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Flags of vector spaces

◮ Let n ≥ 1. A (complete) flag in V = C
n is a sequence

V0 = {0} ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = V

of subspaces of V such that dimC(Vi) = i for all
0 ≤ i ≤ n.
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◮ Let n ≥ 1. A (complete) flag in V = C
n is a sequence

V0 = {0} ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = V

of subspaces of V such that dimC(Vi) = i for all
0 ≤ i ≤ n.

◮ Example : for n = 2, a flag in V = C
2 is simply given

by a line. Thus the set of flags is given by P(V ) in that
case.
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◮ Let n ≥ 1. A (complete) flag in V = C
n is a sequence

V0 = {0} ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = V

of subspaces of V such that dimC(Vi) = i for all
0 ≤ i ≤ n.

◮ Example : for n = 2, a flag in V = C
2 is simply given

by a line. Thus the set of flags is given by P(V ) in that
case.

◮ Since the group G = GLn(C) of complex invertible
matrices of size n× n acts transitively on bases of
V = C

n, it also acts transitively on the set of flags in V
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◮ Let n ≥ 1. A (complete) flag in V = C
n is a sequence

V0 = {0} ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = V

of subspaces of V such that dimC(Vi) = i for all
0 ≤ i ≤ n.

◮ Example : for n = 2, a flag in V = C
2 is simply given

by a line. Thus the set of flags is given by P(V ) in that
case.

◮ Since the group G = GLn(C) of complex invertible
matrices of size n× n acts transitively on bases of
V = C

n, it also acts transitively on the set of flags in V
(for if dimC(Vi) = i and g ∈ G, we have
dimC(g(Vi)) = i as g is invertible).
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◮ Consider the canonical basis (ei) of C
n and the

standard flag

s = 0 ⊆ 〈e1〉 ⊆ 〈e1, e2〉 ⊆ · · · ⊆ 〈e1, e2, . . . , en〉 = V.
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Flags of vector spaces, II

◮ Consider the canonical basis (ei) of C
n and the

standard flag

s = 0 ⊆ 〈e1〉 ⊆ 〈e1, e2〉 ⊆ · · · ⊆ 〈e1, e2, . . . , en〉 = V.

◮ Since G = GLn(C) acts transitively on the set of flags,
by basic group theory we can identify the set of flags
with G/StabG(s).
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Flags of vector spaces, II

◮ Consider the canonical basis (ei) of C
n and the

standard flag

s = 0 ⊆ 〈e1〉 ⊆ 〈e1, e2〉 ⊆ · · · ⊆ 〈e1, e2, . . . , en〉 = V.

◮ Since G = GLn(C) acts transitively on the set of flags,
by basic group theory we can identify the set of flags
with G/StabG(s).

◮ The stabilizer of the standard flag is nothing but the
subgroup B ⊆ G of upper-triangular matrices.
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Flags of vector spaces, II

◮ Consider the canonical basis (ei) of C
n and the

standard flag

s = 0 ⊆ 〈e1〉 ⊆ 〈e1, e2〉 ⊆ · · · ⊆ 〈e1, e2, . . . , en〉 = V.

◮ Since G = GLn(C) acts transitively on the set of flags,
by basic group theory we can identify the set of flags
with G/StabG(s).

◮ The stabilizer of the standard flag is nothing but the
subgroup B ⊆ G of upper-triangular matrices.

◮ Therefore, we have a one-to-one correspondence

{Complete flags in V }
1:1
←→ G/B = {gB | g ∈ G}.
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Focusing on n = 2

◮ We already noticed that G/B is in bijection with P(V )
in that case...
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◮ We already noticed that G/B is in bijection with P(V )
in that case... For geometrically-minded people this is
nothing but the Riemann sphere = C

∐
{∞}.
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Focusing on n = 2

◮ We already noticed that G/B is in bijection with P(V )
in that case... For geometrically-minded people this is
nothing but the Riemann sphere = C

∐
{∞}.

◮ Note that
{(1, 0)} ∪ {(a, 1) | a ∈ C}

yields a parametrizing set for P(V ).
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Focusing on n = 2

◮ We already noticed that G/B is in bijection with P(V )
in that case... For geometrically-minded people this is
nothing but the Riemann sphere = C

∐
{∞}.

◮ Note that
{(1, 0)} ∪ {(a, 1) | a ∈ C}

yields a parametrizing set for P(V ). Note that, for
a, b ∈ C, we have

(
1 b− a
0 1

)

·

(
a
1

)

=

(
b
1

)
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Focusing on n = 2

◮ We already noticed that G/B is in bijection with P(V )
in that case... For geometrically-minded people this is
nothing but the Riemann sphere = C

∐
{∞}.

◮ Note that
{(1, 0)} ∪ {(a, 1) | a ∈ C}

yields a parametrizing set for P(V ). Note that, for
a, b ∈ C, we have

(
1 b− a
0 1

)

·

(
a
1

)

=

(
b
1

)

◮ So, the action of B on P(V ) has two orbits : the
singleton {s = (0 ⊆ 〈e1〉 ⊆ V )}, and a dense orbit
C = P(V )\{s}.
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◮ A subset W of V = C
n is algebraic if there is a family

(Pi)i∈I of polynomials in C[X1,X2, · · · ,Xn] such that

W = {x = (x1, . . . , xn) ∈ V | Pi(x1, . . . , xn) = 0 ∀i}.
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◮ A subset W of V = C
n is algebraic if there is a family

(Pi)i∈I of polynomials in C[X1,X2, · · · ,Xn] such that

W = {x = (x1, . . . , xn) ∈ V | Pi(x1, . . . , xn) = 0 ∀i}.

”Solutions of polynomial equations”



A nontrivial order

on the symmetric

group: the Bruhat

order, and

generalizations

Thomas Gobet

Flags of vector

spaces

Flag variety

Bruhat

decomposition

Bruhat order

Nilpotent orbits

Zariski topology on V and P(V )

◮ A subset W of V = C
n is algebraic if there is a family

(Pi)i∈I of polynomials in C[X1,X2, · · · ,Xn] such that

W = {x = (x1, . . . , xn) ∈ V | Pi(x1, . . . , xn) = 0 ∀i}.

”Solutions of polynomial equations”

◮ Example : n = 1. Every nonzero polynomial has finitely
many roots.
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◮ A subset W of V = C
n is algebraic if there is a family

(Pi)i∈I of polynomials in C[X1,X2, · · · ,Xn] such that

W = {x = (x1, . . . , xn) ∈ V | Pi(x1, . . . , xn) = 0 ∀i}.

”Solutions of polynomial equations”

◮ Example : n = 1. Every nonzero polynomial has finitely
many roots. Conversely, for every finite subset W of C,
there is a polynomial in C whose roots are exactly the
elements of W .
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◮ A subset W of V = C
n is algebraic if there is a family

(Pi)i∈I of polynomials in C[X1,X2, · · · ,Xn] such that

W = {x = (x1, . . . , xn) ∈ V | Pi(x1, . . . , xn) = 0 ∀i}.

”Solutions of polynomial equations”

◮ Example : n = 1. Every nonzero polynomial has finitely
many roots. Conversely, for every finite subset W of C,
there is a polynomial in C whose roots are exactly the
elements of W . Hence the algebraic subsets of C are C,
the empty set, and finite subsets of C.
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◮ A subset W of V = C
n is algebraic if there is a family

(Pi)i∈I of polynomials in C[X1,X2, · · · ,Xn] such that

W = {x = (x1, . . . , xn) ∈ V | Pi(x1, . . . , xn) = 0 ∀i}.

”Solutions of polynomial equations”

◮ Example : n = 1. Every nonzero polynomial has finitely
many roots. Conversely, for every finite subset W of C,
there is a polynomial in C whose roots are exactly the
elements of W . Hence the algebraic subsets of C are C,
the empty set, and finite subsets of C.

◮ Similarly, one can define algebraic subsets of P(V ): one
just replaces polynomials by homogeneous polynomials.
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◮ Exercise : the set of algebraic subsets of V (or P(V ))
are the closed subsets of a topology on V (or P(V )),
the Zariski topology.
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◮ Exercise : the set of algebraic subsets of V (or P(V ))
are the closed subsets of a topology on V (or P(V )),
the Zariski topology.

◮ Every Zariski-open (or closed) subset of V is open (or
closed) for the usual topology on V .
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◮ Exercise : the set of algebraic subsets of V (or P(V ))
are the closed subsets of a topology on V (or P(V )),
the Zariski topology.

◮ Every Zariski-open (or closed) subset of V is open (or
closed) for the usual topology on V . The converse is
false, there are many more open subsets than
Zariski-open subsets.
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◮ Exercise : the set of algebraic subsets of V (or P(V ))
are the closed subsets of a topology on V (or P(V )),
the Zariski topology.

◮ Every Zariski-open (or closed) subset of V is open (or
closed) for the usual topology on V . The converse is
false, there are many more open subsets than
Zariski-open subsets.

◮ For instance, for n = 1, every nonempty Zariski-open
subset of V = C is dense !
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◮ Exercise : the set of algebraic subsets of V (or P(V ))
are the closed subsets of a topology on V (or P(V )),
the Zariski topology.

◮ Every Zariski-open (or closed) subset of V is open (or
closed) for the usual topology on V . The converse is
false, there are many more open subsets than
Zariski-open subsets.

◮ For instance, for n = 1, every nonempty Zariski-open
subset of V = C is dense ! In fact, this is true in
general: every nonempty Zariski-open subset of Cn is
dense.
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◮ Exercise : the set of algebraic subsets of V (or P(V ))
are the closed subsets of a topology on V (or P(V )),
the Zariski topology.

◮ Every Zariski-open (or closed) subset of V is open (or
closed) for the usual topology on V . The converse is
false, there are many more open subsets than
Zariski-open subsets.

◮ For instance, for n = 1, every nonempty Zariski-open
subset of V = C is dense ! In fact, this is true in
general: every nonempty Zariski-open subset of Cn is
dense.

◮ Algebraic subsets of V are called affine algebraic
varieties.
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◮ Exercise : the set of algebraic subsets of V (or P(V ))
are the closed subsets of a topology on V (or P(V )),
the Zariski topology.

◮ Every Zariski-open (or closed) subset of V is open (or
closed) for the usual topology on V . The converse is
false, there are many more open subsets than
Zariski-open subsets.

◮ For instance, for n = 1, every nonempty Zariski-open
subset of V = C is dense ! In fact, this is true in
general: every nonempty Zariski-open subset of Cn is
dense.

◮ Algebraic subsets of V are called affine algebraic
varieties. Algebraic subsets of P(V ) are called projective
algebraic varieties.
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More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ).
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More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ). In general, one can embed
G/B into P(V ′) for some complex vector space V ′ (in
general bigger than V ) in such a way that the image is
an algebraic subset of P(V ′).
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More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ). In general, one can embed
G/B into P(V ′) for some complex vector space V ′ (in
general bigger than V ) in such a way that the image is
an algebraic subset of P(V ′). This allows one to view
G/B as a projective algebraic variety.
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More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ). In general, one can embed
G/B into P(V ′) for some complex vector space V ′ (in
general bigger than V ) in such a way that the image is
an algebraic subset of P(V ′). This allows one to view
G/B as a projective algebraic variety. And this is why
G/B is called the flag variety.
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More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ). In general, one can embed
G/B into P(V ′) for some complex vector space V ′ (in
general bigger than V ) in such a way that the image is
an algebraic subset of P(V ′). This allows one to view
G/B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:
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More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ). In general, one can embed
G/B into P(V ′) for some complex vector space V ′ (in
general bigger than V ) in such a way that the image is
an algebraic subset of P(V ′). This allows one to view
G/B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:

◮ What can be said about orbits of B on X = G/B for
n > 2 ?



A nontrivial order

on the symmetric

group: the Bruhat

order, and

generalizations

Thomas Gobet

Flags of vector

spaces

Flag variety

Bruhat

decomposition

Bruhat order

Nilpotent orbits

More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ). In general, one can embed
G/B into P(V ′) for some complex vector space V ′ (in
general bigger than V ) in such a way that the image is
an algebraic subset of P(V ′). This allows one to view
G/B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:

◮ What can be said about orbits of B on X = G/B for
n > 2 ? Are there always finitely many orbits ?



A nontrivial order

on the symmetric

group: the Bruhat

order, and

generalizations

Thomas Gobet

Flags of vector

spaces

Flag variety

Bruhat

decomposition

Bruhat order

Nilpotent orbits

More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ). In general, one can embed
G/B into P(V ′) for some complex vector space V ′ (in
general bigger than V ) in such a way that the image is
an algebraic subset of P(V ′). This allows one to view
G/B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:

◮ What can be said about orbits of B on X = G/B for
n > 2 ? Are there always finitely many orbits ? Is there
a nice parametrizing set ?
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More structure on the set of flags

◮ For n = 2, we observed that the set of flags in V = C
2

is in bijection with P(V ). In general, one can embed
G/B into P(V ′) for some complex vector space V ′ (in
general bigger than V ) in such a way that the image is
an algebraic subset of P(V ′). This allows one to view
G/B as a projective algebraic variety. And this is why
G/B is called the flag variety.

A few questions naturally arise:

◮ What can be said about orbits of B on X = G/B for
n > 2 ? Are there always finitely many orbits ? Is there
a nice parametrizing set ?

◮ Can we describe the partial order induced by inclusions
of B-orbit closures ?
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◮ Let
w ∈ Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ bijective}.
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◮ Let
w ∈ Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ bijective}.
One can represent w by the attached permutation
matrix in GLn(C), which we still denote w.
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Bruhat decomposition of GLn

◮ Let
w ∈ Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ bijective}.
One can represent w by the attached permutation
matrix in GLn(C), which we still denote w. It is defined
by w · ei = ew(i).
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Bruhat decomposition of GLn

◮ Let
w ∈ Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ bijective}.
One can represent w by the attached permutation
matrix in GLn(C), which we still denote w. It is defined
by w · ei = ew(i).

◮ For n = 2, we already observed that there are two
B-orbits on G/B, namely the singleton O1 := {s}, and
a dense orbit O2 := P(V )\{s}.
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◮ Let
w ∈ Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ bijective}.
One can represent w by the attached permutation
matrix in GLn(C), which we still denote w. It is defined
by w · ei = ew(i).

◮ For n = 2, we already observed that there are two
B-orbits on G/B, namely the singleton O1 := {s}, and
a dense orbit O2 := P(V )\{s}. Note that a
representative of O2 is given by the other
”permutation” flag

s
′ : 0 ⊆ 〈e2〉 ⊆ V.
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◮ Let
w ∈ Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ bijective}.
One can represent w by the attached permutation
matrix in GLn(C), which we still denote w. It is defined
by w · ei = ew(i).

◮ For n = 2, we already observed that there are two
B-orbits on G/B, namely the singleton O1 := {s}, and
a dense orbit O2 := P(V )\{s}. Note that a
representative of O2 is given by the other
”permutation” flag

s
′ : 0 ⊆ 〈e2〉 ⊆ V.

Setting w = s1 = (1, 2), with corresponding matrix
(
0 1
1 0

)

, we have w · s = s
′.
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◮ Let
w ∈ Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ bijective}.
One can represent w by the attached permutation
matrix in GLn(C), which we still denote w. It is defined
by w · ei = ew(i).

◮ For n = 2, we already observed that there are two
B-orbits on G/B, namely the singleton O1 := {s}, and
a dense orbit O2 := P(V )\{s}. Note that a
representative of O2 is given by the other
”permutation” flag

s
′ : 0 ⊆ 〈e2〉 ⊆ V.

Setting w = s1 = (1, 2), with corresponding matrix
(
0 1
1 0

)

, we have w · s = s
′. In other words, the

B-orbits on G/B are parametrized by the elements of
S2.
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Theorem (Bruhat decomposition of GLn)

For x ∈ G = GLn(C), let BxB := {bxb′ | b, b′ ∈ B}. We
have

GLn(C) =
∐

w∈Sn

BwB.
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Theorem (Bruhat decomposition of GLn)

For x ∈ G = GLn(C), let BxB := {bxb′ | b, b′ ∈ B}. We
have

GLn(C) =
∐

w∈Sn

BwB.

Corollary

We have
G/B =

∐

w∈Sn

BwB/B

and hence, the B-orbits on G/B are parametrized by Sn.
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◮ For n = 2 we thus have GL2(C) = B
∐

Bs1B.
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◮ For n = 2 we thus have GL2(C) = B
∐

Bs1B. Indeed,

let A =

(
a b
c d

)

∈ GL2(C).
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◮ For n = 2 we thus have GL2(C) = B
∐

Bs1B. Indeed,

let A =

(
a b
c d

)

∈ GL2(C). If c = 0 then A ∈ B.
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Bruhat decomposition of GLn: n = 2

◮ For n = 2 we thus have GL2(C) = B
∐

Bs1B. Indeed,

let A =

(
a b
c d

)

∈ GL2(C). If c = 0 then A ∈ B.

Otherwise, note that

A =

(
bc−ad

c

a

c

0 1

)

︸ ︷︷ ︸

∈B

(
0 1
1 0

)

︸ ︷︷ ︸
=s1

(
c d
0 1

)

︸ ︷︷ ︸

∈B

.
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◮ Let us come back to the case where n = 2.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
Hence points in P(V ) are closed.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
Hence points in P(V ) are closed. In particular, O1 is a
closed orbit.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
Hence points in P(V ) are closed. In particular, O1 is a
closed orbit. And hence O2 = P(V )\{O1} is open.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
Hence points in P(V ) are closed. In particular, O1 is a
closed orbit. And hence O2 = P(V )\{O1} is open.

◮ If O2 was closed, then there would be a family (Pi)i∈I
of two-variable homogeneous polynomials having as
common vanishing set the complement V \L of the line
L := 〈e1〉. Let Q = Pi (i ∈ I) be nonzero.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
Hence points in P(V ) are closed. In particular, O1 is a
closed orbit. And hence O2 = P(V )\{O1} is open.

◮ If O2 was closed, then there would be a family (Pi)i∈I
of two-variable homogeneous polynomials having as
common vanishing set the complement V \L of the line
L := 〈e1〉. Let Q = Pi (i ∈ I) be nonzero. It vanishes
on V \L.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
Hence points in P(V ) are closed. In particular, O1 is a
closed orbit. And hence O2 = P(V )\{O1} is open.

◮ If O2 was closed, then there would be a family (Pi)i∈I
of two-variable homogeneous polynomials having as
common vanishing set the complement V \L of the line
L := 〈e1〉. Let Q = Pi (i ∈ I) be nonzero. It vanishes
on V \L. Now we already saw that there is a nonzero
polynomial R in C[X,Y ] vanishing on L.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
Hence points in P(V ) are closed. In particular, O1 is a
closed orbit. And hence O2 = P(V )\{O1} is open.

◮ If O2 was closed, then there would be a family (Pi)i∈I
of two-variable homogeneous polynomials having as
common vanishing set the complement V \L of the line
L := 〈e1〉. Let Q = Pi (i ∈ I) be nonzero. It vanishes
on V \L. Now we already saw that there is a nonzero
polynomial R in C[X,Y ] vanishing on L. Hence QR is
a nonzero polynomial vanishing on V , which is
impossible.
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◮ Let us come back to the case where n = 2. Let
v = (a, b) ∈ V \{(0, 0)}. Let P = bX − aY ∈ C[X,Y ].
Then P is homogeneous, and the corresponding
algebraic set in P(V ) is given by the singleton {〈v〉}.
Hence points in P(V ) are closed. In particular, O1 is a
closed orbit. And hence O2 = P(V )\{O1} is open.

◮ If O2 was closed, then there would be a family (Pi)i∈I
of two-variable homogeneous polynomials having as
common vanishing set the complement V \L of the line
L := 〈e1〉. Let Q = Pi (i ∈ I) be nonzero. It vanishes
on V \L. Now we already saw that there is a nonzero
polynomial R in C[X,Y ] vanishing on L. Hence QR is
a nonzero polynomial vanishing on V , which is
impossible. Hence O2 is not closed, and O2 = O1 ∪O2.



A nontrivial order

on the symmetric

group: the Bruhat

order, and

generalizations

Thomas Gobet

Flags of vector

spaces

Flag variety

Bruhat

decomposition

Bruhat order

Nilpotent orbits

Orbit closures



A nontrivial order

on the symmetric

group: the Bruhat

order, and

generalizations

Thomas Gobet

Flags of vector

spaces

Flag variety

Bruhat

decomposition

Bruhat order

Nilpotent orbits

Orbit closures

◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn. Set
w ≤ w′ if

Ow ⊆ Ow′ .
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn. Set
w ≤ w′ if

Ow ⊆ Ow′ .

Then ≤ defines a partial order on Sn.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn. Set
w ≤ w′ if

Ow ⊆ Ow′ .

Then ≤ defines a partial order on Sn. Reflexivity and
transitivity are clear.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn. Set
w ≤ w′ if

Ow ⊆ Ow′ .

Then ≤ defines a partial order on Sn. Reflexivity and
transitivity are clear. For antisymmetry, let w,w′ such
that w ≤ w′ and w′ ≤ w.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn. Set
w ≤ w′ if

Ow ⊆ Ow′ .

Then ≤ defines a partial order on Sn. Reflexivity and
transitivity are clear. For antisymmetry, let w,w′ such
that w ≤ w′ and w′ ≤ w. Then Ow = Ow′ .
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn. Set
w ≤ w′ if

Ow ⊆ Ow′ .

Then ≤ defines a partial order on Sn. Reflexivity and
transitivity are clear. For antisymmetry, let w,w′ such
that w ≤ w′ and w′ ≤ w. Then Ow = Ow′ . There is a
unique orbit of maximal dimension in both closures,
given by Ow = Ow′ . Hence w = w′.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn. Set
w ≤ w′ if

Ow ⊆ Ow′ .

Then ≤ defines a partial order on Sn. Reflexivity and
transitivity are clear. For antisymmetry, let w,w′ such
that w ≤ w′ and w′ ≤ w. Then Ow = Ow′ . There is a
unique orbit of maximal dimension in both closures,
given by Ow = Ow′ . Hence w = w′.

◮ The above-defined partial order was first introduced by
Ehresmann in 1934.
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◮ It is possible to show, in the general case, that the
Zariski-closure of a B-orbit on G/B is a union of
B-orbits. Moreover, all orbits appearing in O\O (where
O is an orbit) are of smaller dimension than O.

◮ Let Ow := BwB/B (”Schubert cell”) be the B-orbit of
G/B parametrized by w ∈ Sn. Let w

′ ∈ Sn. Set
w ≤ w′ if

Ow ⊆ Ow′ .

Then ≤ defines a partial order on Sn. Reflexivity and
transitivity are clear. For antisymmetry, let w,w′ such
that w ≤ w′ and w′ ≤ w. Then Ow = Ow′ . There is a
unique orbit of maximal dimension in both closures,
given by Ow = Ow′ . Hence w = w′.

◮ The above-defined partial order was first introduced by
Ehresmann in 1934. It is called the (strong) Bruhat
order in reference to the Bruhat decomposition of G.
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Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let w,w′ ∈ Sn.
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Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let w,w′ ∈ Sn. We have w ≤ w′ if and only if
(w(1), w(2), . . . , w(d))r.t.i.v. ≤ (w′(1), w′(2), . . . , w′(d))r.t.i.v.
for all 1 ≤ d ≤ n− 1, where r.t.i.v.=reordered to increasing
values.
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Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let w,w′ ∈ Sn. We have w ≤ w′ if and only if
(w(1), w(2), . . . , w(d))r.t.i.v. ≤ (w′(1), w′(2), . . . , w′(d))r.t.i.v.
for all 1 ≤ d ≤ n− 1, where r.t.i.v.=reordered to increasing
values.

◮ Example : Bruhat order on S3:
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Bruhat order : combinatorial description

Theorem (Improved tableau criterion)

Let w,w′ ∈ Sn. We have w ≤ w′ if and only if
(w(1), w(2), . . . , w(d))r.t.i.v. ≤ (w′(1), w′(2), . . . , w′(d))r.t.i.v.
for all 1 ≤ d ≤ n− 1, where r.t.i.v.=reordered to increasing
values.

◮ Example : Bruhat order on S3:

b

b b

b b

b

id

(1, 2) (2, 3)

(1, 2, 3) (1, 3, 2)

(1, 3)
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◮ The group Sn is generated by s1 = (1, 2), s2 = (2, 3),
. . . , sn−1 = (n− 1, n). Let i1, i2, . . . , ik ∈ {1, 2, . . . , n− 1}.
We say that the word si1si2 · · · sik is a reduced expression for
w ∈ Sn if w = si1si2 · · · sik and if w is never equal to a
product of si’s with < k factors.
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. . . , sn−1 = (n− 1, n). Let i1, i2, . . . , ik ∈ {1, 2, . . . , n− 1}.
We say that the word si1si2 · · · sik is a reduced expression for
w ∈ Sn if w = si1si2 · · · sik and if w is never equal to a
product of si’s with < k factors.

Theorem (Deodhar)

Let w,w′ ∈ Sn. Then the following are equivalent.
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◮ The group Sn is generated by s1 = (1, 2), s2 = (2, 3),
. . . , sn−1 = (n− 1, n). Let i1, i2, . . . , ik ∈ {1, 2, . . . , n− 1}.
We say that the word si1si2 · · · sik is a reduced expression for
w ∈ Sn if w = si1si2 · · · sik and if w is never equal to a
product of si’s with < k factors.

Theorem (Deodhar)

Let w,w′ ∈ Sn. Then the following are equivalent.

1. w ≤ w′,
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◮ The group Sn is generated by s1 = (1, 2), s2 = (2, 3),
. . . , sn−1 = (n− 1, n). Let i1, i2, . . . , ik ∈ {1, 2, . . . , n− 1}.
We say that the word si1si2 · · · sik is a reduced expression for
w ∈ Sn if w = si1si2 · · · sik and if w is never equal to a
product of si’s with < k factors.

Theorem (Deodhar)

Let w,w′ ∈ Sn. Then the following are equivalent.

1. w ≤ w′,

2. There is a reduced expression si1si2 · · · sik of w′ and
1 ≤ j1 < j2 < · · · < jℓ ≤ k such that sij1 sij2 · · · sijℓ is a
reduced expression of w. (”There is a reduced expression of
w′ having a subword which is a reduced expression of w”),
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◮ The group Sn is generated by s1 = (1, 2), s2 = (2, 3),
. . . , sn−1 = (n− 1, n). Let i1, i2, . . . , ik ∈ {1, 2, . . . , n− 1}.
We say that the word si1si2 · · · sik is a reduced expression for
w ∈ Sn if w = si1si2 · · · sik and if w is never equal to a
product of si’s with < k factors.

Theorem (Deodhar)

Let w,w′ ∈ Sn. Then the following are equivalent.

1. w ≤ w′,

2. There is a reduced expression si1si2 · · · sik of w′ and
1 ≤ j1 < j2 < · · · < jℓ ≤ k such that sij1 sij2 · · · sijℓ is a
reduced expression of w. (”There is a reduced expression of
w′ having a subword which is a reduced expression of w”),

3. For every reduced expression si1si2 · · · sik of w′, there are
1 ≤ j1 < j2 < · · · < jℓ ≤ k such that sij1 sij2 · · · sijℓ is a
reduced expression of w. (”Every reduced expression of w′

admits a subword which is a reduced expression of w”).



A nontrivial order

on the symmetric

group: the Bruhat

order, and

generalizations

Thomas Gobet

Flags of vector

spaces

Flag variety

Bruhat

decomposition

Bruhat order

Nilpotent orbits

Bruhat order : more combinatorial descriptions

b

b b

b b

b

e

s1 s2

s1s2 s2s1

s1s2s1 = s2s1s2
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Generalizations

◮ The results presented above were presented in the case
where G is the general linear group GLn(C). In fact,
they can be generalized to the case of a so-called
connected reductive algebraic group G. The group B
(”upper triangular matrices”) can still be defined
(”Borel subgroup”), as well as the flag variety G/B.

◮ There are still finitely many B-orbits on G/B, and they
are parametrized by a group W (”Weyl group”)
generalizing the symmetric group. The Weyl group is
generated by a set S of involutions (in fact, it is a
Coxeter group), and Deodhar’s criterion is still valid to
describe inclusions of orbit closures in G/B.
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◮ Let u ∈ Mn(C) be a nilpotent matrix such that u2 = 0
and u 6= 0.
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◮ There are similar situations arising when considering the
action of other subgroups of G = GLn(C) on G/B.

◮ Let u ∈ Mn(C) be a nilpotent matrix such that u2 = 0
and u 6= 0. Let r := rank(u). Consider the subgroup
Z := {g ∈ G | gu = ug}.
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and u 6= 0. Let r := rank(u). Consider the subgroup
Z := {g ∈ G | gu = ug}. Then it can be shown that
the action of Z on G/B has finitely many orbits.
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◮ There are similar situations arising when considering the
action of other subgroups of G = GLn(C) on G/B.

◮ Let u ∈ Mn(C) be a nilpotent matrix such that u2 = 0
and u 6= 0. Let r := rank(u). Consider the subgroup
Z := {g ∈ G | gu = ug}. Then it can be shown that
the action of Z on G/B has finitely many orbits.

◮ Let Wr be the subset of Sn containing those w such
that w(r + 1) < · · · < w(n − r) and
w(n − r + 1) < · · · < w(n).
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◮ There are similar situations arising when considering the
action of other subgroups of G = GLn(C) on G/B.

◮ Let u ∈ Mn(C) be a nilpotent matrix such that u2 = 0
and u 6= 0. Let r := rank(u). Consider the subgroup
Z := {g ∈ G | gu = ug}. Then it can be shown that
the action of Z on G/B has finitely many orbits.

◮ Let Wr be the subset of Sn containing those w such
that w(r + 1) < · · · < w(n − r) and
w(n − r + 1) < · · · < w(n).

◮ Let Pr := 〈sr+1, . . . , sn−r−1, sn−r+1, . . . , sn−1〉 ∼=
Sn−2r ×Sr.
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A similar situation : nilpotent orbits

◮ There are similar situations arising when considering the
action of other subgroups of G = GLn(C) on G/B.

◮ Let u ∈ Mn(C) be a nilpotent matrix such that u2 = 0
and u 6= 0. Let r := rank(u). Consider the subgroup
Z := {g ∈ G | gu = ug}. Then it can be shown that
the action of Z on G/B has finitely many orbits.

◮ Let Wr be the subset of Sn containing those w such
that w(r + 1) < · · · < w(n − r) and
w(n − r + 1) < · · · < w(n).

◮ Let Pr := 〈sr+1, . . . , sn−r−1, sn−r+1, . . . , sn−1〉 ∼=
Sn−2r ×Sr. It is isomorphic to the subgroup

P ′

r := {(x,w, x) | x ∈ Sr, w ∈ Sn−2r} ⊆ Sn.
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A similar situation : nilpotent orbits

◮ There are similar situations arising when considering the
action of other subgroups of G = GLn(C) on G/B.

◮ Let u ∈ Mn(C) be a nilpotent matrix such that u2 = 0
and u 6= 0. Let r := rank(u). Consider the subgroup
Z := {g ∈ G | gu = ug}. Then it can be shown that
the action of Z on G/B has finitely many orbits.

◮ Let Wr be the subset of Sn containing those w such
that w(r + 1) < · · · < w(n − r) and
w(n − r + 1) < · · · < w(n).

◮ Let Pr := 〈sr+1, . . . , sn−r−1, sn−r+1, . . . , sn−1〉 ∼=
Sn−2r ×Sr. It is isomorphic to the subgroup

P ′

r := {(x,w, x) | x ∈ Sr, w ∈ Sn−2r} ⊆ Sn.

◮ We have

Sn =
∐

w∈Wr

wPr =
∐

w∈Wr

wP ′

r.
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A similar situation : nilpotent orbits

◮ There are similar situations arising when considering the
action of other subgroups of G = GLn(C) on G/B.

◮ Let u ∈ Mn(C) be a nilpotent matrix such that u2 = 0
and u 6= 0. Let r := rank(u). Consider the subgroup
Z := {g ∈ G | gu = ug}. Then it can be shown that
the action of Z on G/B has finitely many orbits.

◮ Let Wr be the subset of Sn containing those w such
that w(r + 1) < · · · < w(n − r) and
w(n − r + 1) < · · · < w(n).

◮ Let Pr := 〈sr+1, . . . , sn−r−1, sn−r+1, . . . , sn−1〉 ∼=
Sn−2r ×Sr. It is isomorphic to the subgroup

P ′

r := {(x,w, x) | x ∈ Sr, w ∈ Sn−2r} ⊆ Sn.

◮ We have

Sn =
∐

w∈Wr

wPr =
∐

w∈Wr

wP ′

r.

For w ∈Wr we set [w] := wP ′

r
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Theorem (Boos-Reineke 2012, Bender-Perrin 2019,
Chaput-Fresse-G. 2020)

We have the following:

1. The Z-orbits on G/B are parametrized by the set Wr.
For w ∈Wr we denote by Ow the corresponding orbit.
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Parametrization and orbit closures of a family of

nilpotent orbits

Theorem (Boos-Reineke 2012, Bender-Perrin 2019,
Chaput-Fresse-G. 2020)

We have the following:

1. The Z-orbits on G/B are parametrized by the set Wr.
For w ∈Wr we denote by Ow the corresponding orbit.

2. For w,w′ ∈Wr, we have Ow ⊆ Ow′ if and only if there
is u ∈ [w] = wP ′

r such that u ≤ w′ (strong Bruhat
order).
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Example : n = 4, r = 2.

e

s2 s1

s1s2 s3s2 s2s1

s1s3s2 s3s2s1 s1s2s1

s2s1s3s2 s1s3s2s1

s2s3s2s1s2

Figure: Partial order describing inclusions of orbit closures for
n = 4, r = 2.
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