Zinno bases of Temperley-Lieb algebras

Thomas Gobet

Université de Picardie Jules Verne, Amiens

February 12th 2014, Winterbraids IV, Dijon

э

The Temperley-Lieb algebra

Definition

Let δ a parameter, $n \in \mathbb{Z}_{>0}$. The *Temperley-Lieb algebra* TL_n is the associative unital $\mathbb{Z}[\delta]$ -algebra with generators b_1, \ldots, b_n and relations

$$b_j b_i b_j = b_j \text{ if } |i - j| = 1,$$

$$b_i b_j = b_j b_i \text{ if } |i - j| > 1,$$

$$b_i^2 = \delta b_i.$$

The Temperley-Lieb algebra

Definition

Let δ a parameter, $n \in \mathbb{Z}_{>0}$. The Temperley-Lieb algebra TL_n is the associative unital $\mathbb{Z}[\delta]$ -algebra with generators b_1, \ldots, b_n and relations

$$b_j b_i b_j = b_j \text{ if } |i - j| = 1,$$

$$b_i b_j = b_j b_i \text{ if } |i - j| > 1,$$

$$b_i^2 = \delta b_i.$$

Fact

The Temperley-Lieb algebra is often viewed as a $\mathbb{Z}[v, v^{-1}]$ -algebra with $\delta = v + v^{-1}$. This allows one to realize it as a quotient of the Iwahori-Hecke algebra $H(\mathfrak{S}_{n+1})$ of type A_n .

Zinno Bases of TL algebras

Winterbraids IV, Dijon

The Temperley-Lieb algebra

Zinno basis Application to the determination of the coefficients

Fully commutative elements

ም.

æ

Fully commutative elements

Definition

Let $\mathcal{W} = \mathfrak{S}_{n+1}$, $S = \{s_i\}_{i=1}^n$ where $s_i = (i, i+1)$. An element $w \in \mathcal{W}$ is *fully commutative* if given any reduced expression $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w (in the sense of Coxeter) and any $s \in S$,

$$n(s) = \#\{k \mid s_{i_k} = s\}$$

depends only on w and not on the choice of the reduced expression.

< 回 > < 三 > < 三 >

Fully commutative elements

Definition

Let $\mathcal{W} = \mathfrak{S}_{n+1}$, $S = \{s_i\}_{i=1}^n$ where $s_i = (i, i+1)$. An element $w \in \mathcal{W}$ is *fully commutative* if given any reduced expression $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w (in the sense of Coxeter) and any $s \in S$,

$$n(s) = \#\{k \mid s_{i_k} = s\}$$

depends only on w and not on the choice of the reduced expression.

We write \mathcal{W}_f for the set of fully commutative elements.

くほと くほと くほと

Fully commutative elements

Definition

Let $\mathcal{W} = \mathfrak{S}_{n+1}$, $S = \{s_i\}_{i=1}^n$ where $s_i = (i, i+1)$. An element $w \in \mathcal{W}$ is *fully commutative* if given any reduced expression $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w (in the sense of Coxeter) and any $s \in S$,

$$n(s) = \#\{k \mid s_{i_k} = s\}$$

depends only on w and not on the choice of the reduced expression.

We write W_f for the set of fully commutative elements.

Example

Fully commutative elements

Definition

Let $\mathcal{W} = \mathfrak{S}_{n+1}$, $S = \{s_i\}_{i=1}^n$ where $s_i = (i, i+1)$. An element $w \in \mathcal{W}$ is *fully commutative* if given any reduced expression $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w (in the sense of Coxeter) and any $s \in S$,

$$n(s) = \#\{k \mid s_{i_k} = s\}$$

depends only on w and not on the choice of the reduced expression.

We write W_f for the set of fully commutative elements.

Example

 s_1s_2 , $s_2s_3s_1s_2$ are fully commutative.

Fully commutative elements

Definition

Let $\mathcal{W} = \mathfrak{S}_{n+1}$, $S = \{s_i\}_{i=1}^n$ where $s_i = (i, i+1)$. An element $w \in \mathcal{W}$ is *fully commutative* if given any reduced expression $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w (in the sense of Coxeter) and any $s \in S$,

$$n(s) = \#\{k \mid s_{i_k} = s\}$$

depends only on w and not on the choice of the reduced expression.

We write W_f for the set of fully commutative elements.

Example

 s_1s_2 , $s_2s_3s_1s_2$ are fully commutative. $s_1s_2s_1$ is not fully commutative.

Zinno Bases of TL algebras

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_f$ has a unique reduced expression of the form

э

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_f$ has a unique reduced expression of the form

$$(s_{i_1}s_{i_1-1}\cdots s_{j_1})(s_{i_2}s_{i_2-1}\cdots s_{j_2})\cdots (s_{i_k}s_{i_k-1}\cdots s_{j_k}),$$

where $i_1 < i_2 < \cdots < i_k$, $j_1 < j_2 < \cdots < j_k$, $i_m \ge j_m$ for each $1 \le m \le k$.

3

(日) (周) (三) (三)

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_f$ has a unique reduced expression of the form

$$(s_{i_1}s_{i_1-1}\cdots s_{j_1})(s_{i_2}s_{i_2-1}\cdots s_{j_2})\cdots (s_{i_k}s_{i_k-1}\cdots s_{j_k}),$$

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_f$ has a unique reduced expression of the form

$$(s_{i_1}s_{i_1-1}\cdots s_{j_1})(s_{i_2}s_{i_2-1}\cdots s_{j_2})\cdots (s_{i_k}s_{i_k-1}\cdots s_{j_k}),$$

where $i_1 < i_2 < \cdots < i_k$, $j_1 < j_2 < \cdots < j_k$, $i_m \ge j_m$ for each $1 \le m \le k$. Conversely, any word in this form is a reduced expression of a fully commutative element.

We set $I(w) := \{i_1, i_2, \dots, i_k\}, J(w) := \{j_1, j_2, \dots, j_k\}.$

- 4 回 ト - 4 回 ト

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_f$ has a unique reduced expression of the form

$$(s_{i_1}s_{i_1-1}\cdots s_{j_1})(s_{i_2}s_{i_2-1}\cdots s_{j_2})\cdots (s_{i_k}s_{i_k-1}\cdots s_{j_k}),$$

We set
$$I(w) := \{i_1, i_2, \dots, i_k\}, J(w) := \{j_1, j_2, \dots, j_k\}.$$

Example						
$w = s_2 s_3 s_1 s_2$						
		•	• • 🗗		÷.	59
Zinno Bases of TL algebras	Winterbraids IV, Dijon			February 2014		4/

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_f$ has a unique reduced expression of the form

$$(s_{i_1}s_{i_1-1}\cdots s_{j_1})(s_{i_2}s_{i_2-1}\cdots s_{j_2})\cdots (s_{i_k}s_{i_k-1}\cdots s_{j_k}),$$

We set
$$I(w) := \{i_1, i_2, \dots, i_k\}, J(w) := \{j_1, j_2, \dots, j_k\}.$$

Example					
$w = s_2 s_3 s_1 s_2 = (s_2 s_1)$	$(s_3s_2);$				
		۰ ا	・ ・ 聞 ・ ・ 直 ・ ・ 直 ・	æ	59
Zinno Bases of TL algebras	Winterbraids IV, Dijon		February 2014		4/

Fully commutative elements, II

Fact

Any element $w \in \mathcal{W}_f$ has a unique reduced expression of the form

$$(s_{i_1}s_{i_1-1}\cdots s_{j_1})(s_{i_2}s_{i_2-1}\cdots s_{j_2})\cdots (s_{i_k}s_{i_k-1}\cdots s_{j_k}),$$

We set
$$I(w) := \{i_1, i_2, \dots, i_k\}, J(w) := \{j_1, j_2, \dots, j_k\}.$$

The Temperley-Lieb algebra

Zinno basis A new basis of the Temperley-Lieb algebra Application to the determination of the coefficients Positivity in the inverse matrix

Fully commutative elements, III

æ

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

э

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Let $w \in W_f$. One associates to any reduced decomposition $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w the element $b_{i_1}b_{i_2}\cdots b_{i_k}$ of $\mathrm{TL}_n(\delta)$.

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Let $w \in W_f$. One associates to any reduced decomposition $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w the element $b_{i_1}b_{i_2}\cdots b_{i_k}$ of $\mathrm{TL}_n(\delta)$.

Proposition (Jones, 1988)

With this notation,

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Let $w \in W_f$. One associates to any reduced decomposition $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w the element $b_{i_1}b_{i_2}\cdots b_{i_k}$ of $\mathrm{TL}_n(\delta)$.

Proposition (Jones, 1988)

With this notation,

The element b_{i1}b_{i2} ··· b_{ik} is independent of the choice of the reduced expression for w. We will therefore denote it by b_w.

< 回 > < 三 > < 三 >

Fully commutative elements, III

What is the relation with the Temperley-Lieb algebra?

Let $w \in W_f$. One associates to any reduced decomposition $s_{i_1}s_{i_2}\cdots s_{i_k}$ of w the element $b_{i_1}b_{i_2}\cdots b_{i_k}$ of $\mathrm{TL}_n(\delta)$.

Proposition (Jones, 1988)

With this notation,

The element b_{i1}b_{i2} ··· b_{ik} is independent of the choice of the reduced expression for w. We will therefore denote it by b_w.

2 The set
$$\{b_w\}_{w \in W_f}$$
 is a $\mathbb{Z}[\delta]$ -basis of $\mathrm{TL}_n(\delta)$.

Noncrossing partitions

Zinno	Bases	of	TL a	lge	bras
-------	-------	----	------	-----	------

∃ ► < ∃ ►</p>

< 4 → <

æ

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1, 2, ..., n+1\}$ such that any two blocks *B* and *B'* never cross, that is, there exist no pairs of indices $i, j \in B$, $k, \ell \in B'$ such that $i < k < j < \ell$.

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1, 2, ..., n+1\}$ such that any two blocks B and B' never cross, that is, there exist no pairs of indices $i, j \in B$, $k, \ell \in B'$ such that $i < k < j < \ell$.

Example

 $\{2,3,5\},\{4\},\{1,6\}$ is a noncrossing partition of $\{1,2,\ldots,6\}$.

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1, 2, ..., n+1\}$ such that any two blocks *B* and *B'* never cross, that is, there exist no pairs of indices $i, j \in B$, $k, \ell \in B'$ such that $i < k < j < \ell$.

Example

 $\{2,3,5\},\{4\},\{1,6\}$ is a noncrossing partition of $\{1,2,\ldots,6\}$.

A noncrossing partition can be seen as a permutation: one associates to each block $B = \{i_1, i_2, \ldots, i_k\}$ $(i_m < i_{m+1})$ the cycle $c_B = (i_1, i_2, \ldots, i_k)$ and takes the product of the various c_B .

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1, 2, ..., n+1\}$ such that any two blocks *B* and *B'* never cross, that is, there exist no pairs of indices $i, j \in B$, $k, \ell \in B'$ such that $i < k < j < \ell$.

Example

 $\{2,3,5\},\{4\},\{1,6\}$ is a noncrossing partition of $\{1,2,\ldots,6\}$.

A noncrossing partition can be seen as a permutation: one associates to each block $B = \{i_1, i_2, \ldots, i_k\}$ $(i_m < i_{m+1})$ the cycle $c_B = (i_1, i_2, \ldots, i_k)$ and takes the product of the various c_B . The partition from the example corresponds to the permutation (2, 3, 5)(1, 6).

Zinno Bases of TL algebras

Noncrossing partitions

A noncrossing partition is a partition of the set $\{1, 2, ..., n+1\}$ such that any two blocks *B* and *B'* never cross, that is, there exist no pairs of indices $i, j \in B$, $k, \ell \in B'$ such that $i < k < j < \ell$.

Example

 $\{2,3,5\},\{4\},\{1,6\}$ is a noncrossing partition of $\{1,2,\ldots,6\}$.

A noncrossing partition can be seen as a permutation: one associates to each block $B = \{i_1, i_2, \ldots, i_k\}$ $(i_m < i_{m+1})$ the cycle $c_B = (i_1, i_2, \ldots, i_k)$ and takes the product of the various c_B . The partition from the example corresponds to the permutation (2, 3, 5)(1, 6).

Simple elements of the Birman-Ko-Lee monoid

3

Simple elements of the Birman-Ko-Lee monoid

Consider the braid group B_n on n+1 strands

$$B_n := \left\langle \begin{array}{c|c} \mathbf{s_1}, \dots, \mathbf{s_n} \end{array} \middle| \begin{array}{c} \mathbf{s_i s_{i+1} s_i} = \mathbf{s_{i+1} s_i s_{i+1}}, & \forall i \in \{1, \dots, n-1\} \\ \mathbf{s_i s_j} = \mathbf{s_j s_i}, & \text{if } |i-j| > 1 \end{array} \right\rangle.$$

э

Simple elements of the Birman-Ko-Lee monoid

Consider the braid group B_n on n+1 strands

$$B_n := \left\langle \begin{array}{c|c} \mathbf{s_1}, \dots, \mathbf{s_n} \end{array} \middle| \begin{array}{c} \mathbf{s_i s_{i+1} s_i} = \mathbf{s_{i+1} s_i s_{i+1}}, & \forall i \in \{1, \dots, n-1\} \\ \mathbf{s_i s_j} = \mathbf{s_j s_i}, & \text{if } |i-j| > 1 \end{array} \right\rangle.$$

For each $i, j \in \{1, \ldots, n\}$, $i \leq j$, consider the braid word

$$[i, j+1] := \mathbf{s_j}^{-1} \mathbf{s_{j-1}}^{-1} \cdots \mathbf{s_{i+1}}^{-1} \mathbf{s_i} \mathbf{s_{i+1}} \cdots \mathbf{s_{j-1}} \mathbf{s_j}.$$

Simple elements of the Birman-Ko-Lee monoid

Consider the braid group B_n on n+1 strands

$$B_n := \left\langle \begin{array}{c|c} \mathbf{s_1}, \dots, \mathbf{s_n} \end{array} \middle| \begin{array}{c} \mathbf{s_i s_{i+1} s_i} = \mathbf{s_{i+1} s_i s_{i+1}}, & \forall i \in \{1, \dots, n-1\} \\ \mathbf{s_i s_j} = \mathbf{s_j s_i}, & \text{if } |i-j| > 1 \end{array} \right\rangle.$$

For each $i, j \in \{1, \ldots, n\}$, $i \leq j$, consider the braid word

$$[i, j+1] := \mathbf{s_j}^{-1} \mathbf{s_{j-1}}^{-1} \cdots \mathbf{s_{i+1}}^{-1} \mathbf{s_i} \mathbf{s_{i+1}} \cdots \mathbf{s_{j-1}} \mathbf{s_j}.$$

The submonoid of B_n generated by the equivalence classes of these braid words is the *Birman-Ko-Lee monoid*.

Simple elements of the Birman-Ko-Lee monoid

Consider the braid group B_n on n+1 strands

$$B_n := \left\langle \begin{array}{c|c} \mathbf{s_1}, \dots, \mathbf{s_n} \end{array} \middle| \begin{array}{c} \mathbf{s_i s_{i+1} s_i} = \mathbf{s_{i+1} s_i s_{i+1}}, & \forall i \in \{1, \dots, n-1\} \\ \mathbf{s_i s_j} = \mathbf{s_j s_i}, & \text{if } |i-j| > 1 \end{array} \right\rangle.$$

For each $i, j \in \{1, \ldots, n\}$, $i \leq j$, consider the braid word

$$[i, j+1] := \mathbf{s_j}^{-1} \mathbf{s_{j-1}}^{-1} \cdots \mathbf{s_{i+1}}^{-1} \mathbf{s_i} \mathbf{s_{i+1}} \cdots \mathbf{s_{j-1}} \mathbf{s_j}.$$

The submonoid of B_n generated by the equivalence classes of these braid words is the *Birman-Ko-Lee monoid*. To any cycle $c = (i_1, i_2, \ldots, i_k) \in \mathfrak{S}_{n+1}$ with $i_1 < i_2 < \cdots < i_k$, associate the braid word

$$\underline{c} = [i_1, i_2, i_3, \dots, i_k] := [i_1, i_2][i_2, i_3] \cdots [i_{k-1}, i_k].$$

Braid group, BKL monoid and Temperley-Lieb algebra

э

Braid group, BKL monoid and Temperley-Lieb algebra

To any noncrossing partition x with decomposition into product of cycles with disjoint support given by $c_1c_2\cdots c_m$, associate the braid word \underline{x} defined by $\underline{x} := c_1 \ c_2 \cdots c_m$.

Braid group, BKL monoid and Temperley-Lieb algebra

To any noncrossing partition x with decomposition into product of cycles with disjoint support given by $c_1c_2\cdots c_m$, associate the braid word \underline{x} defined by $\underline{x} := c_1 \ c_2 \cdots c_m$.

The set D of equivalence classes of braid words \underline{x} where x is a noncrossing partition is the set of *simple* elements of the Birman-Ko-Lee monoid. Since these elements are lifts of noncrossing partitions in the braid group we will also denote by D the set of noncrossing partitions.

Braid group, BKL monoid and Temperley-Lieb algebra

To any noncrossing partition x with decomposition into product of cycles with disjoint support given by $c_1c_2\cdots c_m$, associate the braid word \underline{x} defined by $\underline{x} := c_1 \ c_2 \cdots c_m$.

The set D of equivalence classes of braid words \underline{x} where x is a noncrossing partition is the set of *simple* elements of the Birman-Ko-Lee monoid. Since these elements are lifts of noncrossing partitions in the braid group we will also denote by D the set of noncrossing partitions.

There is a homomorphism

$$\alpha: B_n \to \mathrm{TL}_n(v+v^{-1}), \ \mathbf{s}_i \mapsto v^{-1}-b_i.$$

Braid group, BKL monoid and Temperley-Lieb algebra

To any noncrossing partition x with decomposition into product of cycles with disjoint support given by $c_1c_2\cdots c_m$, associate the braid word \underline{x} defined by $\underline{x} := c_1 \ c_2 \cdots c_m$.

The set D of equivalence classes of braid words \underline{x} where x is a noncrossing partition is the set of *simple* elements of the Birman-Ko-Lee monoid. Since these elements are lifts of noncrossing partitions in the braid group we will also denote by D the set of noncrossing partitions.

There is a homomorphism

$$\alpha: B_n \to \mathrm{TL}_n(v+v^{-1}), \ \mathbf{s}_{\mathbf{i}} \mapsto v^{-1} - b_{\mathbf{i}}.$$

It turns out that $|\mathcal{W}_f| = |D| = C_{n+1} = \dim(\mathrm{TL}_n(v + v^{-1}))$. What happens if one maps the elements of D in $\mathrm{TL}_n(v + v^{-1})$?

Zinno Bases of TL algebras

Zinno basis

Theorem (Zinno, 2002)

Zinno	Bases	of T	La	ge	bras
-------	-------	------	----	----	------

(人間) トイヨト イヨト

Zinno basis

Theorem (Zinno, 2002)

There is a bijection $a : D \to W_f$ and order on D together with the order induced on W_f by a such that for any $x \in D$,

э

Zinno basis

Theorem (Zinno, 2002)

There is a bijection $a : D \to W_f$ and order on D together with the order induced on W_f by a such that for any $x \in D$,

$$\alpha(x) = t_{a(x)}^{x} b_{a(x)} + \sum_{y \in \mathcal{W}_{f}, y < a(x)} t_{y}^{x} b_{y},$$

where $t_{a(x)}^{w} \in \mathbb{Z}[v, v^{-1}]$ is invertible;

э

< 回 > < 三 > < 三 >

Zinno basis

Theorem (Zinno, 2002)

There is a bijection $a : D \to W_f$ and order on D together with the order induced on W_f by a such that for any $x \in D$,

$$\alpha(x) = t_{a(x)}^{x} b_{a(x)} + \sum_{y \in \mathcal{W}_{f}, y < a(x)} t_{y}^{x} b_{y},$$

where $t_{a(x)}^{w} \in \mathbb{Z}[v, v^{-1}]$ is invertible; in other words, there exists orders on D and \mathcal{W}_{f} such that the change base matrix between $\{Z_{x}\}_{x\in D}$ and $\{b_{w}\}_{w\in\mathcal{W}_{f}}$ is upper triangular with invertible coefficient on the diagonal.

.

Zinno basis

Theorem (Zinno, 2002)

There is a bijection $a : D \to W_f$ and order on D together with the order induced on W_f by a such that for any $x \in D$,

$$\alpha(x) = t_{a(x)}^{x} b_{a(x)} + \sum_{y \in \mathcal{W}_{f}, y < a(x)} t_{y}^{x} b_{y},$$

where $t_{a(x)}^{w} \in \mathbb{Z}[v, v^{-1}]$ is invertible; in other words, there exists orders on D and \mathcal{W}_{f} such that the change base matrix between $\{Z_{x}\}_{x\in D}$ and $\{b_{w}\}_{w\in\mathcal{W}_{f}}$ is upper triangular with invertible coefficient on the diagonal.

Corollary

The set
$$\{Z_x := \alpha(x) \mid x \in D\}$$
 is a $\mathbb{Z}[v, v^{-1}]$ -basis of $\mathrm{TL}_n(v + v^{-1})$, which we will call Zinno basis.

Zinno Bases of TL algebras

< 17 ▶

(本語)と (本語)と (本語)と

Zinno basis, II

Zinno's result leads to the following questions:

A 1

Zinno basis, II

Zinno's result leads to the following questions:

• Zinno's description does not give the inverse bijection of *a*. Can we give it explicitly?

3. 3

Zinno basis, II

Zinno's result leads to the following questions:

- Zinno's description does not give the inverse bijection of *a*. Can we give it explicitly?
- The order Zinno puts on *D* is Bruhat order (!). In the case of dual braid monoids, are there still orders on the bases and bijections giving Zinno's?

Zinno basis, II

Zinno's result leads to the following questions:

- Zinno's description does not give the inverse bijection of *a*. Can we give it explicitly?
- The order Zinno puts on *D* is Bruhat order (!). In the case of dual braid monoids, are there still orders on the bases and bijections giving Zinno's?
- What can be said on the coefficients of the change base matrix?

Zinno basis, II

Zinno's result leads to the following questions:

- Zinno's description does not give the inverse bijection of *a*. Can we give it explicitly?
- The order Zinno puts on *D* is Bruhat order (!). In the case of dual braid monoids, are there still orders on the bases and bijections giving Zinno's?
- What can be said on the coefficients of the change base matrix?
- Write $Z_x = \sum_{w \in W_f} t'_x^w b_w$, where $t'_x^w \in \mathbb{Z}[v, v^{-1}]$. Computations in small cases show that $t'_x^w = (-1)^{\ell_s(w)} t_x^w$ where t_x^w is a polynomial with positive coefficients. Can we find an interesting interpretation of these coefficients or prove positivity using either combinatorial methods or categorification?

Zinno Bases of TL algebras

Zinno's bijection

Zinno	Bases	of T	La	lgel	oras
-------	-------	------	----	------	------

< (T) > <

Zinno's bijection

Consider the noncrossing partition from before x = (2, 3, 5)(1, 6).

-

- ∢ ≣ →

Zinno's bijection

Consider the noncrossing partition from before x = (2, 3, 5)(1, 6). Consider the braid word m_x given by the concatenation of the braid words [2, 3, 5] and [1, 6]:

-

э

Zinno's bijection

Consider the noncrossing partition from before x = (2,3,5)(1,6). Consider the braid word m_x given by the concatenation of the braid words [2,3,5] and [1,6]:

Zinno's bijection

Consider the noncrossing partition from before x = (2,3,5)(1,6). Consider the braid word m_x given by the concatenation of the braid words [2,3,5] and [1,6]:

$$m_{x} = \mathbf{s}_{2}(\mathbf{s}_{4}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5}).$$

Zinno's bijection

Consider the noncrossing partition from before x = (2, 3, 5)(1, 6). Consider the braid word m_x given by the concatenation of the braid words [2, 3, 5] and [1, 6]:

$$m_{x} = \mathbf{s}_{2}(\mathbf{s_{4}}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5}).$$

Zinno gives rules for extracting the fully commutative element $a(\underline{x})$ as a subword of m_x .

Zinno Bases of TL algebras

Winterbraids IV, Dijon

February 2014

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

< 4 → <

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

$$m_x = s_2(s_4^{-1}s_3s_4)(s_5^{-1}s_4^{-1}s_3^{-1}s_2^{-1}s_1s_2s_3s_4s_5)$$

< (T) > <

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

$$m_{x} = \mathbf{s_{2}}(\mathbf{s_{4}}^{-1}\mathbf{s_{3}}\mathbf{s_{4}})(\mathbf{s_{5}}^{-1}\mathbf{s_{4}}^{-1}\mathbf{s_{3}}^{-1}\mathbf{s_{2}}^{-1}\mathbf{s_{1}}\mathbf{s_{2}}\mathbf{s_{3}}\mathbf{s_{4}}\mathbf{s_{5}}) m_{x} = \mathbf{s_{2}}(\mathbf{s_{4}}^{-1}\mathbf{s_{3}}\mathbf{s_{4}})(\mathbf{s_{5}}^{-1}\mathbf{s_{4}}^{-1}\mathbf{s_{3}}^{-1}\mathbf{s_{2}}^{-1}\mathbf{s_{1}}\mathbf{s_{2}}\mathbf{s_{3}}\mathbf{s_{4}}\mathbf{s_{5}})$$

< (T) > <

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

$$m_{x} = \mathbf{s}_{2}(\mathbf{s}_{4}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5})$$

$$m_{x} = \mathbf{s}_{2}(\mathbf{s}_{4}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5})$$

$$m_{x} = \mathbf{s}_{2}(\mathbf{s}_{4}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5})$$

A N

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

$$m_{x} = \mathbf{s}_{2}(\mathbf{s}_{4}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5})$$

$$m_{x} = \mathbf{s}_{2}(\mathbf{s}_{4}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5})$$

$$m_{x} = \mathbf{s}_{2}(\mathbf{s}_{4}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5})$$

$$m_{x} = \mathbf{s}_{2}(\mathbf{s}_{4}^{-1}\mathbf{s}_{3}\mathbf{s}_{4})(\mathbf{s}_{5}^{-1}\mathbf{s}_{4}^{-1}\mathbf{s}_{3}^{-1}\mathbf{s}_{2}^{-1}\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}\mathbf{s}_{4}\mathbf{s}_{5})$$

< 47 ▶ <

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

$$m_{x} = s_{2}(s_{4}^{-1}s_{3}s_{4})(s_{5}^{-1}s_{4}^{-1}s_{3}^{-1}s_{2}^{-1}s_{1}s_{2}s_{3}s_{4}s_{5})$$

$$m_{x} = s_{2}(s_{4}^{-1}s_{3}s_{4})(s_{5}^{-1}s_{4}^{-1}s_{3}^{-1}s_{2}^{-1}s_{1}s_{2}s_{3}s_{4}s_{5})$$

$$m_{x} = s_{2}(s_{4}^{-1}s_{3}s_{4})(s_{5}^{-1}s_{4}^{-1}s_{3}^{-1}s_{2}^{-1}s_{1}s_{2}s_{3}s_{4}s_{5})$$

$$m_{x} = s_{2}(s_{4}^{-1}s_{3}s_{4})(s_{5}^{-1}s_{4}^{-1}s_{3}^{-1}s_{2}^{-1}s_{1}s_{2}s_{3}s_{4}s_{5})$$

$$m_{x} = s_{2}(s_{4}^{-1}s_{3}s_{4})(s_{5}^{-1}s_{4}^{-1}s_{3}^{-1}s_{2}^{-1}s_{1}s_{2}s_{3}s_{4}s_{5})$$

A 🖓 h

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

 $m_{x} = s_{2}(s_{4}^{-1}s_{3}s_{4})(s_{5}^{-1}s_{4}^{-1}s_{3}^{-1}s_{2}^{-1}s_{1}s_{2}s_{3}s_{4}s_{5})$ $m_{x} = s_{2}(s_{4}^{-1}s_{3}s_{4})(s_{5}^{-1}s_{4}^{-1}s_{3}^{-1}s_{2}^{-1}s_{1}s_{2}s_{3}s_{4}s_{5})$

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

 $m_{x} = s_{2}(s_{4}^{-1}s_{3}s_{4})(s_{5}^{-1}s_{4}^{-1}s_{3}^{-1}s_{2}^{-1}s_{1}s_{2}s_{3}s_{4}s_{5})$ $\sim a(x) = (s_{2}s_{1})(s_{4}s_{3}s_{2})(s_{5}s_{4}s_{3}) \in \mathcal{W}_{f}.$

Zinno's bijection, II

Example (Zinno's algorithm for finding a(x))

$$\begin{split} m_x &= \mathbf{s}_2(\mathbf{s}_4^{-1}\mathbf{s}_3\mathbf{s}_4)(\mathbf{s}_5^{-1}\mathbf{s}_4^{-1}\mathbf{s}_3^{-1}\mathbf{s}_2^{-1}\mathbf{s}_1\mathbf{s}_2\mathbf{s}_3\mathbf{s}_4\mathbf{s}_5)\\ m_x &= \mathbf{s}_2(\mathbf{s}_4^{-1}\mathbf{s}_3\mathbf{s}_4)(\mathbf{s}_5^{-1}\mathbf{s}_4\mathbf{s}_3\mathbf{s}_2)(\mathbf{s}_5\mathbf{s}_4\mathbf{s}_3)\\ &\mapsto a(x) &= (\mathbf{s}_2\mathbf{s}_1)(\mathbf{s}_4\mathbf{s}_3\mathbf{s}_2)(\mathbf{s}_5\mathbf{s}_4\mathbf{s}_3)\\ &\mapsto \mathcal{W}_f. \end{split}$$

The algorithm: read the word m_x from the left to the right. If the first letter $\mathbf{s}_i^{\pm 1}$ occuring in m_x has positive (resp. negative) exponent, then all the occurrences of $\mathbf{s}_i^{\pm 1}$ in m_x with positive (resp. negative) exponent and only those must contribute to the subword a(x). Apply the same process to the next generator $s_j^{\pm 1}$, $j \neq i$ occuring right to the first $s_i^{\pm 1}$ in m_x , until you have considered all the indices k such that $s_k^{\pm 1}$ occurs in m_x .

Zinno Bases of TL algebras

Zinno's bijection, III

Zinno	Bases	of 🛛	TL a	lgeb	oras
-------	-------	------	------	------	------

< 回 > < 三 > < 三 >

Zinno's bijection, III

• Zinno shows that such a process gives a well-defined map $a: D \to W_f$ and shows that it is surjective; hence it is bijective since both sets have cardinality (equal to the (n+1)th Catalan number $C_{n+1} = \frac{1}{n+2} \binom{2(n+1)}{n+1}$). However surjectivity is proved indirectly, not allowing one to give the inverse bijection.

Zinno's bijection, III

- Zinno shows that such a process gives a well-defined map $a: D \to W_f$ and shows that it is surjective; hence it is bijective since both sets have cardinality (equal to the (n+1)th Catalan number $C_{n+1} = \frac{1}{n+2} \binom{2(n+1)}{n+1}$). However surjectivity is proved indirectly, not allowing one to give the inverse bijection.
- It is not clear on how to generalize such a process to an arbitrary dual braid monoid since it needs the representation of <u>x</u> by a specific braid word m_x.

A new version of Zinno's bijection

Consider again the noncrossing partition x = (2, 3, 5)(1, 6).

э

э

A new version of Zinno's bijection

Consider again the noncrossing partition x = (2, 3, 5)(1, 6). Set $D_x := \{1, 2, 3\}$ for the set of integers indexing a non terminal vertex of a polygon (polygons include edges) and $U_x := \{3, 5, 6\}$ for the set of integers indexing non initial vertices.

A new version of Zinno's bijection

Consider again the noncrossing partition x = (2, 3, 5)(1, 6). Set $D_x := \{1, 2, 3\}$ for the set of integers indexing a non terminal vertex of a polygon (polygons include edges) and $U_x := \{3, 5, 6\}$ for the set of integers indexing non initial vertices.

Set $J = D_x$, $I = U_x - 1 = \{2, 4, 5\}$. Consider the unique $w \in W_f$ such that I = I(w), J = J(w):

E 6 4 E 6

A new version of Zinno's bijection

Consider again the noncrossing partition x = (2, 3, 5)(1, 6). Set $D_x := \{1, 2, 3\}$ for the set of integers indexing a non terminal vertex of a polygon (polygons include edges) and $U_x := \{3, 5, 6\}$ for the set of integers indexing non initial vertices.

Set $J = D_x$, $I = U_x - 1 = \{2, 4, 5\}$. Consider the unique $w \in W_f$ such that I = I(w), J = J(w):

$$w = (s_2 s_1)(s_4 s_3 s_2)(s_5 s_4 s_3)$$

A new version of Zinno's bijection, II

 $w \in \mathcal{W}_f$

A 🖓 h

A new version of Zinno's bijection, II

$$w \in \mathcal{W}_f \quad \longleftrightarrow \quad (I(w), J(w))$$

A new version of Zinno's bijection, II

$$egin{array}{rcl} w \in \mathcal{W}_f & \longleftrightarrow & (I(w),J(w)) \ & \longleftrightarrow & (D_x=J(w),U_x=I(w)+1) \end{array}$$

The Temperley-Lieb algebra Zinno basis Application to the determination of the coefficients

A new version of Zinno's bijection, II

$$egin{aligned} & w \in \mathcal{W}_f & \longleftrightarrow & (I(w), J(w)) \ & \longleftrightarrow & (D_x = J(w), U_x = I(w) + 1) \ & \longleftrightarrow & x \in D. \end{aligned}$$

A new version of Zinno's bijection, II

$$egin{aligned} & w \in \mathcal{W}_f & \longleftrightarrow & (I(w), J(w)) \ & \longleftrightarrow & (D_x = J(w), U_x = I(w) + 1) \ & \longleftrightarrow & x \in D. \end{aligned}$$

Theorem

Zinno Bases of TL algebras

Winterbraids IV, Dijon

イロト イヨト イヨト イヨト

A new version of Zinno's bijection, II

$$egin{aligned} & w \in \mathcal{W}_f & \longleftrightarrow & (I(w), J(w)) \ & \leftrightarrow & (D_x = J(w), U_x = I(w) + 1) \ & \leftrightarrow & x \in D. \end{aligned}$$

Theorem

The process above defines two maps ψ : W_f → D and φ : D → W_f such that ψφ = id, φψ = id.

Zinno Bases of TL algebras

A new version of Zinno's bijection, II

$$egin{aligned} & w \in \mathcal{W}_f & \longleftrightarrow & (I(w), J(w)) \ & \leftrightarrow & (D_x = J(w), U_x = I(w) + 1) \ & \leftrightarrow & x \in D. \end{aligned}$$

Theorem

The process above defines two maps ψ : W_f → D and φ : D → W_f such that ψφ = id, φψ = id.

2 One has the equality $\varphi = a$.

A new version of Zinno's bijection, II

$$egin{aligned} & w \in \mathcal{W}_f & \longleftrightarrow & (I(w), J(w)) \ & \longleftrightarrow & (D_x = J(w), U_x = I(w) + 1) \ & \longleftrightarrow & x \in D. \end{aligned}$$

Theorem

The process above defines two maps ψ : W_f → D and φ : D → W_f such that ψφ = id, φψ = id.

2 One has the equality $\varphi = a$.

Such a process generalizes to dual braid monoids.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ , ψ to introduce a new basis of $TL_n(v + v^{-1})$.

< 回 > < 三 > < 三 >

A new basis of the Temperley-Lieb algebra

we will use the bijections φ , ψ to introduce a new basis of $\operatorname{TL}_n(v + v^{-1})$. Let $w \in \mathcal{W}_f$. Set $L(w) = \{s \in S \mid sw <_S w\}$ et $R(w) = \{s \in S \mid ws <_S w\}$.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ , ψ to introduce a new basis of $\operatorname{TL}_n(v + v^{-1})$. Let $w \in W_f$. Set $L(w) = \{s \in S \mid sw <_S w\}$ et $R(w) = \{s \in S \mid ws <_S w\}$.

Remarks:

- If $s, t \in L(w)$ (resp. R(w)), then st = ts.
- If $s \in L(w)$ (resp. R(w)), then $sw \in W_f$ (resp. $ws \in W_f$).

・ 同 ト ・ ヨ ト ・ ヨ ト

A new basis of the Temperley-Lieb algebra

we will use the bijections φ , ψ to introduce a new basis of $\operatorname{TL}_n(v + v^{-1})$. Let $w \in \mathcal{W}_f$. Set $L(w) = \{s \in S \mid sw <_S w\}$ et $R(w) = \{s \in S \mid ws <_S w\}$.

Remarks:

- If $s, t \in L(w)$ (resp. R(w)), then st = ts.
- If $s \in L(w)$ (resp. R(w)), then $sw \in W_f$ (resp. $ws \in W_f$).

Lemma

Let $w \in W_f$, $s \in L(w)$, $t \in R(w)$.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ , ψ to introduce a new basis of $\operatorname{TL}_n(v + v^{-1})$. Let $w \in W_f$. Set $L(w) = \{s \in S \mid sw <_S w\}$ et $R(w) = \{s \in S \mid ws <_S w\}$.

Remarks:

- If $s, t \in L(w)$ (resp. R(w)), then st = ts.
- If $s \in L(w)$ (resp. R(w)), then $sw \in W_f$ (resp. $ws \in W_f$).

Lemma

Let $w \in W_f$, $s \in L(w)$, $t \in R(w)$.

 The product sψ(w) lies in D (resp. ψ(w)t ∈ D) and sψ(w) <_S ψ(w) (resp. ψ(w)t <_S ψ(w)), where <_S denotes the Bruhat order.

A new basis of the Temperley-Lieb algebra

we will use the bijections φ , ψ to introduce a new basis of $\operatorname{TL}_n(v + v^{-1})$. Let $w \in W_f$. Set $L(w) = \{s \in S \mid sw <_S w\}$ et $R(w) = \{s \in S \mid ws <_S w\}$.

Remarks:

- If $s, t \in L(w)$ (resp. R(w)), then st = ts.
- If $s \in L(w)$ (resp. R(w)), then $sw \in W_f$ (resp. $ws \in W_f$).

Lemma

Let $w \in W_f$, $s \in L(w)$, $t \in R(w)$.

 The product sψ(w) lies in D (resp. ψ(w)t ∈ D) and sψ(w) <_S ψ(w) (resp. ψ(w)t <_S ψ(w)), where <_S denotes the Bruhat order.

2 One has
$$s\psi(w) = \psi(w)t \Leftrightarrow s = t$$
 or $s = s_i$, $t = s_{i-1}$.

A new basis of the Temperley-Lieb algebra, II

Example

Zinno Bases of TL algebras

A new basis of the Temperley-Lieb algebra, II

Example

•
$$w = s_2 s_1$$
; $L(w) = \{s_2\}$, $R(w) = \{s_1\}$; set $x := \psi(w)$;
 $U_x = \{3\}$, $D_x = \{1\}$ hence $x = (1, 3) = s_2 s_1 s_2$. One has
 $s_2 x = s_1 s_2 = x s_1$.

A new basis of the Temperley-Lieb algebra, II

Example

•
$$w = s_2 s_1$$
; $L(w) = \{s_2\}$, $R(w) = \{s_1\}$; set $x := \psi(w)$;
 $U_x = \{3\}$, $D_x = \{1\}$ hence $x = (1,3) = s_2 s_1 s_2$. One has
 $s_2 x = s_1 s_2 = x s_1$.

•
$$w = s_2 s_1 s_3 s_2$$
: $L(w) = \{s_2\}$, $R(w) = \{s_2\}$; set $x := \psi(w)$;
 $U_x = \{3,4\}$, $D_x = \{1,2\}$ hence
 $x = (1,4)(2,3) = s_2 s_3 s_2 s_1 s_2 s_3$. One has $s_2 x = (1,4) = x s_2$.

3 x 3

A new basis of the Temperley-Lieb algebra, II

Example

•
$$w = s_2 s_1$$
; $L(w) = \{s_2\}$, $R(w) = \{s_1\}$; set $x := \psi(w)$;
 $U_x = \{3\}$, $D_x = \{1\}$ hence $x = (1, 3) = s_2 s_1 s_2$. One has
 $s_2 x = s_1 s_2 = x s_1$.

•
$$w = s_2 s_1 s_3 s_2$$
: $L(w) = \{s_2\}$, $R(w) = \{s_2\}$; set $x := \psi(w)$;
 $U_x = \{3, 4\}$, $D_x = \{1, 2\}$ hence
 $x = (1, 4)(2, 3) = s_2 s_3 s_2 s_1 s_2 s_3$. One has $s_2 x = (1, 4) = x s_2$.

To any pair of subsets $L \subset L(w)$ and $R \subset R(w)$ one associates a pair (L', R') where $L' \subset L$, $R' \subset R$ such that

A new basis of the Temperley-Lieb algebra, II

Example

•
$$w = s_2s_1$$
; $L(w) = \{s_2\}$, $R(w) = \{s_1\}$; set $x := \psi(w)$;
 $U_x = \{3\}$, $D_x = \{1\}$ hence $x = (1, 3) = s_2s_1s_2$. One has
 $s_2x = s_1s_2 = xs_1$.

•
$$w = s_2 s_1 s_3 s_2$$
: $L(w) = \{s_2\}$, $R(w) = \{s_2\}$; set $x := \psi(w)$;
 $U_x = \{3, 4\}$, $D_x = \{1, 2\}$ hence
 $x = (1, 4)(2, 3) = s_2 s_3 s_2 s_1 s_2 s_3$. One has $s_2 x = (1, 4) = x s_2$.

To any pair of subsets $L \subset L(w)$ and $R \subset R(w)$ one associates a pair (L', R') where $L' \subset L$, $R' \subset R$ such that • if $s \in L'$, then $s \notin R'$; if $s_i \in L'$, then $s_{i-1} \notin R'$,

A 🖓 h

∃ ► < ∃ ►</p>

A new basis of the Temperley-Lieb algebra, II

Example

•
$$w = s_2 s_1$$
; $L(w) = \{s_2\}$, $R(w) = \{s_1\}$; set $x := \psi(w)$;
 $U_x = \{3\}$, $D_x = \{1\}$ hence $x = (1, 3) = s_2 s_1 s_2$. One has
 $s_2 x = s_1 s_2 = x s_1$.

•
$$w = s_2 s_1 s_3 s_2$$
: $L(w) = \{s_2\}$, $R(w) = \{s_2\}$; set $x := \psi(w)$;
 $U_x = \{3,4\}$, $D_x = \{1,2\}$ hence
 $x = (1,4)(2,3) = s_2 s_3 s_2 s_1 s_2 s_3$. One has $s_2 x = (1,4) = x s_2$.

To any pair of subsets $L \subset L(w)$ and $R \subset R(w)$ one associates a pair (L', R') where $L' \subset L$, $R' \subset R$ such that

1 if
$$s \in L'$$
, then $s \notin R'$; if $s_i \in L'$, then $s_{i-1} \notin R'$,

2 $|L' \cup R'|$ is as large as possible for the first condition.

A new basis of the Temperley-Lieb algebra, III

Let $w \in W_f$, L, R, L', R' as above. Set

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_f$, L, R, L', R' as above. Set

$$x_{L',R'} := \left(\prod_{s \in L'} s\right) \psi(w) \left(\prod_{s \in R'} s\right).$$

Proposition

Zinno Bases of TL algebras

.∋...>

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_f$, L, R, L', R' as above. Set

$$x_{L',R'} := \left(\prod_{s \in L'} s\right) \psi(w) \left(\prod_{s \in R'} s\right).$$

Proposition

The permutation x_{L',R'} is in D and is independent of the choice of (L', R'). We will therefore denote it by x_{L,R}.

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_f$, L, R, L', R' as above. Set

$$x_{L',R'} := \left(\prod_{s \in L'} s\right) \psi(w) \left(\prod_{s \in R'} s\right).$$

Proposition

- The permutation x_{L',R'} is in D and is independent of the choice of (L', R'). We will therefore denote it by x_{L,R}.
- **2** $x_{L,R} <_{S} \psi(w)$ and $\ell_{S}(x_{L,R}) = \ell_{S}(\psi(w)) |L' \cup R'|.$

A new basis of the Temperley-Lieb algebra, III

Let $w \in \mathcal{W}_f$, L, R, L', R' as above. Set

$$x_{L',R'} := \left(\prod_{s \in L'} s\right) \psi(w) \left(\prod_{s \in R'} s\right).$$

Proposition

- The permutation x_{L',R'} is in D and is independent of the choice of (L', R'). We will therefore denote it by x_{L,R}.
- **2** $x_{L,R} <_{S} \psi(w)$ and $\ell_{S}(x_{L,R}) = \ell_{S}(\psi(w)) |L' \cup R'|.$

Set $Q_w := \{x_{L,R} \mid L \subset L(w), R \subset R(w)\}.$

A new basis of the Temperley-Lieb algebra, IV

Example

 $w = s_1 s_4 s_3 s_2, \ \psi(w) = s_1 s_4 s_3 s_2 s_3 s_4 = (1, 2, 5)$

< 🗗 🕨

A new basis of the Temperley-Lieb algebra, IV

Example

 $w = s_1 s_4 s_3 s_2, \ \psi(w) = s_1 s_4 s_3 s_2 s_3 s_4 = (1, 2, 5)$

 $Q_w =$

< 🗗 🕨

A new basis of the Temperley-Lieb algebra, IV

Example

$$w = s_1 s_4 s_3 s_2, \ \psi(w) = s_1 s_4 s_3 s_2 s_3 s_4 = (1, 2, 5)$$

A new basis of the Temperley-Lieb algebra, V

One associates to $w \in \mathcal{W}_f$ an element $X_w \in \mathrm{TL}_n(v + v^{-1})$ defined by

- ∢ ≣ →

A new basis of the Temperley-Lieb algebra, V

One associates to $w \in \mathcal{W}_f$ an element $X_w \in \mathrm{TL}_n(v + v^{-1})$ defined by

$$X_w := \sum_{x \in Q_w} p_x^w Z_x,$$

where $p_x^w := (-1)^{\ell_S(w) + \ell_S(\psi(w)) - \ell_S(x)} v^{n_x(w)}$ with $n_x(w) \in \mathbb{Z}$ a technical coefficient.

A new basis of the Temperley-Lieb algebra, V

One associates to $w \in \mathcal{W}_f$ an element $X_w \in \mathrm{TL}_n(v + v^{-1})$ defined by

$$X_w := \sum_{x \in Q_w} p_x^w Z_x,$$

where $p_x^w := (-1)^{\ell_S(w) + \ell_S(\psi(w)) - \ell_S(x)} v^{n_x(w)}$ with $n_x(w) \in \mathbb{Z}$ a technical coefficient.

Proposition

The set $\{X_w\}_{w \in W_f}$ is a basis of $TL_n(\delta)$; the change base matrix $\{Z_x\} \leftrightarrow \{X_w\}$ (and $\{X_w\} \leftrightarrow \{b_w\}$) is upper triangular with invertible coefficient on the diagonal (D is ordered by Bruhat order and W_f is ordered by the order induced by $\varphi = a$).

Zinno Bases of TL algebras

イロト イヨト イヨト イヨト

Application to the determination of some coefficients

Zinno	Bases	of T	L al	gebras	
-------	-------	------	------	--------	--

3 x 3

Application to the determination of some coefficients

The change base matrix between $\{Z_x\}$ and $\{X_w\}$ is known by definition of $\{X_w\}$.

Application to the determination of some coefficients

The change base matrix between $\{Z_x\}$ and $\{X_w\}$ is known by definition of $\{X_w\}$. If one can understand the change base matrix between $\{X_w\}$ and $\{b_w\}$ then one will be able to express the change base matrix between $\{Z_x\}$ and $\{b_w\}$ as a product of two matrices.

Application to the determination of some coefficients

The change base matrix between $\{Z_x\}$ and $\{X_w\}$ is known by definition of $\{X_w\}$. If one can understand the change base matrix between $\{X_w\}$ and $\{b_w\}$ then one will be able to express the change base matrix between $\{Z_x\}$ and $\{b_w\}$ as a product of two matrices. Write $b_w := \sum_{y \in W_f} q_y^w X_y$.

Proposition

If $q_y^w \neq 0$, then

Application to the determination of some coefficients

The change base matrix between $\{Z_x\}$ and $\{X_w\}$ is known by definition of $\{X_w\}$. If one can understand the change base matrix between $\{X_w\}$ and $\{b_w\}$ then one will be able to express the change base matrix between $\{Z_x\}$ and $\{b_w\}$ as a product of two matrices. Write $b_w := \sum_{y \in W_f} q_y^w X_y$.

Proposition

If $q_y^w \neq 0$, then $\psi(y) <_S \psi(w)$, $L(w) \subset L(y)$ and $R(w) \subset R(y)$.

< 回 ト < 三 ト < 三 ト

Application to the determination of some coefficients

The change base matrix between $\{Z_x\}$ and $\{X_w\}$ is known by definition of $\{X_w\}$. If one can understand the change base matrix between $\{X_w\}$ and $\{b_w\}$ then one will be able to express the change base matrix between $\{Z_x\}$ and $\{b_w\}$ as a product of two matrices. Write $b_w := \sum_{y \in W_f} q_y^w X_y$.

Proposition

If
$$q_y^w \neq 0$$
, then $\psi(y) <_S \psi(w)$, $L(w) \subset L(y)$ and $R(w) \subset R(y)$.

Unfortunately, the converse if false. Write $F_{w} := \{ y \in \mathcal{W}_{f} | L(w) \subset L(y), R(w) \subset R(y), \psi(y) <_{S} \psi(w) \};$

Application to the determination of some coefficients

The change base matrix between $\{Z_x\}$ and $\{X_w\}$ is known by definition of $\{X_w\}$. If one can understand the change base matrix between $\{X_w\}$ and $\{b_w\}$ then one will be able to express the change base matrix between $\{Z_x\}$ and $\{b_w\}$ as a product of two matrices. Write $b_w := \sum_{y \in W_f} q_y^w X_y$.

Proposition

If
$$q_y^w \neq 0$$
, then $\psi(y) <_S \psi(w)$, $L(w) \subset L(y)$ and $R(w) \subset R(y)$.

Unfortunately, the converse if false. Write $F_w := \{y \in W_f | L(w) \subset L(y), R(w) \subset R(y), \psi(y) <_S \psi(w)\};$ thanks to the above proposition one has

$$b_w := \sum_{y \in F_w} q_y^w X_y = \sum_{y \in F_w} \sum_{x \in Q_y} q_y^w p_x^y Z_x = \sum_{x < S^\psi(w)} h_x^w Z_x.$$

Zinno Bases of TL algebras

Application to the determination of some coefficients, II

э.

Application to the determination of some coefficients, II

$$b_w := \sum_{y \in F_w} q_y^w X_y = \sum_{y \in F_w} \sum_{x \in Q_y} q_y^w p_x^y Z_x = \sum_{x < S \psi(w)} h_x^w Z_x.$$

Theorem

Zinno Bases of TL algebras

Application to the determination of some coefficients, II

$$b_w := \sum_{y \in F_w} q_y^w X_y = \sum_{y \in F_w} \sum_{x \in Q_y} q_y^w p_x^y Z_x = \sum_{x < S \psi(w)} h_x^w Z_x.$$

Theorem

If
$$x \notin \bigcup_{y \in F_w} Q_y$$
, then $h_x^w = 0$.

Zinno Bases of TL algebras

Application to the determination of some coefficients, II

$$b_w := \sum_{y \in F_w} q_y^w X_y = \sum_{y \in F_w} \sum_{x \in Q_y} q_y^w p_x^y Z_x = \sum_{x < s \psi(w)} h_x^w Z_x.$$

Theorem

Zinno Bases of TL algebras

Winterbraids IV, Dijon

Application to the determination of some coefficients, II

$$b_w := \sum_{y \in F_w} q_y^w X_y = \sum_{y \in F_w} \sum_{x \in Q_y} q_y^w p_x^y Z_x = \sum_{x < S \psi(w)} h_x^w Z_x.$$

Theorem

If
$$x \notin \bigcup_{y \in F_w} Q_y$$
, then $h_x^w = 0$.

2 If $x \in Q_w$, then $h_x^w = p_x^w = (-1)^{\ell_S(w) + \ell_S(\psi(w)) - \ell_S(x)} v^{n_w(x)}$.

Remark: using the fact that for some $y, y' \in F_w$, one can have $Q_y \cap Q_{y'} \neq \emptyset$, one can find cases where h_x^w is not a monomial. However, it never happens if y = w or y' = w.

Zinno Bases of TL algebras

Application to the determination of some coefficients, II

$$b_w := \sum_{y \in F_w} q_y^w X_y = \sum_{y \in F_w} \sum_{x \in Q_y} q_y^w p_x^y Z_x = \sum_{x < S \psi(w)} h_x^w Z_x.$$

Theorem

• If
$$x \notin \bigcup_{y \in F_w} Q_y$$
, then $h_x^w = 0$.

2 If $x \in Q_w$, then $h_x^w = p_x^w = (-1)^{\ell_S(w) + \ell_S(\psi(w)) - \ell_S(x)} v^{n_w(x)}$.

Remark: using the fact that for some $y, y' \in F_w$, one can have $Q_y \cap Q_{y'} \neq \emptyset$, one can find cases where h_x^w is not a monomial. However, it never happens if y = w or y' = w. Now write the inverse matrix $Z_x = \sum_{w \in W_f} (-1)^{\ell_S(w)} t_w^x b_w$.

Positivity results

Proposition

Any element in D can be written as a product of the form $\mathbf{x}^{-1}\mathbf{y}$, where \mathbf{x} , \mathbf{y} are positive reduced braid words.

.∋...>

-

Positivity results

Proposition

Any element in D can be written as a product of the form $\mathbf{x}^{-1}\mathbf{y}$, where \mathbf{x} , \mathbf{y} are positive reduced braid words.

As a consequence, the image of any element of D in the Hecke algebra can be written in the form $(T_x)^{-1}T_y$. Using results of Fan and Green (saying that the basis b_w is the image of the Kazhdan-Lusztig basis of the Hecke algebra) and positivity results of Dyer and Lehrer (using intersection cohomology of Schubert varieties) together with the proposition above, one gets

Positivity results

Proposition

Any element in D can be written as a product of the form $\mathbf{x}^{-1}\mathbf{y}$, where \mathbf{x} , \mathbf{y} are positive reduced braid words.

As a consequence, the image of any element of D in the Hecke algebra can be written in the form $(T_x)^{-1}T_y$. Using results of Fan and Green (saying that the basis b_w is the image of the Kazhdan-Lusztig basis of the Hecke algebra) and positivity results of Dyer and Lehrer (using intersection cohomology of Schubert varieties) together with the proposition above, one gets

Theorem

For any $x \in D$, $w \in W_f$, t_w^x has only positive coefficients.

Zinno Bases of TL algebras

イロト イ団ト イヨト イヨト