Zinno bases of Temperley-Lieb algebras

Thomas Gobet

Université de Picardie Jules Verne, Amiens

February 12th 2014, Winterbraids IV, Dijon

The Temperley-Lieb algebra

Definition

Let δ a parameter, $n \in \mathbb{Z}_{>0}$. The Temperley-Lieb algebra TL_{n} is the associative unital $\mathbb{Z}[\delta]$-algebra with generators b_{1}, \ldots, b_{n} and relations

$$
\begin{gathered}
b_{j} b_{i} b_{j}=b_{j} \text { if }|i-j|=1, \\
b_{i} b_{j}=b_{j} b_{i} \text { if }|i-j|>1, \\
b_{i}^{2}=\delta b_{i} .
\end{gathered}
$$

The Temperley-Lieb algebra

Definition

Let δ a parameter, $n \in \mathbb{Z}_{>0}$. The Temperley-Lieb algebra TL_{n} is the associative unital $\mathbb{Z}[\delta]$-algebra with generators b_{1}, \ldots, b_{n} and relations

$$
\begin{gathered}
b_{j} b_{i} b_{j}=b_{j} \text { if }|i-j|=1, \\
b_{i} b_{j}=b_{j} b_{i} \text { if }|i-j|>1, \\
b_{i}^{2}=\delta b_{i} .
\end{gathered}
$$

Fact

The Temperley-Lieb algebra is often viewed as a $\mathbb{Z}\left[v, v^{-1}\right]$-algebra with $\delta=v+v^{-1}$. This allows one to realize it as a quotient of the Iwahori-Hecke algebra $\mathrm{H}\left(\mathfrak{S}_{n+1}\right)$ of type A_{n}.

The Temperley-Lieb algebra

Fully commutative elements

Fully commutative elements

Definition

Let $\mathcal{W}=\mathfrak{S}_{n+1}, S=\left\{s_{i}\right\}_{i=1}^{n}$ where $s_{i}=(i, i+1)$. An element $w \in \mathcal{W}$ is fully commutative if given any reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w (in the sense of Coxeter) and any $s \in S$,

$$
n(s)=\#\left\{k \mid s_{i_{k}}=s\right\}
$$

depends only on w and not on the choice of the reduced expression.

Fully commutative elements

Definition

Let $\mathcal{W}=\mathfrak{S}_{n+1}, S=\left\{s_{i}\right\}_{i=1}^{n}$ where $s_{i}=(i, i+1)$. An element $w \in \mathcal{W}$ is fully commutative if given any reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w (in the sense of Coxeter) and any $s \in S$,

$$
n(s)=\#\left\{k \mid s_{i_{k}}=s\right\}
$$

depends only on w and not on the choice of the reduced expression.

We write \mathcal{W}_{f} for the set of fully commutative elements.

Fully commutative elements

Definition

Let $\mathcal{W}=\mathfrak{S}_{n+1}, S=\left\{s_{i}\right\}_{i=1}^{n}$ where $s_{i}=(i, i+1)$. An element $w \in \mathcal{W}$ is fully commutative if given any reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w (in the sense of Coxeter) and any $s \in S$,

$$
n(s)=\#\left\{k \mid s_{i_{k}}=s\right\}
$$

depends only on w and not on the choice of the reduced expression.

We write \mathcal{W}_{f} for the set of fully commutative elements.

Example

Fully commutative elements

Definition

Let $\mathcal{W}=\mathfrak{S}_{n+1}, S=\left\{s_{i}\right\}_{i=1}^{n}$ where $s_{i}=(i, i+1)$. An element $w \in \mathcal{W}$ is fully commutative if given any reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w (in the sense of Coxeter) and any $s \in S$,

$$
n(s)=\#\left\{k \mid s_{i_{k}}=s\right\}
$$

depends only on w and not on the choice of the reduced expression.

We write \mathcal{W}_{f} for the set of fully commutative elements.

Example

$s_{1} s_{2}, s_{2} s_{3} s_{1} s_{2}$ are fully commutative.

Fully commutative elements

Definition

Let $\mathcal{W}=\mathfrak{S}_{n+1}, S=\left\{s_{i}\right\}_{i=1}^{n}$ where $s_{i}=(i, i+1)$. An element $w \in \mathcal{W}$ is fully commutative if given any reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w (in the sense of Coxeter) and any $s \in S$,

$$
n(s)=\#\left\{k \mid s_{i_{k}}=s\right\}
$$

depends only on w and not on the choice of the reduced expression.

We write \mathcal{W}_{f} for the set of fully commutative elements.

Example

$s_{1} s_{2}, s_{2} s_{3} s_{1} s_{2}$ are fully commutative.
$s_{1} s_{2} s_{1}$ is not fully commutative.

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_{f}$ has a unique reduced expression of the form

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_{f}$ has a unique reduced expression of the form

$$
\left(s_{i_{1}} s_{i_{1}-1} \cdots s_{j_{1}}\right)\left(s_{i_{2}} s_{i_{2}-1} \cdots s_{j_{2}}\right) \cdots\left(s_{i_{k}} s_{i_{k}-1} \cdots s_{j_{k}}\right)
$$

where $i_{1}<i_{2}<\cdots<i_{k}, j_{1}<j_{2}<\cdots<j_{k}, i_{m} \geq j_{m}$ for each $1 \leq m \leq k$.

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_{f}$ has a unique reduced expression of the form

$$
\left(s_{i_{1}} s_{i_{1}-1} \cdots s_{j_{1}}\right)\left(s_{i_{2}} s_{i_{2}-1} \cdots s_{j_{2}}\right) \cdots\left(s_{i_{k}} s_{i_{k}-1} \cdots s_{j_{k}}\right)
$$

where $i_{1}<i_{2}<\cdots<i_{k}, j_{1}<j_{2}<\cdots<j_{k}, i_{m} \geq j_{m}$ for each $1 \leq m \leq k$. Conversely, any word in this form is a reduced expression of a fully commutative element.

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_{f}$ has a unique reduced expression of the form

$$
\left(s_{i_{1}} s_{i_{1}-1} \cdots s_{j_{1}}\right)\left(s_{i_{2}} s_{i_{2}-1} \cdots s_{j_{2}}\right) \cdots\left(s_{i_{k}} s_{i_{k}-1} \cdots s_{j_{k}}\right)
$$

where $i_{1}<i_{2}<\cdots<i_{k}, j_{1}<j_{2}<\cdots<j_{k}, i_{m} \geq j_{m}$ for each $1 \leq m \leq k$. Conversely, any word in this form is a reduced expression of a fully commutative element.

We set $I(w):=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, J(w):=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$.

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_{f}$ has a unique reduced expression of the form

$$
\left(s_{i_{1}} s_{i_{1}-1} \cdots s_{j_{1}}\right)\left(s_{i_{2}} s_{i_{2}-1} \cdots s_{j_{2}}\right) \cdots\left(s_{i_{k}} s_{i_{k}-1} \cdots s_{j_{k}}\right)
$$

where $i_{1}<i_{2}<\cdots<i_{k}, j_{1}<j_{2}<\cdots<j_{k}, i_{m} \geq j_{m}$ for each $1 \leq m \leq k$. Conversely, any word in this form is a reduced expression of a fully commutative element.

We set $I(w):=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, J(w):=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$.

Example

$$
w=s_{2} s_{3} s_{1} s_{2}
$$

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_{f}$ has a unique reduced expression of the form

$$
\left(s_{i_{1}} s_{i_{1}-1} \cdots s_{j_{1}}\right)\left(s_{i_{2}} s_{i_{2}-1} \cdots s_{j_{2}}\right) \cdots\left(s_{i_{k}} s_{i_{k}-1} \cdots s_{j_{k}}\right)
$$

where $i_{1}<i_{2}<\cdots<i_{k}, j_{1}<j_{2}<\cdots<j_{k}, i_{m} \geq j_{m}$ for each $1 \leq m \leq k$. Conversely, any word in this form is a reduced expression of a fully commutative element.

We set $I(w):=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, J(w):=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$.

Example

$$
w=s_{2} s_{3} s_{1} s_{2}=\left(s_{2} s_{1}\right)\left(s_{3} s_{2}\right)
$$

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_{f}$ has a unique reduced expression of the form

$$
\left(s_{i_{1}} s_{i_{1}-1} \cdots s_{j_{1}}\right)\left(s_{i_{2}} s_{i_{2}-1} \cdots s_{j_{2}}\right) \cdots\left(s_{i_{k}} s_{i_{k}-1} \cdots s_{j_{k}}\right)
$$

where $i_{1}<i_{2}<\cdots<i_{k}, j_{1}<j_{2}<\cdots<j_{k}, i_{m} \geq j_{m}$ for each $1 \leq m \leq k$. Conversely, any word in this form is a reduced expression of a fully commutative element.

We set $I(w):=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, J(w):=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$.

Example

$$
w=s_{2} s_{3} s_{1} s_{2}=\left(s_{2} s_{1}\right)\left(s_{3} s_{2}\right) ; I(w)=\{2,3\}, J(w)=\{1,2\} .
$$

The Temperley-Lieb algebra

Fully commutative elements, III

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Let $w \in \mathcal{W}_{f}$. One associates to any reduced decomposition $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w the element $b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}$ of $\mathrm{TL}_{n}(\delta)$.

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Let $w \in \mathcal{W}_{f}$. One associates to any reduced decomposition $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w the element $b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}$ of $\mathrm{TL}_{n}(\delta)$.

Proposition (Jones, 1988)

With this notation,

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Let $w \in \mathcal{W}_{f}$. One associates to any reduced decomposition $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w the element $b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}$ of $\mathrm{TL}_{n}(\delta)$.

Proposition (Jones, 1988)

With this notation,
(1) The element $b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}$ is independent of the choice of the reduced expression for w. We will therefore denote it by b_{w}.

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Let $w \in \mathcal{W}_{f}$. One associates to any reduced decomposition $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of w the element $b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}$ of $\mathrm{TL}_{n}(\delta)$.

Proposition (Jones, 1988)

With this notation,
(1) The element $b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}$ is independent of the choice of the reduced expression for w. We will therefore denote it by b_{w}.
(2) The set $\left\{b_{w}\right\}_{w \in \mathcal{W}_{f}}$ is a $\mathbb{Z}[\delta]$-basis of $\mathrm{TL}_{n}(\delta)$.

Noncrossing partitions

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1,2, \ldots, n+1\}$ such that any two blocks B and B^{\prime} never cross, that is, there exist no pairs of indices $i, j \in B, k, \ell \in B^{\prime}$ such that $i<k<j<\ell$.

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1,2, \ldots, n+1\}$ such that any two blocks B and B^{\prime} never cross, that is, there exist no pairs of indices $i, j \in B, k, \ell \in B^{\prime}$ such that $i<k<j<\ell$.

Example
$\{2,3,5\},\{4\},\{1,6\}$ is a noncrossing partition of $\{1,2, \ldots, 6\}$.

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1,2, \ldots, n+1\}$ such that any two blocks B and B^{\prime} never cross, that is, there exist no pairs of indices $i, j \in B, k, \ell \in B^{\prime}$ such that $i<k<j<\ell$.
Example
$\{2,3,5\},\{4\},\{1,6\}$ is a noncrossing partition of $\{1,2, \ldots, 6\}$.

A noncrossing partition can be seen as a permutation: one associates to each block $B=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$
$\left(i_{m}<i_{m+1}\right)$ the cycle $c_{B}=\left(i_{1}, i_{2}, \ldots i_{k}\right)$ and takes the product of the various C_{B}.

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1,2, \ldots, n+1\}$ such that any two blocks B and B^{\prime} never cross, that is, there exist no pairs of indices $i, j \in B, k, \ell \in B^{\prime}$ such that $i<k<j<\ell$.
Example
$\{2,3,5\},\{4\},\{1,6\}$ is a noncrossing partition of $\{1,2, \ldots, 6\}$.

A noncrossing partition can be seen as a permutation: one associates to each block $B=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$
$\left(i_{m}<i_{m+1}\right)$ the cycle $c_{B}=\left(i_{1}, i_{2}, \ldots i_{k}\right)$ and takes the product of the various c_{B}. The partition from the example corresponds to the permutation $(2,3,5)(1,6)$.

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1,2, \ldots, n+1\}$ such that any two blocks B and B^{\prime} never cross, that is, there exist no pairs of indices $i, j \in B, k, \ell \in B^{\prime}$ such that $i<k<j<\ell$.
Example
$\{2,3,5\},\{4\},\{1,6\}$ is a noncrossing partition of $\{1,2, \ldots, 6\}$.

A noncrossing partition can be seen as a permutation: one associates to each block $B=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ $\left(i_{m}<i_{m+1}\right)$ the cycle $c_{B}=\left(i_{1}, i_{2}, \ldots i_{k}\right)$ and takes the product of the various c_{B}. The partition from the example corresponds to the permutation
 $(2,3,5)(1,6)$.

Simple elements of the Birman-Ko-Lee monoid

Simple elements of the Birman-Ko-Lee monoid

Consider the braid group B_{n} on $n+1$ strands

Simple elements of the Birman-Ko-Lee monoid

Consider the braid group B_{n} on $n+1$ strands

$$
B_{n}:=\left\langle\begin{array}{c|c}
\mathbf{s}_{\mathbf{1}}, \ldots, \mathbf{s}_{\mathbf{n}} & \begin{array}{c}
\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}} \mathbf{s}_{\mathbf{i}}=\mathbf{s}_{\mathbf{i}+\mathbf{1}} \mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}}, \\
\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{j}}=\mathbf{s}_{\mathbf{j}} \mathbf{s}_{\mathbf{i}},
\end{array} \quad \forall i \in\{1, \ldots, n-1\}
\end{array}\right\rangle .
$$

For each $i, j \in\{1, \ldots, n\}, i \leq j$, consider the braid word

$$
[i, j+1]:=\mathbf{s}_{\mathbf{j}}^{-1} \mathbf{s}_{\mathbf{j}-\mathbf{1}}{ }^{-1} \cdots \mathbf{s}_{\mathbf{i}+\mathbf{1}}{ }^{-1} \mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}} \cdots \mathbf{s}_{\mathbf{j}-\mathbf{1}} \mathbf{s}_{\mathbf{j}}
$$

Simple elements of the Birman-Ko-Lee monoid

Consider the braid group B_{n} on $n+1$ strands

$$
B_{n}:=\left\langle\begin{array}{c|c}
\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathbf{n}} & \begin{array}{c}
\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}} \mathbf{s}_{\mathbf{i}}=\mathbf{s}_{\mathbf{i}+\mathbf{1}} \mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}}, \\
\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{j}}=\mathbf{s}_{\mathbf{j}} \mathbf{s}_{\mathbf{i}},
\end{array} \quad \forall i \in\{1, \ldots, n-1\} \\
,
\end{array}\right\rangle
$$

For each $i, j \in\{1, \ldots, n\}, i \leq j$, consider the braid word

$$
[i, j+1]:=\mathbf{s}_{\mathbf{j}}^{-1} \mathbf{s}_{\mathbf{j}-\mathbf{1}}{ }^{-1} \cdots \mathbf{s}_{\mathbf{i}+\mathbf{1}}{ }^{-1} \mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}} \cdots \mathbf{s}_{\mathbf{j}-\mathbf{1}} \mathbf{s}_{\mathbf{j}}
$$

The submonoid of B_{n} generated by the equivalence classes of these braid words is the Birman-Ko-Lee monoid.

Simple elements of the Birman-Ko-Lee monoid

Consider the braid group B_{n} on $n+1$ strands

$$
B_{n}:=\left\langle\begin{array}{c|c}
\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathbf{n}} & \left\lvert\, \begin{array}{c}
\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}} \mathbf{s}_{\mathbf{i}}=\mathbf{s}_{\mathbf{i}+\mathbf{1}} \mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}}, \\
\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{j}}=\mathbf{s}_{\mathbf{j}} \mathbf{s}_{\mathbf{i}},
\end{array} \quad \forall i \in\{1, \ldots, n-1\}\right.
\end{array}\right\rangle .
$$

For each $i, j \in\{1, \ldots, n\}, i \leq j$, consider the braid word

$$
[i, j+1]:=\mathbf{s}_{\mathbf{j}}^{-1} \mathbf{s}_{\mathbf{j}-\mathbf{1}}{ }^{-1} \cdots \mathbf{s}_{\mathbf{i}+\mathbf{1}}{ }^{-1} \mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}+\mathbf{1}} \cdots \mathbf{s}_{\mathbf{j}-\mathbf{1}} \mathbf{s}_{\mathbf{j}}
$$

The submonoid of B_{n} generated by the equivalence classes of these braid words is the Birman-Ko-Lee monoid. To any cycle $c=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \mathfrak{S}_{n+1}$ with $i_{1}<i_{2}<\cdots<i_{k}$, associate the braid word

$$
\underline{c}=\left[i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right]:=\left[i_{1}, i_{2}\right]\left[i_{2}, i_{3}\right] \cdots\left[i_{k-1}, i_{k}\right] .
$$

Braid group, BKL monoid and Temperley-Lieb algebra

Braid group, BKL monoid and Temperley-Lieb algebra

To any noncrossing partition x with decomposition into product of cycles with disjoint support given by $c_{1} c_{2} \cdots c_{m}$, associate the braid word \underline{x} defined by $\underline{x}:=\underline{c_{1}} \underline{c_{2}} \cdots \underline{c_{m}}$.

Braid group, BKL monoid and Temperley-Lieb algebra

To any noncrossing partition x with decomposition into product of cycles with disjoint support given by $c_{1} c_{2} \cdots c_{m}$, associate the braid word \underline{x} defined by $\underline{x}:=\underline{c_{1}} \underline{c_{2}} \cdots \underline{c_{m}}$.

The set D of equivalence classes of braid words \underline{x} where x is a noncrossing partition is the set of simple elements of the Birman-Ko-Lee monoid. Since these elements are lifts of noncrossing partitions in the braid group we will also denote by D the set of noncrossing partitions.

Braid group, BKL monoid and Temperley-Lieb algebra

To any noncrossing partition x with decomposition into product of cycles with disjoint support given by $c_{1} c_{2} \cdots c_{m}$, associate the braid word \underline{x} defined by $\underline{x}:=\underline{c_{1}} \underline{c_{2}} \cdots \underline{c_{m}}$.

The set D of equivalence classes of braid words \underline{x} where x is a noncrossing partition is the set of simple elements of the Birman-Ko-Lee monoid. Since these elements are lifts of noncrossing partitions in the braid group we will also denote by D the set of noncrossing partitions.

There is a homomorphism

$$
\alpha: B_{n} \rightarrow \mathrm{TL}_{n}\left(v+v^{-1}\right), \mathbf{s}_{\mathbf{i}} \mapsto v^{-1}-b_{i} .
$$

Braid group, BKL monoid and Temperley-Lieb algebra

To any noncrossing partition x with decomposition into product of cycles with disjoint support given by $c_{1} c_{2} \cdots c_{m}$, associate the braid word \underline{x} defined by $\underline{x}:=\underline{c_{1}} \underline{c_{2}} \cdots \underline{c_{m}}$.

The set D of equivalence classes of braid words \underline{x} where x is a noncrossing partition is the set of simple elements of the Birman-Ko-Lee monoid. Since these elements are lifts of noncrossing partitions in the braid group we will also denote by D the set of noncrossing partitions.

There is a homomorphism

$$
\alpha: B_{n} \rightarrow \mathrm{TL}_{n}\left(v+v^{-1}\right), \mathbf{s}_{\mathbf{i}} \mapsto v^{-1}-b_{i} .
$$

It turns out that $\left|\mathcal{W}_{f}\right|=|D|=C_{n+1}=\operatorname{dim}\left(\mathrm{TL}_{n}\left(v+v^{-1}\right)\right)$. What happens if one maps the elements of D in $\mathrm{TL}_{n}\left(v+v^{-1}\right)$?

Zinno basis

Theorem (Zinno, 2002)

Zinno basis

Theorem (Zinno, 2002)
There is a bijection a: $D \rightarrow \mathcal{W}_{f}$ and order on D together with the order induced on \mathcal{W}_{f} by a such that for any $x \in D$,

Zinno basis

Theorem (Zinno, 2002)

There is a bijection a: $D \rightarrow \mathcal{W}_{f}$ and order on D together with the order induced on \mathcal{W}_{f} by a such that for any $x \in D$,

$$
\alpha(x)=t_{a(x)}^{x} b_{a(x)}+\sum_{y \in \mathcal{W}_{f}, y<a(x)} t_{y}^{x} b_{y}
$$

where $t_{a(x)}^{w} \in \mathbb{Z}\left[v, v^{-1}\right]$ is invertible;

Zinno basis

Theorem (Zinno, 2002)

There is a bijection a: $D \rightarrow \mathcal{W}_{f}$ and order on D together with the order induced on \mathcal{W}_{f} by a such that for any $x \in D$,

$$
\alpha(x)=t_{a(x)}^{x} b_{a(x)}+\sum_{y \in \mathcal{W}_{f}, y<a(x)} t_{y}^{x} b_{y}
$$

where $t_{a(x)}^{w} \in \mathbb{Z}\left[v, v^{-1}\right]$ is invertible; in other words, there exists orders on D and \mathcal{W}_{f} such that the change base matrix between $\left\{Z_{x}\right\}_{x \in D}$ and $\left\{b_{w}\right\}_{w \in \mathcal{W}_{f}}$ is upper triangular with invertible coefficient on the diagonal.

Zinno basis

Theorem (Zinno, 2002)

There is a bijection a: $D \rightarrow \mathcal{W}_{f}$ and order on D together with the order induced on \mathcal{W}_{f} by a such that for any $x \in D$,

$$
\alpha(x)=t_{a(x)}^{x} b_{a(x)}+\sum_{y \in \mathcal{W}_{f}, y<a(x)} t_{y}^{x} b_{y}
$$

where $t_{a(x)}^{w} \in \mathbb{Z}\left[v, v^{-1}\right]$ is invertible; in other words, there exists orders on D and \mathcal{W}_{f} such that the change base matrix between $\left\{Z_{x}\right\}_{x \in D}$ and $\left\{b_{w}\right\}_{w \in \mathcal{W}_{f}}$ is upper triangular with invertible coefficient on the diagonal.

Corollary

The set $\left\{Z_{x}:=\alpha(x) \mid x \in D\right\}$ is a $\mathbb{Z}\left[v, v^{-1}\right]$-basis of $\mathrm{TL}_{n}\left(v+v^{-1}\right)$, which we will call Zinno basis.

Zinno basis, II

Zinno basis, II

Zinno's result leads to the following questions:

Zinno basis, II

Zinno's result leads to the following questions:

- Zinno's description does not give the inverse bijection of a. Can we give it explicitly?

Zinno basis, II

Zinno's result leads to the following questions:

- Zinno's description does not give the inverse bijection of a. Can we give it explicitly?
- The order Zinno puts on D is Bruhat order (!). In the case of dual braid monoids, are there still orders on the bases and bijections giving Zinno's?

Zinno basis, II

Zinno's result leads to the following questions:

- Zinno's description does not give the inverse bijection of a. Can we give it explicitly?
- The order Zinno puts on D is Bruhat order (!). In the case of dual braid monoids, are there still orders on the bases and bijections giving Zinno's?
- What can be said on the coefficients of the change base matrix?

Zinno basis, II

Zinno's result leads to the following questions:

- Zinno's description does not give the inverse bijection of a. Can we give it explicitly?
- The order Zinno puts on D is Bruhat order (!). In the case of dual braid monoids, are there still orders on the bases and bijections giving Zinno's?
- What can be said on the coefficients of the change base matrix?
- Write $Z_{x}=\sum_{w \in \mathcal{W}_{f}} t_{x}^{\prime w} b_{w}$, where $t_{x}^{\prime w} \in \mathbb{Z}\left[v, v^{-1}\right]$.

Computations in small cases show that $t_{x}^{\prime w}=(-1)^{\ell_{s}(w)} t_{x}^{w}$ where t_{x}^{w} is a polynomial with positive coefficients. Can we find an interesting interpretation of these coefficients or prove positivity using either combinatorial methods or categorification?

Zinno's bijection

Zinno's bijection

Consider the noncrossing partition from before $x=(2,3,5)(1,6)$.

Zinno's bijection

Consider the noncrossing partition from before $x=(2,3,5)(1,6)$. Consider the braid word m_{x} given by the concatenation of the braid words $[2,3,5]$ and $[1,6]$:

Zinno's bijection

Consider the noncrossing partition from before $x=(2,3,5)(1,6)$. Consider the braid word m_{x} given by the concatenation of the braid words $[2,3,5]$ and $[1,6]$:

Zinno's bijection

Consider the noncrossing partition from before $x=(2,3,5)(1,6)$. Consider the braid word m_{x} given by the concatenation of the braid words $[2,3,5]$ and $[1,6]$:

$$
m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) .
$$

Zinno's bijection

Consider the noncrossing partition from before $x=(2,3,5)(1,6)$. Consider the braid word m_{x} given by the concatenation of the braid words $[2,3,5]$ and $[1,6]$:

$$
m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) .
$$

Zinno gives rules for extracting the fully commutative element $a(\underline{x})$ as a subword of m_{x}.

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

$$
m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right)
$$

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

$$
\begin{aligned}
& m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{S}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right)
\end{aligned}
$$

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

$$
\begin{aligned}
& m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{S}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{S}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right)
\end{aligned}
$$

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

$$
\begin{aligned}
& m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{S}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{5}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{5}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{5}\right)
\end{aligned}
$$

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

$$
\begin{aligned}
& m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{S}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{s}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{s}_{\mathbf{5}}\right)
\end{aligned}
$$

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

$$
\begin{aligned}
& m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{S}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{1} \mathbf{s}_{2} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right)
\end{aligned}
$$

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

$$
\begin{aligned}
& m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{S}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{5}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{5}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{5}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{1} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{s}_{5}\right) \\
& \rightsquigarrow a(x)=\left(s_{2} s_{1}\right)\left(s_{4} s_{3} s_{2}\right)\left(s_{5} s_{4} s_{3}\right) \in \mathcal{W}_{f} \text {. }
\end{aligned}
$$

Zinno's bijection, II

Example (Zinno's algorithm for finding $a(x)$)

$$
\begin{aligned}
& m_{x}=\mathbf{s}_{\mathbf{2}}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{S}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{\mathbf{4}}{ }^{-1} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{\mathbf{5}}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{S}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{5}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{4}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{s}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{S}_{\mathbf{5}}\right) \\
& m_{x}=\mathbf{s}_{2}\left(\mathbf{s}_{4}{ }^{-1} \mathbf{s}_{3} \mathbf{s}_{\mathbf{4}}\right)\left(\mathbf{s}_{5}{ }^{-1} \mathbf{s}_{4}{ }^{-1} \mathbf{s}_{\mathbf{3}}{ }^{-1} \mathbf{s}_{\mathbf{2}}{ }^{-1} \mathbf{s}_{1} \mathbf{s}_{2} \mathbf{s}_{\mathbf{3}} \mathbf{s}_{\mathbf{4}} \mathbf{s}_{5}\right) \\
& \rightsquigarrow a(x)=\left(s_{2} s_{1}\right)\left(s_{4} s_{3} s_{2}\right)\left(s_{5} s_{4} s_{3}\right) \in \mathcal{W}_{f} \text {. }
\end{aligned}
$$

The algorithm: read the word m_{x} from the left to the right. If the first letter $\mathbf{s}_{\mathbf{i}}{ }^{ \pm 1}$ occuring in m_{x} has positive (resp. negative) exponent, then all the occurrences of $\mathbf{s}_{\mathbf{i}}{ }^{ \pm 1}$ in m_{x} with positive (resp. negative) exponent and only those must contribute to the subword $a(x)$. Apply the same process to the next generator $s_{j}^{ \pm 1}, j \neq i$ occuring right to the first $s_{i}^{ \pm 1}$ in m_{x}, until you have considered all the indices k such that $s_{k}^{ \pm 1}$ occurs in m_{x}.

Zinno's bijection, III

Zinno's bijection, III

- Zinno shows that such a process gives a well-defined map $a: D \rightarrow \mathcal{W}_{f}$ and shows that it is surjective; hence it is bijective since both sets have cardinality (equal to the $(n+1)$ th Catalan number $\left.C_{n+1}=\frac{1}{n+2}\binom{2(n+1)}{n+1}\right)$. However surjectivity is proved indirectly, not allowing one to give the inverse bijection.

Zinno's bijection, III

- Zinno shows that such a process gives a well-defined map $a: D \rightarrow \mathcal{W}_{f}$ and shows that it is surjective; hence it is bijective since both sets have cardinality (equal to the $(n+1)$ th Catalan number $\left.C_{n+1}=\frac{1}{n+2}\binom{2(n+1)}{n+1}\right)$. However surjectivity is proved indirectly, not allowing one to give the inverse bijection.
- It is not clear on how to generalize such a process to an arbitrary dual braid monoid since it needs the representation of \underline{x} by a specific braid word m_{x}.

A new version of Zinno's bijection

Consider again the noncrossing partition $x=(2,3,5)(1,6)$.

A new version of Zinno's bijection

Consider again the noncrossing partition $x=(2,3,5)(1,6)$. Set $D_{x}:=\{1,2,3\}$ for the set of integers indexing a non terminal vertex of a polygon (polygons include edges) and $U_{x}:=\{3,5,6\}$ for the set of integers indexing non initial vertices.

A new version of Zinno's bijection

Consider again the noncrossing partition $x=(2,3,5)(1,6)$. Set $D_{x}:=\{1,2,3\}$ for the set of integers indexing a non terminal vertex of a polygon (polygons include edges) and $U_{x}:=\{3,5,6\}$ for the set of integers indexing non initial vertices.

Set $J=D_{x}, I=U_{x}-1=\{2,4,5\}$. Consider the unique $w \in \mathcal{W}_{f}$ such that $I=I(w), J=J(w)$:

A new version of Zinno's bijection

Consider again the noncrossing partition $x=(2,3,5)(1,6)$. Set $D_{x}:=\{1,2,3\}$ for the set of integers indexing a non terminal vertex of a polygon (polygons include edges) and $U_{x}:=\{3,5,6\}$ for the set of integers indexing non initial vertices.

Set $J=D_{x}, I=U_{x}-1=\{2,4,5\}$. Consider the unique $w \in \mathcal{W}_{f}$ such that $I=I(w), J=J(w)$:

$$
w=\left(s_{2} s_{1}\right)\left(s_{4} s_{3} s_{2}\right)\left(s_{5} s_{4} s_{3}\right)
$$

A new version of Zinno's bijection, II

$$
w \in \mathcal{W}_{f}
$$

A new version of Zinno's bijection, II

$$
w \in \mathcal{W}_{f} \quad \longleftrightarrow \quad(I(w), J(w))
$$

A new version of Zinno's bijection, II

$$
\begin{aligned}
w \in \mathcal{W}_{f} & \longleftrightarrow(I(w), J(w)) \\
& \longleftrightarrow\left(D_{x}=J(w), U_{x}=I(w)+1\right)
\end{aligned}
$$

A new version of Zinno's bijection, II

$$
\begin{aligned}
w \in \mathcal{W}_{f} & \longleftrightarrow(I(w), J(w)) \\
& \longleftrightarrow\left(D_{x}=J(w), U_{x}=I(w)+1\right) \\
& \longleftrightarrow x \in D .
\end{aligned}
$$

A new version of Zinno's bijection, II

$$
\begin{aligned}
w \in \mathcal{W}_{f} & \longleftrightarrow(I(w), J(w)) \\
& \longleftrightarrow\left(D_{x}=J(w), U_{x}=I(w)+1\right) \\
& \longleftrightarrow x \in D .
\end{aligned}
$$

Theorem

A new version of Zinno's bijection, II

$$
\begin{aligned}
w \in \mathcal{W}_{f} & \longleftrightarrow(I(w), J(w)) \\
& \longleftrightarrow\left(D_{x}=J(w), U_{x}=I(w)+1\right) \\
& \longleftrightarrow x \in D .
\end{aligned}
$$

Theorem

(1) The process above defines two maps $\psi: \mathcal{W}_{f} \rightarrow D$ and $\varphi: D \rightarrow \mathcal{W}_{f}$ such that $\psi \varphi=\mathrm{id}, \varphi \psi=\mathrm{id}$.

A new version of Zinno's bijection, II

$$
\begin{aligned}
w \in \mathcal{W}_{f} & \longleftrightarrow(I(w), J(w)) \\
& \longleftrightarrow\left(D_{x}=J(w), U_{x}=I(w)+1\right) \\
& \longleftrightarrow x \in D .
\end{aligned}
$$

Theorem

(1) The process above defines two maps $\psi: \mathcal{W}_{f} \rightarrow D$ and $\varphi: D \rightarrow \mathcal{W}_{f}$ such that $\psi \varphi=\mathrm{id}, \varphi \psi=\mathrm{id}$.
(2) One has the equality $\varphi=a$.

A new version of Zinno's bijection, II

$$
\begin{aligned}
w \in \mathcal{W}_{f} & \longleftrightarrow(I(w), J(w)) \\
& \longleftrightarrow\left(D_{x}=J(w), U_{x}=I(w)+1\right) \\
& \longleftrightarrow x \in D .
\end{aligned}
$$

Theorem

(1) The process above defines two maps $\psi: \mathcal{W}_{f} \rightarrow D$ and $\varphi: D \rightarrow \mathcal{W}_{f}$ such that $\psi \varphi=\mathrm{id}, \varphi \psi=\mathrm{id}$.
(2) One has the equality $\varphi=a$.
(3) Such a process generalizes to dual braid monoids.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ, ψ to introduce a new basis of $\mathrm{TL}_{n}\left(v+v^{-1}\right)$.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ, ψ to introduce a new basis of $\operatorname{TL}_{n}\left(v+v^{-1}\right)$. Let $w \in \mathcal{W}_{f}$. Set $L(w)=\{s \in S \mid s w<s w\}$ et $R(w)=\{s \in S \mid w s<s w\}$.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ, ψ to introduce a new basis of

$$
\begin{aligned}
& \operatorname{TL}_{n}\left(v+v^{-1}\right) \text {. Let } w \in \mathcal{W}_{f} \text {. Set } L(w)=\{s \in S \mid s w<s w\} \text { et } \\
& R(w)=\{s \in S \mid w s<s w\} .
\end{aligned}
$$

Remarks:

- If $s, t \in L(w)$ (resp. $R(w))$, then $s t=t s$.
- If $s \in L(w)($ resp. $R(w))$, then $s w \in \mathcal{W}_{f}$ (resp. $w s \in \mathcal{W}_{f}$).

A new basis of the Temperley-Lieb algebra

we will use the bijections φ, ψ to introduce a new basis of

$$
\begin{aligned}
& \operatorname{TL}_{n}\left(v+v^{-1}\right) \text {. Let } w \in \mathcal{W}_{f} \text {. Set } L(w)=\{s \in S \mid s w<s w\} \text { et } \\
& R(w)=\{s \in S \mid w s<s w\} .
\end{aligned}
$$

Remarks:

- If $s, t \in L(w)(r e s p . ~ R(w))$, then $s t=t s$.
- If $s \in L(w)($ resp. $R(w))$, then $s w \in \mathcal{W}_{f}$ (resp. $w s \in \mathcal{W}_{f}$).

Lemma

Let $w \in \mathcal{W}_{f}, s \in L(w), t \in R(w)$.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ, ψ to introduce a new basis of $\operatorname{TL}_{n}\left(v+v^{-1}\right)$. Let $w \in \mathcal{W}_{f}$. Set $L(w)=\{s \in S \mid s w<s w\}$ et $R(w)=\{s \in S \mid w s<s w\}$.

Remarks:

- If $s, t \in L(w)$ (resp. $R(w))$, then $s t=t s$.
- If $s \in L(w)($ resp. $R(w))$, then $s w \in \mathcal{W}_{f}$ (resp. $w s \in \mathcal{W}_{f}$).

Lemma

Let $w \in \mathcal{W}_{f}, s \in L(w), t \in R(w)$.
(1) The product $s \psi(w)$ lies in $D(r e s p . ~ \psi(w) t \in D)$ and $s \psi(w)<s \psi(w)(r e s p . ~ \psi(w) t<s \psi(w))$, where $<s$ denotes the Bruhat order.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ, ψ to introduce a new basis of $\operatorname{TL}_{n}\left(v+v^{-1}\right)$. Let $w \in \mathcal{W}_{f}$. Set $L(w)=\{s \in S \mid s w<s w\}$ et $R(w)=\{s \in S \mid w s<s w\}$.

Remarks:

- If $s, t \in L(w)(r e s p . ~ R(w))$, then $s t=t s$.
- If $s \in L(w)($ resp. $R(w))$, then $s w \in \mathcal{W}_{f}$ (resp. $w s \in \mathcal{W}_{f}$).

Lemma

Let $w \in \mathcal{W}_{f}, s \in L(w), t \in R(w)$.
(1) The product $s \psi(w)$ lies in $D(r e s p . ~ \psi(w) t \in D)$ and $s \psi(w)<s \psi(w)(r e s p . \psi(w) t<s \psi(w))$, where $<s$ denotes the Bruhat order.
(2) One has $s \psi(w)=\psi(w) t \Leftrightarrow s=t$ or $s=s_{i}, t=s_{i-1}$.

A new basis of the Temperley-Lieb algebra, II

Example

A new basis of the Temperley-Lieb algebra, II

Example

$$
\begin{aligned}
& w=s_{2} s_{1} ; L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{1}\right\} ; \text { set } x:=\psi(w) \\
& U_{x}=\{3\}, D_{x}=\{1\} \text { hence } x=(1,3)=s_{2} s_{1} s_{2} . \text { One has } \\
& s_{2} x=s_{1} s_{2}=x s_{1}
\end{aligned}
$$

A new basis of the Temperley-Lieb algebra, II

Example

$$
\begin{aligned}
& w=s_{2} s_{1} ; L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{1}\right\} ; \text { set } x:=\psi(w) ; \\
& U_{x}=\{3\}, D_{x}=\{1\} \text { hence } x=(1,3)=s_{2} s_{1} s_{2} . \text { One has } \\
& s_{2} x=s_{1} s_{2}=x s_{1} . \\
& w=s_{2} s_{1} s_{3} s_{2}: L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{2}\right\} ; \text { set } x:=\psi(w) \\
& U_{x}=\{3,4\}, D_{x}=\{1,2\} \text { hence } \\
& x=(1,4)(2,3)=s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} . \text { One has } s_{2} x=(1,4)=x s_{2} .
\end{aligned}
$$

A new basis of the Temperley-Lieb algebra, II

Example

$$
\begin{aligned}
& w=s_{2} s_{1} ; L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{1}\right\} ; \text { set } x:=\psi(w) ; \\
& U_{x}=\{3\}, D_{x}=\{1\} \text { hence } x=(1,3)=s_{2} s_{1} s_{2} . \text { One has } \\
& s_{2} x=s_{1} s_{2}=x s_{1} . \\
& w=s_{2} s_{1} s_{3} s_{2}: L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{2}\right\} ; \text { set } x:=\psi(w) ; \\
& U_{x}=\{3,4\}, D_{x}=\{1,2\} \text { hence } \\
& x=(1,4)(2,3)=s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} . \text { One has } s_{2} x=(1,4)=x s_{2} .
\end{aligned}
$$

To any pair of subsets $L \subset L(w)$ and $R \subset R(w)$ one associates a pair $\left(L^{\prime}, R^{\prime}\right)$ where $L^{\prime} \subset L, R^{\prime} \subset R$ such that

A new basis of the Temperley-Lieb algebra, II

Example

$$
\begin{aligned}
& w=s_{2} s_{1} ; L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{1}\right\} ; \text { set } x:=\psi(w) ; \\
& U_{x}=\{3\}, D_{x}=\{1\} \text { hence } x=(1,3)=s_{2} s_{1} s_{2} . \text { One has } \\
& s_{2} x=s_{1} s_{2}=x s_{1} \text {. } \\
& w=s_{2} s_{1} s_{3} s_{2}: L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{2}\right\} ; \text { set } x:=\psi(w) ; \\
& U_{x}=\{3,4\}, D_{x}=\{1,2\} \text { hence } \\
& x=(1,4)(2,3)=s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} . \text { One has } s_{2} x=(1,4)=x s_{2} .
\end{aligned}
$$

To any pair of subsets $L \subset L(w)$ and $R \subset R(w)$ one associates a pair $\left(L^{\prime}, R^{\prime}\right)$ where $L^{\prime} \subset L, R^{\prime} \subset R$ such that
(1) if $s \in L^{\prime}$, then $s \notin R^{\prime}$; if $s_{i} \in L^{\prime}$, then $s_{i-1} \notin R^{\prime}$,

A new basis of the Temperley-Lieb algebra, II

Example

- $w=s_{2} s_{1} ; L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{1}\right\}$; set $x:=\psi(w)$; $U_{x}=\{3\}, D_{x}=\{1\}$ hence $x=(1,3)=s_{2} s_{1} s_{2}$. One has $s_{2} x=s_{1} s_{2}=x s_{1}$.
- $w=s_{2} s_{1} s_{3} s_{2}: L(w)=\left\{s_{2}\right\}, R(w)=\left\{s_{2}\right\}$; set $x:=\psi(w)$;
$U_{x}=\{3,4\}, D_{x}=\{1,2\}$ hence
$x=(1,4)(2,3)=s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$. One has $s_{2} x=(1,4)=x s_{2}$.
To any pair of subsets $L \subset L(w)$ and $R \subset R(w)$ one associates a pair $\left(L^{\prime}, R^{\prime}\right)$ where $L^{\prime} \subset L, R^{\prime} \subset R$ such that
(1) if $s \in L^{\prime}$, then $s \notin R^{\prime}$; if $s_{i} \in L^{\prime}$, then $s_{i-1} \notin R^{\prime}$,
(2) $\left|L^{\prime} \cup R^{\prime}\right|$ is as large as possible for the first condition.

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_{f}, L, R, L^{\prime}, R^{\prime}$ as above. Set

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_{f}, L, R, L^{\prime}, R^{\prime}$ as above. Set

$$
x_{L^{\prime}, R^{\prime}}:=\left(\prod_{s \in L^{\prime}} s\right) \psi(w)\left(\prod_{s \in R^{\prime}} s\right) .
$$

Proposition

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_{f}, L, R, L^{\prime}, R^{\prime}$ as above. Set

$$
x_{L^{\prime}, R^{\prime}}:=\left(\prod_{s \in L^{\prime}} s\right) \psi(w)\left(\prod_{s \in R^{\prime}} s\right) .
$$

Proposition

(1) The permutation $x_{L^{\prime}, R^{\prime}}$ is in D and is independent of the choice of $\left(L^{\prime}, R^{\prime}\right)$. We will therefore denote it by $x_{L, R}$.

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_{f}, L, R, L^{\prime}, R^{\prime}$ as above. Set

$$
x_{L^{\prime}, R^{\prime}}:=\left(\prod_{s \in L^{\prime}} s\right) \psi(w)\left(\prod_{s \in R^{\prime}} s\right) .
$$

Proposition

(1) The permutation $x_{L^{\prime}, R^{\prime}}$ is in D and is independent of the choice of $\left(L^{\prime}, R^{\prime}\right)$. We will therefore denote it by $x_{L, R}$.
(c) $x_{L, R}<s \psi(w)$ and $\ell_{S}\left(x_{L, R}\right)=\ell_{S}(\psi(w))-\left|L^{\prime} \cup R^{\prime}\right|$.

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_{f}, L, R, L^{\prime}, R^{\prime}$ as above. Set

$$
x_{L^{\prime}, R^{\prime}}:=\left(\prod_{s \in L^{\prime}} s\right) \psi(w)\left(\prod_{s \in R^{\prime}} s\right) .
$$

Proposition

(1) The permutation $x_{L^{\prime}, R^{\prime}}$ is in D and is independent of the choice of $\left(L^{\prime}, R^{\prime}\right)$. We will therefore denote it by $x_{L, R}$.
(2) $x_{L, R}<S \psi(w)$ and $\ell_{S}\left(x_{L, R}\right)=\ell_{S}(\psi(w))-\left|L^{\prime} \cup R^{\prime}\right|$.

Set $Q_{w}:=\left\{x_{L, R} \mid L \subset L(w), R \subset R(w)\right\}$.

A new basis of the Temperley-Lieb algebra, IV

Example

$$
w=s_{1} s_{4} s_{3} s_{2}, \psi(w)=s_{1} s_{4} s_{3} s_{2} s_{3} s_{4}=(1,2,5)
$$

A new basis of the Temperley-Lieb algebra, IV

Example

$w=s_{1} s_{4} s_{3} s_{2}, \psi(w)=s_{1} s_{4} s_{3} s_{2} s_{3} s_{4}=(1,2,5)$
$Q_{w}=$

A new basis of the Temperley-Lieb algebra, IV

Example

$$
w=s_{1} s_{4} s_{3} s_{2}, \psi(w)=s_{1} s_{4} s_{3} s_{2} s_{3} s_{4}=(1,2,5)
$$

A new basis of the Temperley-Lieb algebra, V

One associates to $w \in \mathcal{W}_{f}$ an element $X_{w} \in \mathrm{TL}_{n}\left(v+v^{-1}\right)$ defined by

A new basis of the Temperley-Lieb algebra, V

One associates to $w \in \mathcal{W}_{f}$ an element $X_{w} \in \operatorname{TL}_{n}\left(v+v^{-1}\right)$ defined by

$$
X_{w}:=\sum_{x \in Q_{w}} p_{x}^{w} Z_{x}
$$

where $p_{x}^{w}:=(-1)^{\ell_{S}(w)+\ell_{S}(\psi(w))-\ell_{S}(x)} v^{n_{x}(w)}$ with $n_{x}(w) \in \mathbb{Z}$ a technical coefficient.

A new basis of the Temperley-Lieb algebra, V

One associates to $w \in \mathcal{W}_{f}$ an element $X_{w} \in \mathrm{TL}_{n}\left(v+v^{-1}\right)$ defined by

$$
X_{w}:=\sum_{x \in Q_{w}} p_{x}^{w} Z_{x}
$$

where $p_{x}^{w}:=(-1)^{\ell_{S}(w)+\ell_{S}(\psi(w))-\ell_{S}(x)} v^{n_{x}(w)}$ with $n_{x}(w) \in \mathbb{Z}$ a technical coefficient.

Proposition

The set $\left\{X_{w}\right\}_{w \in \mathcal{W}_{f}}$ is a basis of $\mathrm{TL}_{n}(\delta)$; the change base matrix $\left\{Z_{x}\right\} \leftrightarrow\left\{X_{w}\right\}$ (and $\left\{X_{w}\right\} \leftrightarrow\left\{b_{w}\right\}$) is upper triangular with invertible coefficient on the diagonal (D is ordered by Bruhat order and \mathcal{W}_{f} is ordered by the order induced by $\varphi=a$).

Application to the determination of some coefficients

Application to the determination of some coefficients

The change base matrix between $\left\{Z_{x}\right\}$ and $\left\{X_{w}\right\}$ is known by definition of $\left\{X_{w}\right\}$.

Application to the determination of some coefficients

The change base matrix between $\left\{Z_{x}\right\}$ and $\left\{X_{w}\right\}$ is known by definition of $\left\{X_{w}\right\}$. If one can understand the change base matrix between $\left\{X_{w}\right\}$ and $\left\{b_{w}\right\}$ then one will be able to express the change base matrix between $\left\{Z_{x}\right\}$ and $\left\{b_{w}\right\}$ as a product of two matrices.

Application to the determination of some coefficients

The change base matrix between $\left\{Z_{x}\right\}$ and $\left\{X_{w}\right\}$ is known by definition of $\left\{X_{w}\right\}$. If one can understand the change base matrix between $\left\{X_{w}\right\}$ and $\left\{b_{w}\right\}$ then one will be able to express the change base matrix between $\left\{Z_{x}\right\}$ and $\left\{b_{w}\right\}$ as a product of two matrices. Write $b_{w}:=\sum_{y \in \mathcal{W}_{f}} q_{y}^{w} X_{y}$.

Proposition

If $q_{y}^{w} \neq 0$, then

Application to the determination of some coefficients

The change base matrix between $\left\{Z_{x}\right\}$ and $\left\{X_{w}\right\}$ is known by definition of $\left\{X_{w}\right\}$. If one can understand the change base matrix between $\left\{X_{w}\right\}$ and $\left\{b_{w}\right\}$ then one will be able to express the change base matrix between $\left\{Z_{x}\right\}$ and $\left\{b_{w}\right\}$ as a product of two matrices. Write $b_{w}:=\sum_{y \in \mathcal{W}_{f}} q_{y}^{w} X_{y}$.

Proposition

$$
\text { If } q_{y}^{w} \neq 0, \text { then } \psi(y)<s \psi(w), L(w) \subset L(y) \text { and } R(w) \subset R(y)
$$

Application to the determination of some coefficients

The change base matrix between $\left\{Z_{x}\right\}$ and $\left\{X_{w}\right\}$ is known by definition of $\left\{X_{w}\right\}$. If one can understand the change base matrix between $\left\{X_{w}\right\}$ and $\left\{b_{w}\right\}$ then one will be able to express the change base matrix between $\left\{Z_{x}\right\}$ and $\left\{b_{w}\right\}$ as a product of two matrices. Write $b_{w}:=\sum_{y \in \mathcal{W}_{f}} q_{y}^{w} X_{y}$.

Proposition

$$
\text { If } q_{y}^{w} \neq 0, \text { then } \psi(y)<s \psi(w), L(w) \subset L(y) \text { and } R(w) \subset R(y)
$$

Unfortunately, the converse if false. Write $F_{w}:=\left\{y \in \mathcal{W}_{f} \mid L(w) \subset L(y), R(w) \subset R(y), \psi(y)<s \psi(w)\right\} ;$

Application to the determination of some coefficients

The change base matrix between $\left\{Z_{x}\right\}$ and $\left\{X_{w}\right\}$ is known by definition of $\left\{X_{w}\right\}$. If one can understand the change base matrix between $\left\{X_{w}\right\}$ and $\left\{b_{w}\right\}$ then one will be able to express the change base matrix between $\left\{Z_{x}\right\}$ and $\left\{b_{w}\right\}$ as a product of two matrices. Write $b_{w}:=\sum_{y \in \mathcal{W}_{f}} q_{y}^{w} X_{y}$.

Proposition

$$
\text { If } q_{y}^{w} \neq 0, \text { then } \psi(y)<s \psi(w), L(w) \subset L(y) \text { and } R(w) \subset R(y)
$$

Unfortunately, the converse if false. Write $F_{w}:=\left\{y \in \mathcal{W}_{f} \mid L(w) \subset L(y), R(w) \subset R(y), \psi(y)<s \psi(w)\right\} ;$ thanks to the above proposition one has

$$
b_{w}:=\sum_{y \in F_{w}} q_{y}^{w} X_{y}=\sum_{y \in F_{w}} \sum_{x \in Q_{y}} q_{y}^{w} p_{x}^{y} Z_{x}=\sum_{x<s \psi(w)} h_{x}^{w} Z_{x} .
$$

Application to the determination of some coefficients, II

Application to the determination of some coefficients, II

$$
b_{w}:=\sum_{y \in F_{w}} q_{y}^{w} X_{y}=\sum_{y \in F_{w}} \sum_{x \in Q_{y}} q_{y}^{w} p_{x}^{y} Z_{x}=\sum_{x<s \psi(w)} h_{x}^{w} Z_{x} .
$$

Theorem

Application to the determination of some coefficients, II

$$
b_{w}:=\sum_{y \in F_{w}} q_{y}^{w} X_{y}=\sum_{y \in F_{w}} \sum_{x \in Q_{y}} q_{y}^{w} p_{x}^{y} Z_{x}=\sum_{x<s \psi(w)} h_{x}^{w} Z_{x} .
$$

Theorem

(1) If $x \notin \bigcup_{y \in F_{w}} Q_{y}$, then $h_{x}^{w}=0$.

Application to the determination of some coefficients, II

$$
b_{w}:=\sum_{y \in F_{w}} q_{y}^{w} X_{y}=\sum_{y \in F_{w}} \sum_{x \in Q_{y}} q_{y}^{w} p_{x}^{y} Z_{x}=\sum_{x<s \psi(w)} h_{x}^{w} Z_{x} .
$$

Theorem

(1) If $x \notin \bigcup_{y \in F_{w}} Q_{y}$, then $h_{x}^{w}=0$.
(2) If $x \in Q_{w}$, then $h_{x}^{w}=p_{x}^{w}=(-1)^{\ell_{S}(w)+\ell_{S}(\psi(w))-\ell_{S}(x)} v^{n_{w}(x)}$.

Application to the determination of some coefficients, II

$$
b_{w}:=\sum_{y \in F_{w}} q_{y}^{w} X_{y}=\sum_{y \in F_{w}} \sum_{x \in Q_{y}} q_{y}^{w} p_{x}^{y} Z_{x}=\sum_{x<s \psi(w)} h_{x}^{w} Z_{x} .
$$

Theorem

(1) If $x \notin \bigcup_{y \in F_{w}} Q_{y}$, then $h_{x}^{w}=0$.
(2) If $x \in Q_{w}$, then $h_{x}^{w}=p_{x}^{w}=(-1)^{\ell_{S}(w)+\ell_{S}(\psi(w))-\ell_{S}(x)} v^{n_{w}(x)}$.

Remark: using the fact that for some $y, y^{\prime} \in F_{w}$, one can have $Q_{y} \cap Q_{y^{\prime}} \neq \emptyset$, one can find cases where h_{x}^{w} is not a monomial. However, it never happens if $y=w$ or $y^{\prime}=w$.

Application to the determination of some coefficients, II

$$
b_{w}:=\sum_{y \in F_{w}} q_{y}^{w} X_{y}=\sum_{y \in F_{w}} \sum_{x \in Q_{y}} q_{y}^{w} p_{x}^{y} Z_{x}=\sum_{x<s \psi(w)} h_{x}^{w} Z_{x} .
$$

Theorem

(1) If $x \notin \bigcup_{y \in F_{w}} Q_{y}$, then $h_{x}^{w}=0$.
(2) If $x \in Q_{w}$, then $h_{x}^{w}=p_{x}^{w}=(-1)^{\ell_{S}(w)+\ell_{S}(\psi(w))-\ell_{S}(x)} v^{n_{w}(x)}$.

Remark: using the fact that for some $y, y^{\prime} \in F_{w}$, one can have $Q_{y} \cap Q_{y^{\prime}} \neq \emptyset$, one can find cases where h_{x}^{w} is not a monomial. However, it never happens if $y=w$ or $y^{\prime}=w$. Now write the inverse matrix $Z_{x}=\sum_{w \in \mathcal{W}_{f}}(-1)^{\ell_{s}(w)} t_{w}^{x} b_{w}$.

Positivity results

Proposition

Any element in D can be written as a product of the form $\mathbf{x}^{-1} \mathbf{y}$, where \mathbf{x}, \mathbf{y} are positive reduced braid words.

Positivity results

Proposition

Any element in D can be written as a product of the form $\mathbf{x}^{-1} \mathbf{y}$, where \mathbf{x}, \mathbf{y} are positive reduced braid words.

As a consequence, the image of any element of D in the Hecke algebra can be written in the form $\left(T_{x}\right)^{-1} T_{y}$. Using results of Fan and Green (saying that the basis b_{w} is the image of the Kazhdan-Lusztig basis of the Hecke algebra) and positivity results of Dyer and Lehrer (using intersection cohomology of Schubert varieties) together with the proposition above, one gets

Positivity results

Proposition

Any element in D can be written as a product of the form $\mathbf{x}^{-1} \mathbf{y}$, where \mathbf{x}, \mathbf{y} are positive reduced braid words.

As a consequence, the image of any element of D in the Hecke algebra can be written in the form $\left(T_{x}\right)^{-1} T_{y}$. Using results of Fan and Green (saying that the basis b_{w} is the image of the Kazhdan-Lusztig basis of the Hecke algebra) and positivity results of Dyer and Lehrer (using intersection cohomology of Schubert varieties) together with the proposition above, one gets

Theorem

For any $x \in D, w \in \mathcal{W}_{f}, t_{w}^{x}$ has only positive coefficients.

