Oy .
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G/ B parametrized by w € &,,. Let v’ € &,,. Set
w<w if

Ow € Oy

Then < defines a partial order on &,,.
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G/ B parametrized by w € &,,. Let v’ € &,,. Set
w<w if

O € Oy

Then < defines a partial order on &,,. Reflexivity and
transitivity are clear.
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G/ B parametrized by w € &,,. Let v’ € &,,. Set
w<w if

Ow € Oy

Then < defines a partial order on &,,. Reflexivity and
transitivity are clear. For antisymmetry, let w,w’ such
that w < w’ and v’ < w.
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G/ B parametrized by w € &,,. Let v’ € &,,. Set
w<w if

Ow € Oy

Then < defines a partial order on &,,. Reflexivity and
transitivity are clear. For antisymmetry, let w,w’ such
that w < w’ and w’ < w. Then O, = O, .
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Orbit closures

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G/ B parametrized by w € &,,. Let v’ € &,,. Set
w<w if

Ow € Oy

Then < defines a partial order on &,,. Reflexivity and
transitivity are clear. For antisymmetry, let w,w’ such
that w < w’ and W’ < w. Then O, = O,. There is a
unique orbit of maximal dimension in both closures,
given by O, = O,,. Hence w = w'.
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P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of
G/ B parametrized by w € &,,. Let v’ € &,,. Set
w<w if

Thomas Gobet

Bruhat order
Ow € Oy

Then < defines a partial order on &,,. Reflexivity and
transitivity are clear. For antisymmetry, let w,w’ such
that w < w’ and W’ < w. Then O, = O,. There is a
unique orbit of maximal dimension in both closures,
given by O, = O,,. Hence w = w'.

» The above-defined partial order was first introduced by
Ehresmann in 1934.



Orbit closures S

group: the Bruhat
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generalizations

P It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

» Let O, := BwB/B ("Schubert cell”) be the B-orbit of

G/ B parametrized by w € &,,. Let v’ € &,,. Set
w < w if

Thomas Gobet

Bruhat order
Ow € Oy

Then < defines a partial order on &,,. Reflexivity and
transitivity are clear. For antisymmetry, let w,w’ such
that w < w’ and W’ < w. Then O, = O,. There is a
unique orbit of maximal dimension in both closures,
given by O, = O,,. Hence w = w'.

» The above-defined partial order was first introduced by
Ehresmann in 1934. It is called the (strong) Bruhat
order in reference to the Bruhat decomposition of G.
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Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let w,w' € &,,. We have w < w' if and only if

(UJ(l), UJ(2), s )w(d))r.t.i.v. S (w/(l)a ’LU/(2), °coo 7w/(d))r.t.i.v.
for all 1 < d <n — 1, where r.t.i.v.=reordered to increasing
values.
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Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let w,w' € &,,. We have w < w' if and only if

(UJ(l), UJ(2), s )w(d))r.t.i.v. S (w/(l)a ’LU/(2), °coo 7w/(d))r.t.i.v.
for all 1 < d <n — 1, where r.t.i.v.=reordered to increasing
values.

» Example : Bruhat order on G3:
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Bruhat order : combinatorial description on the symrmetric
o e
generalizations

Theorem (Improved tableau criterion) e Gl

Let w,w' € &,,. We have w < w' if and only if
(UJ(l), UJ(2), s )w(d))r.t.i.v. S (w/(l)a ’LU/(2), °coo 7w/(d))r.t.i.v.
for all 1 < d <n — 1, where r.t.i.v.=reordered to increasing

values.
Bruhat order

» Example : Bruhat order on G3:
(1,3)

(1,2,3) (1,3,2)

(1,2) (2,3)
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Bruhat order : more combinatorial descriptions

» The group &,, is generated by s1 = (1,2), 52 = (2, 3),
cooy8n—1 = (n—1,n). Let iy,ia,...,ix € {1,2,...,n —1}.
We say that the word s;, 84, - - - 84, is a reduced expression for
w e G, if w=s;5;, -5 and if w is never equal to a
product of s;'s with < k factors.
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» The group &, is generated by s1 = (1,2), s2 = (2, 3),
ceoy8n—1 = (n—1,n). Let iy, is,..., i €{1,2,...,n—1}. homasicobet
We say that the word s;, 84, - - - 84, is a reduced expression for
w e G, if w=s;5;, -5 and if w is never equal to a
product of s;'s with < k factors.

Theorem (Deodhar)

Let w,w' € &,,. Then the following are equivalent.
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» The group &, is generated by s1 = (1,2), s2 = (2, 3),
ceoy8n—1 = (n—1,n). Let iy, is,..., i €{1,2,...,n—1}. homasicobet
We say that the word s;, 84, - - - 84, is a reduced expression for
w e G, if w=s;5;, -5 and if w is never equal to a
product of s;'s with < k factors.

Theorem (Deodhar)

Let w,w' € &,,. Then the following are equivalent.
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» The group &, is generated by s1 = (1,2), s2 = (2, 3),
ceoy8n—1 = (n—1,n). Let iy, is,..., i €{1,2,...,n—1}. homasicobet
We say that the word s;, 84, - - - 84, is a reduced expression for
w e G, if w=s;5;, -5 and if w is never equal to a
product of s;'s with < k factors.

Theorem (Deodhar)

Let w,w' € &,,. Then the following are equivalent.

Bruhat order

1. w <,

2. There is a reduced expression s;, i, + - - s;,, of w' and
1 <51 <jo2<---<jp <k such that Sij, Siz, " Sig, is a
reduced expression of w. (



A nontrivial order

Bruhat order : more combinatorial descriptions Gt oy ineiie

group: the Bruhat
order, and
generalizations

» The group &, is generated by s1 = (1,2), s2 = (2, 3),
ceoy8n—1 = (n—1,n). Let iy, is,..., i €{1,2,...,n—1}. homasicobet
We say that the word s;, 84, - - - 84, is a reduced expression for
w e G, if w=s;5;, -5 and if w is never equal to a
product of s;'s with < k factors.

Theorem (Deodhar)

Let w,w' € &,,. Then the following are equivalent.

Bruhat order

1. w <,

2. There is a reduced expression s;, i, + - - s;,, of w' and
1 <51 <jo2<---<jp <k such that Sij, Siz, " Sig, is a
reduced expression of w. (

3. For every reduced expression s;, S;, - - - S;,, of w', there are
1 <51 <jo2<---<jp <k such that Sijy Siz, " Sig, is a
reduced expression of w. (
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» The results presented above were presented in the case
where G is the general linear group GL,,(C). PR

Flag variety

Flags of vector

Bruhat
decomposition

Bruhat order

Nilpotent orbits

«O» «F)r <

it

v
it

v
[

DA



Generalizations

» The results presented above were presented in the case
where G is the general linear group GL,(C). In fact,
they can be generalized to the case of a so-called
connected reductive algebraic group G.
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Generalizations

» The results presented above were presented in the case
where G is the general linear group GL,(C). In fact,
they can be generalized to the case of a so-called
connected reductive algebraic group G. The group B
("upper triangular matrices”) can still be defined
(" Borel subgroup™), as well as the flag variety G/B.
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Generalizations

» The results presented above were presented in the case
where G is the general linear group GL,(C). In fact,
they can be generalized to the case of a so-called
connected reductive algebraic group G. The group B
("upper triangular matrices”) can still be defined
(" Borel subgroup™), as well as the flag variety G/B.

» There are still finitely many B-orbits on G/B, and they
are parametrized by a group W ("Weyl group”)
generalizing the symmetric group.
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Generalizations

» The results presented above were presented in the case
where G is the general linear group GL,(C). In fact,
they can be generalized to the case of a so-called
connected reductive algebraic group G. The group B
("upper triangular matrices”) can still be defined
(" Borel subgroup™), as well as the flag variety G/B.

» There are still finitely many B-orbits on G/B, and they
are parametrized by a group W ("Weyl group”)
generalizing the symmetric group. The Weyl group is
generated by a set S of involutions (in fact, it is a
Coxeter group), and Deodhar's criterion is still valid to
describe inclusions of orbit closures in G/B.
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A similar situation : nilpotent orbits

» There are similar situations arising when considering the
action of other subgroups of G = GL,,(C) on G/B.

» Let u € M,(C) be a nilpotent matrix such that u? = 0
and u # 0.
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A similar situation : nilpotent orbits

» There are similar situations arising when considering the
action of other subgroups of G = GL,,(C) on G/B.

» Let u € M,(C) be a nilpotent matrix such that u? = 0
and u # 0. Let r := rank(u). Consider the subgroup
Z:={g9g€ G| gu=ug}.

A nontrivial order
on the symmetric
group: the Bruhat
order, and
generalizations

Thomas Gobet

Nilpotent orbits



A similar situation : nilpotent orbits

» There are similar situations arising when considering the
action of other subgroups of G = GL,,(C) on G/B.

» Let u € M,(C) be a nilpotent matrix such that u? = 0
and u # 0. Let r := rank(u). Consider the subgroup
Z :={g € G| gu=ug}. Then it can be shown that
the action of Z on /B has finitely many orbits.
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A similar situation : nilpotent orbits

» There are similar situations arising when considering the
action of other subgroups of G = GL,,(C) on G/B.

» Let u € M,(C) be a nilpotent matrix such that u? = 0
and u # 0. Let r := rank(u). Consider the subgroup
Z :={g € G| gu=ug}. Then it can be shown that
the action of Z on /B has finitely many orbits.

> Let W, be the subset of &,, containing those w such
that w(r +1) < --- <w(n —r) and
wn—r+1)<--- <wn).
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» There are similar situations arising when considering the RS
action of other subgroups of G = GL,,(C) on G/B. Uliziies Edbsi:
» Let u € M,(C) be a nilpotent matrix such that u? = 0
and u # 0. Let r := rank(u). Consider the subgroup
Z :={g € G| gu=ug}. Then it can be shown that
the action of Z on /B has finitely many orbits.
> Let W, be the subset of &,, containing those w such

that w(T + 1) < e K w(n — ’I") and Nilpotent orbits
wn—r+1)<--- <wn).
> Let Pri= (Spi1y--«ySn—r—1,Sn—rt1y--+sSn—1) =

Gn_gr X GT.



A similar situation : nilpotent orbits

>

>

There are similar situations arising when considering the
action of other subgroups of G = GL,,(C) on G/B.
Let u € M, (C) be a nilpotent matrix such that u? =0
and u # 0. Let r := rank(u). Consider the subgroup
Z :={g € G| gu=ug}. Then it can be shown that
the action of Z on /B has finitely many orbits.

Let W, be the subset of &,, containing those w such
that w(r +1) < --- <w(n —r) and
wn—r+1)<--- <wn).

Let P, := (8,-4.1, ey Sp—r—1,Sn—r41y--- ,Sn_1> =

G, —2r X 6,.. It is isomorphic to the subgroup

Pl :={(z,w,z) |z € &,,w € Sy_3,} C &,,.
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» There are similar situations arising when considering the RS
action of other subgroups of G = GL,,(C) on G/B. e Eobs
» Let u € M,(C) be a nilpotent matrix such that u? = 0
and u # 0. Let r := rank(u). Consider the subgroup
Z :={g € G| gu=ug}. Then it can be shown that
the action of Z on /B has finitely many orbits.
> Let W, be the subset of &,, containing those w such

that w(T + 1) < e K w(n — ’I") and Nilpotent orbits
wn—r+1)<--- <wn).
> Let Pri= (Spi1y--«ySn—r—1,Sn—rt1y--+sSn—1) =

Gn_2r X &,. It is isomorphic to the subgroup
P ={(z,w,z) |2 €&,we &S, 9} C6&,.
> We have

Gn= [ wP-= [] wP.
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A similar situation : nilpotent orbits

>

>

There are similar situations arising when considering the
action of other subgroups of G = GL,,(C) on G/B.
Let u € M, (C) be a nilpotent matrix such that u? =0
and u # 0. Let r := rank(u). Consider the subgroup
Z :={g € G| gu=ug}. Then it can be shown that
the action of Z on /B has finitely many orbits.

Let W, be the subset of &,, containing those w such
that w(r +1) < --- <w(n —r) and
wn—r+1)<--- <wn).

Let P, := (8,-4.1, ey Sp—r—1,Sn—r41y--- ,Sn_1> =

G, —2r X 6,.. It is isomorphic to the subgroup

Pl :={(z,w,z) |z € &,,w € Sy_3,} C &,,.

We have
Gn= [ wP-= [] wP.
wGWr 'LUGWT

For w € W, we set [w] := wP)
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Parametrization and orbit closures of a family of & 5mmene

group: the Bruhat
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Theorem (Boos-Reineke 2012, Bender-Perrin 2019,
Chaput-Fresse-G. 2020)
We have the following: Nipotent orbits

1. The Z-orbits on G/B are parametrized by the set W,.
For w € W, we denote by O,, the corresponding orbit.



A nontrivial order

Parametrization and orbit closures of a family of & 5mmene

- a group: the Bruhat
nilpotent orbits erder,and
genera izations

Thomas Gobet

Theorem (Boos-Reineke 2012, Bender-Perrin 2019,
Chaput-Fresse-G. 2020)

We have the following:

1. The Z-orbits on G/B are parametrized by the set W,.
For w € W, we denote by O,, the corresponding orbit.

2. For w,w’ € W,, we have O,, C O, if and only if there
is u € [w] = wP/ such that u < w' (strong Bruhat
order).
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Figure: Partial order describing inclusions of orbit closures for
n=4,r=2.
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