On some lattices arising in combinatorial group theory

Thomas Gobet

Institut Denis Poisson, Université de Tours,

Worskhop CORTIPOM, CIRM, July 2023.

Presented monoids

- Let S be a finite alphabet $\{a, b, \ldots\}$. Let S^{*} be the free monoid on S, that is, the monoid of words of finite length in S, where product $=$ concatenation.
- Let $\left\{u_{i}\right\}_{i=1}^{k},\left\{w_{i}\right\}_{i=1}^{k}$ be two lists of elements of S^{*}.
- Consider the set-theoretic quotient M of S^{*} by the equivalence relation $a w_{i} b \sim a u_{i} b$ whenever $a, b \in S^{*}$, and $i \in\{1,2, \ldots, k\}$.
- This relation is compatible with the concatenation of words in S^{*}, thus M is still a monoid. It is often denoted $M=\langle S \mid R\rangle$, where S is its generating set S, and R denotes the set $\left\{w_{i}=u_{i}\right\}_{i=1}^{k}$ of defining relations. The data $\langle S \mid R\rangle$ is a presentation of M.

Example

Let $M_{1}=\langle a, b \mid a b a=b a b\rangle$. In M we have

$$
b^{2} a b=b(b a b)=b(a b a)=(b a b) a=(a b a) a=a b a^{2} .
$$

Word problem in a finitely presented monoid

- A monoid M is said to be finitely presented if there are S, R as in the previous slide such that $M \cong\langle S \mid R\rangle$.

Definition

A finitely presented monoid M is said to have solvable word problem if there is an algorithm allowing one to determine in finite time if any two words $x_{1}, x_{2} \in S^{*}$ represent the same element of M or not.

Example

Let $M_{1}=\langle a, b \mid a b a=b a b\rangle$. There is a unique defining relation $a b a=b a b$, which preserves the length of words. The word problem is thus trivial: given a word $x_{1} \in S^{*}$, look at all possible ways to apply a defining relation to x_{1}. It gives a (possible empty) new finite set of words $\left\{y_{1}, y_{2}, \ldots, y_{\ell}\right\}$ of the same length. Iterate, until you get no new words. Since the set of words of a given length is finite, it terminates.

Word problem in a finitely presented monoid, II

- If M is equipped with a length function $\lambda: M \longrightarrow \mathbb{Z}_{\geq 0}$ such that $\lambda(a b)=\lambda(a)+\lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0$, then M has a solvable word problem.
- In such a monoid, there is no nontrivial invertible element $\neq 1$. Moreover, the left-divisibility relation \leq_{L} defines a partial order on M.
- We will only consider such monoids in this talk (Monoids with "Noetherian divisibility").

Example

Consider $M_{4}=\left\langle x, y \mid x y x=y^{2}\right\rangle$. Then M_{4} has Noetherian divisibility, with $\lambda(x)=1, \lambda(y)=2$.

Word problem in finitely presented groups

- The same question can be asked for a finitely presented group $G=\langle S \mid R\rangle$. It is defined as a quotient of a free group $F(S)$ on a finite alphabet S by a finite set of relations R, where words lie in $\left(S \cup S^{-1}\right)^{*}$.
- Determining if two words x_{1} and x_{2} represent the same element of G or not is equivalent to determining if $x_{1} x_{2}^{-1}$ represents 1 or not. Hence an algorithm to determine if a word represents the identity or not is enough.
- There are groups with unsolvable word problem (Novikov, 1955).

Example

Example

Let $G_{1}=\langle a, b \mid a b a=b a b\rangle$. Since we are in a group, we are allowed to add $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b$ at any place of a word without changing the corresponding element, or deleting them when they appear. Hence the word problem becomes much harder...

- Claim: $a b^{2} a^{-1}=b^{-1} a^{2} b$.
- Proof:

$$
\begin{aligned}
a b^{2} a^{-1} & =\left(b^{-1} b\right) a b^{2} a^{-1}=b^{-1}\left(b a b^{2}\right) a^{-1} \\
& =b^{-1}\left(a^{2} b a\right) a^{-1}=b^{-1} a^{2} b
\end{aligned}
$$

Difficulties

- To relate the two words $a b^{2} a^{-1}$ and $b^{-1} a^{2} b$ using the defining relations of G_{1}, we needed to increase the length of the words. There are infinitely many words representing the same element, thus the naïve method which we applied in M_{1} cannot be applied in G_{1}.
- In fact, there are many known solutions to the word problem in G_{1}, but none of them is trivial. Let us explain the philosophy of one of them. Roughly speaking this will be based on
- Increasing the number of generators,
- Reducing the solution of the word problem in G_{1} to M_{1}, where it is trivial.

A particular element of M_{1} and G_{1}

- Consider the element $\Delta=a b a=b a b \in M_{1}$. One observes that its set of left and right divisors coincide, and are given by the set $A=\{1, a, b, a b, b a, a b a=b a b\}$. Hence given $x, y \in A$, there are $u, v \in A$ such that $x u=y v(=\Delta)$. We thus have

$$
y^{-1} x=v u^{-1} .
$$

- The above property implies that every word in G_{1} can be written as a fraction $w_{1} w_{2}^{-1}$, where w_{i} are positive words in a and b.

Example

Consider the word $b^{-1} a b^{-1} a$. We have $a(b a)=b(a b)$, hence $b^{-1} a=(a b)(b a)^{-1}$. We thus have
$b^{-1} a b^{-1} a=(a b)(b a)^{-1}(a b)(b a)^{-1}$. Now we have $(b a) b=(a b) a$, hence $(b a)^{-1}(a b)=b a^{-1}$, yielding

$$
b^{-1} a b^{-1} a=a b b a^{-1}(b a)^{-1}=a b^{2} a^{-2} b^{-1} .
$$

Reducing the word problem in G_{1} to the word problem in M_{1}

- Thus, deciding whether $b^{-1} a b^{-1} a=1$ is equivalent to deciding whether $a b^{2}=b a^{2}$ in G_{1}. Note that, this is a priori not equivalent to verifying whether $a b^{2}=b a^{2}$ in M_{1} or not. But we have:

Theorem (Particular case of a Thm of Garside, 1969)

The natural map $M_{1} \longrightarrow G_{1}, a \mapsto a, b \mapsto b$ is injective.

- With this theorem, checking whether $a b^{2}=b a^{2}$ becomes trivial. In M_{1} (and thus in G_{1}) we have $a b^{2} \neq b a^{2}$, thus $b^{-1} a b^{-1} a \neq 1$.
- We thus have our algorithm to solve the word problem in G_{1} : given a word $x_{1}^{ \pm 1} \cdots x_{k}^{ \pm 1}$, where $x_{i} \in \operatorname{Div}(\Delta)$,
- Step 1: transform it into a word of the form $y_{1}^{-1} \cdots y_{\ell}^{-1} y_{\ell+1} \cdots y_{k}$.
- Step 2: check whether $y_{\ell} y_{\ell-1} \cdots y_{1}=y_{\ell+1} \cdots y_{k}$ in M_{1} or not, where the word problem is trivial.

Properties required to solve the word problem

Hence what we need to have is

Properties required to solve the word problem

Hence what we need to have is

- A finitely presented group G with a positive presentation $\langle S \mid R\rangle$,

Properties required to solve the word problem

Hence what we need to have is

- A finitely presented group G with a positive presentation $\langle S \mid R\rangle$,
- Injectivity of the natural map $M=\langle S \mid R\rangle \longrightarrow G$,

Properties required to solve the word problem

Hence what we need to have is

- A finitely presented group G with a positive presentation $\langle S \mid R\rangle$,
- Injectivity of the natural map $M=\langle S \mid R\rangle \longrightarrow G$,
- Solvability of the word problem in M,

Properties required to solve the word problem

Hence what we need to have is

- A finitely presented group G with a positive presentation $\langle S \mid R\rangle$,
- Injectivity of the natural map $M=\langle S \mid R\rangle \longrightarrow G$,
- Solvability of the word problem in M,
- A particular element $\Delta \in M$ such that

1. its set $\operatorname{Div}_{L}(\Delta)$ of left-divisors coincides with its set $\operatorname{Div}_{R}(\Delta)$ of right-divisors, thus simply denoted $\operatorname{Div}(\Delta)$,
2. $|\operatorname{Div}(\Delta)|<\infty$,
3. $\operatorname{Div}(\Delta)$ generates M.

Properties required to solve the word problem

Hence what we need to have is

- A finitely presented group G with a positive presentation $\langle S \mid R\rangle$,
- Injectivity of the natural map $M=\langle S \mid R\rangle \longrightarrow G$,
- Solvability of the word problem in M,
- A particular element $\Delta \in M$ such that

1. its set $\operatorname{Div}_{L}(\Delta)$ of left-divisors coincides with its set $\operatorname{Div}_{R}(\Delta)$ of right-divisors, thus simply denoted $\operatorname{Div}(\Delta)$,
2. $|\operatorname{Div}(\Delta)|<\infty$,
3. $\operatorname{Div}(\Delta)$ generates M.

- This ensures that we can "reverse" fractions and write every element of G as a fraction in two elements of M, and hence this solves the word problem in G.

Properties required to solve the word problem

Hence what we need to have is

- A finitely presented group G with a positive presentation $\langle S \mid R\rangle$,
- Injectivity of the natural map $M=\langle S \mid R\rangle \longrightarrow G$,
- Solvability of the word problem in M,
- A particular element $\Delta \in M$ such that

1. its set $\operatorname{Div}_{L}(\Delta)$ of left-divisors coincides with its set $\operatorname{Div}_{R}(\Delta)$ of right-divisors, thus simply denoted $\operatorname{Div}(\Delta)$,
2. $|\operatorname{Div}(\Delta)|<\infty$,
3. $\operatorname{Div}(\Delta)$ generates M.

- This ensures that we can "reverse" fractions and write every element of G as a fraction in two elements of M, and hence this solves the word problem in G.
Bad news: In practice, the obtained algorithm is very bad, and it does not give a normal form for the elements of G.

Further assumptions on M

- Since M embeds into G, it is cancellative $(a b=a c \Rightarrow b=c)$. If in addition we assume that
- The poset $\left(M, \leq_{L}\right)$ is a lattice, where \leq_{L} is the left-divisibility relation,
Then every fraction $x^{-1} y$ can be reduced into a unique irreducible one $x^{\prime-1} y^{\prime}$, by left-killing $\operatorname{gcd}(x, y)$. This yields a normal form, but still hard to calculate in practice, in fact:
- Under the above assumptions, other normal forms can be defined, which are much quicker to calculate in practice (the Garside normal forms).

Garside monoids

Definition (Dehornoy-Paris, 1996)

A Garside monoid is a finitely presented monoid $M=\langle S \mid R\rangle$ together with an element $\Delta \in M$, such that

1. M is both left- and right-cancellative,
2. M has Noetherian divisibility,
3. $\left(M, \leq_{L}\right)$ and $\left(M, \leq_{R}\right)$ are lattices,
4. The left- and right-divisors of Δ coincide + form a finite set.
5. The set $\operatorname{Div}(\Delta)$ of divisors of Δ generates M.

- (1) and (3) ensure that $M \hookrightarrow G$, where $G=\langle S \mid R\rangle$.
- (2) ensures that the word problem in M is solvable.
- With (4) and (5), one can define normal forms for elements of G, and they can be calculated using an algorithm which reduces to calculating a sequence of meets and joins in $\left(\operatorname{Div}(\Delta), \leq_{L}\right)$. Hence the WP is solvable in $G_{\text {场 }}$

Examples

On some lattices arising in combinatorial group theory

Examples

On some lattices arising in combinatorial group theory

- $M_{1}=\langle a, b \mid a b a=b a b\rangle: \Delta=a b a$, as seen before.

Examples

- $M_{1}=\langle a, b \mid a b a=b a b\rangle: \Delta=a b a$, as seen before.
- $M_{2}=\langle a, b, c \mid a b=b c=c a\rangle$: set $\Delta=a b$. Then $\operatorname{Div}_{L}(\Delta)=\{1, a, b, c, \Delta\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.

On some lattices arising in combinatorial group theory

Thomas Gobet

Examples

- $M_{1}=\langle a, b \mid a b a=b a b\rangle: \Delta=a b a$, as seen before.
- $M_{2}=\langle a, b, c \mid a b=b c=c a\rangle$: set $\Delta=a b$. Then $\operatorname{Div}_{L}(\Delta)=\{1, a, b, c, \Delta\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{3}=\left\langle x, y \mid x^{2}=y^{3}\right\rangle$: set $\Delta=x^{2}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, \Delta\right\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.

Examples

- $M_{1}=\langle a, b \mid a b a=b a b\rangle: \Delta=a b a$, as seen before.
- $M_{2}=\langle a, b, c \mid a b=b c=c a\rangle$: set $\Delta=a b$. Then $\operatorname{Div}_{L}(\Delta)=\{1, a, b, c, \Delta\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{3}=\left\langle x, y \mid x^{2}=y^{3}\right\rangle$: set $\Delta=x^{2}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, \Delta\right\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{4}=\left\langle x, y \mid x y x=y^{2}\right\rangle$: set $\Delta=y^{3}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, x y, y x, y x y, y^{3}\right\}=\operatorname{Div}_{R}(\Delta)$, and restricting the left-divisibility yields a lattice.

Examples

- $M_{1}=\langle a, b \mid a b a=b a b\rangle: \Delta=a b a$, as seen before.
- $M_{2}=\langle a, b, c \mid a b=b c=c a\rangle$: set $\Delta=a b$. Then $\operatorname{Div}_{L}(\Delta)=\{1, a, b, c, \Delta\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{3}=\left\langle x, y \mid x^{2}=y^{3}\right\rangle$: set $\Delta=x^{2}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, \Delta\right\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{4}=\left\langle x, y \mid x y x=y^{2}\right\rangle:$ set $\Delta=y^{3}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, x y, y x, y x y, y^{3}\right\}=\operatorname{Div}_{R}(\Delta)$, and restricting the left-divisibility yields a lattice.
In all these cases, one checks (difficult !) the other defining properties.

Examples

- $M_{1}=\langle a, b \mid a b a=b a b\rangle: \Delta=a b a$, as seen before.
- $M_{2}=\langle a, b, c \mid a b=b c=c a\rangle$: set $\Delta=a b$. Then $\operatorname{Div}_{L}(\Delta)=\{1, a, b, c, \Delta\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{3}=\left\langle x, y \mid x^{2}=y^{3}\right\rangle$: set $\Delta=x^{2}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, \Delta\right\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{4}=\left\langle x, y \mid x y x=y^{2}\right\rangle$: set $\Delta=y^{3}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, x y, y x, y x y, y^{3}\right\}=\operatorname{Div}_{R}(\Delta)$, and restricting the left-divisibility yields a lattice.
In all these cases, one checks (difficult !) the other defining properties.

Exercise

Show that $G_{1} \cong G_{2} \cong G_{3} \cong G_{4}$.

On some lattices arising in combinatorial group theory

Examples

- $M_{1}=\langle a, b \mid a b a=b a b\rangle: \Delta=a b a$, as seen before.
- $M_{2}=\langle a, b, c \mid a b=b c=c a\rangle$: set $\Delta=a b$. Then $\operatorname{Div}_{L}(\Delta)=\{1, a, b, c, \Delta\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{3}=\left\langle x, y \mid x^{2}=y^{3}\right\rangle$: set $\Delta=x^{2}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, \Delta\right\}=\operatorname{Div}_{R}(\Delta)$ and restricting the left-divisibility yields a lattice.
- $M_{4}=\left\langle x, y \mid x y x=y^{2}\right\rangle$: set $\Delta=y^{3}$. Then $\operatorname{Div}_{L}(\Delta)=\left\{1, x, y, y^{2}, x y, y x, y x y, y^{3}\right\}=\operatorname{Div}_{R}(\Delta)$, and restricting the left-divisibility yields a lattice.
In all these cases, one checks (difficult !) the other defining properties.

Exercise

Show that $G_{1} \cong G_{2} \cong G_{3} \cong G_{4}$.
This thus yields four different solutions to the word problem in $G_{1} \ldots$

Questions

- (Algebraist) Given a group G, can we classify the monoids M yielding a solution to the word problem as explained above? (classification of Garside structures on a given group. Completely open even for $G_{1} \ldots$)
- (Computational group theorist) Among the solutions which the algebraist above classified, which one provides the best algorithm to solve the word problem in a given group G admitting such structures ?
- (Combinatorist) Can I realise my favorite lattice as the lattice of divisors of a Garside element in a Garside monoid ?

Thomas Gobet

Generalization of G_{1}

- The lattice L_{1} is the lattice of permutations in \mathfrak{S}_{3} ordered by the weak Bruhat order.
- The lattice L_{2} is the lattice of (noncrossing) partitions of $\{1,2,3\}$.
- In fact, the group G_{1} is the 3 -stranded braid group B_{3}. The n-stranded braid group B_{n} admits the (Garside) presentation with generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and relations

$$
\begin{array}{r}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \forall i=1, \ldots, n-2 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { whenever }|i-j|>1
\end{array}
$$

generalizing the presentation of G_{1}. The Garside element is the positive lift Δ of the longest permutation of \mathfrak{S}_{n}, and the lattice $\left(\operatorname{Div}(\Delta), \leq_{L}\right)$ is isomorphic to the weak Bruhat order on \mathfrak{S}_{n}.

Generalizations of G_{2}, G_{3}

- The n-strand braid group B_{n} is also isomorphic to the group with the (Garside) presentation with generators $a_{i j}, 1 \leq i<j \leq n$ and relations

$$
\begin{array}{r}
a_{i j} a_{j k}=a_{j k} a_{i k}=a_{i k} a_{i j}, \forall 1 \leq i<j<k \leq n, \\
a_{i j} a_{k l}=a_{k l} a_{i j}, \forall 1 \leq i<j<k<l \leq n \\
\text { or } 1 \leq i<k<l<j \leq n,
\end{array}
$$

generalizing the presentation of G_{2}. The Garside element is $\Delta=a_{1,2} a_{2,3} \cdots a_{n-1, n}$, and the lattice $\left(\operatorname{Div}(\Delta), \leq_{L}\right)$ is isomorphic to the noncrossing partition lattice $\mathrm{NC}(n)$ (Birman-Ko-Lee, 1998).

- The presentation of G_{3} generalizes to a family of groups $G(n, m)=\left\langle x, y \mid x^{n}=y^{m}\right\rangle$ for all $n, m \geq 2$, which yields a Garside presentation. When n and m are coprime $G(n, m)$ is a torus knot group. The lattice is of "spindle" type.

What about G_{4} ?

On some lattices arising in combinatorial group theory

Thomas Gobet

What about G_{4} ?

- The lattice L_{4} seems a bit more interesting. Is there

On some lattices arising in combinatorial group theory any nice generalization in the previously introduced framework ?

What about G_{4} ?

- The lattice L_{4} seems a bit more interesting. Is there any nice generalization in the previously introduced framework ?

Theorem (G. 2021)

Let $n \geq 1$. The monoid $M(n)$ with generators $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ and relations

$$
\rho_{1} \rho_{n} \rho_{i}=\rho_{i+1} \rho_{n}, \forall i=1, \ldots, n-1
$$

is a Garside presentation. Note that $M(2)=M_{4}$. The corresponding group is isomorphic to $G(n, n+1)$, which is an extension of B_{n+1} (with isomorphism for $n=1,2$). The Garside element is $\Delta_{n}=\rho_{n}^{n+1}$.

What about G_{4} ?

- The lattice L_{4} seems a bit more interesting. Is there any nice generalization in the previously introduced framework ?

Theorem (G. 2021)

Let $n \geq 1$. The monoid $M(n)$ with generators $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ and relations

$$
\rho_{1} \rho_{n} \rho_{i}=\rho_{i+1} \rho_{n}, \forall i=1, \ldots, n-1
$$

is a Garside presentation. Note that $M(2)=M_{4}$. The corresponding group is isomorphic to $G(n, n+1)$, which is an extension of B_{n+1} (with isomorphism for $n=1,2$). The Garside element is $\Delta_{n}=\rho_{n}^{n+1}$.

- It does not yield an explicit description of the lattice of divisors of Δ_{n}, and not even a formula for $\left|\operatorname{Div}\left(\Delta_{n}\right)\right| \ldots$

On some lattices arising in combinatorial group theory

Thomas Gobet

Figure: Lattice of divisors of Δ_{3}.

First step: number of words for the Garside element

- Before understanding how many divisors $\Delta_{n}=\rho_{n}^{n+1}$ has, we need to understand how many words in the alphabet $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right\}$ represent Δ_{n}.
- A Schröder tree is a rooted plane tree in which every inner vertex has at least two children.
- Consider a Schröder tree T on $n+1$ leaves. We assign to each vertex v of T (except the root) a label $\lambda(v) \in\{1,2, \ldots, n\}$ as follows:
- The vertices are labelled in post-order.
- If v is a leftmost child of a vertex w of T, then w is the root of a Schröder tree $\left(w,\left(T_{1}, \ldots, T_{k}\right)\right)$ and v is the root of T_{1}. Then $\lambda(v)$ is defined to be the number of leaves in the forest T_{2}, \ldots, T_{k}.
- If v is not the leftmost child of a vertex of T, we consider $L D(v)$ the set of its leftmost descendants consisting of the leftmost child of v and its leftmost child, etc. Then the label of v is $n-\sum_{w \in L D \notin v)} \lambda(\underline{\underline{\underline{w}}})$.⿵冂ec

Example

Figure: Post-order on the vertices of a Schröder tree with $11+1$ leaves.

Figure: Labeling of the above Schroeder tree.

Schroeder trees and words for Δ_{n}

- Define a map Φ from the set $\mathcal{T}(n+1)$ of Schroeder which to a Schroeder tree T assigns the word $\rho_{i_{1}} \rho_{i_{2}} \cdots \rho_{i_{k}}$, where $i_{1} i_{2} \cdots i_{k}$ is the sequence of labels of T, ordered following the post-order convention.

Theorem (Rognerud-G., 2023)

1. The map Φ has image in the set $W\left(\Delta_{n}\right)$ of words for ρ_{n}^{n+1} in $M(n)$,
2. The map $\Phi: \mathcal{T}(n+1) \longrightarrow W\left(\Delta_{n}\right)$ is bijective.

Corollary

We have $\left|W\left(\Delta_{n}\right)\right|=|\mathcal{T}(n+1)|$, which is equal to the little Schroeder number $S(n+1)$: $S(1)=S(2)=1$,

$$
S(n)=\frac{3(2 n-3) S(n-1)-(n-3) S(n-2)}{n}
$$

On some lattices arising in combinatorial group theory

On some lattices arising in combinatorial group theory

Thomas Gobet

Thomas Gobet

Number of divisors of Δ

On some lattices arising in combinatorial group theory

- Let $\operatorname{Div}\left(\Delta_{n}\right):=\coprod_{0 \leq i \leq n+1} D_{n}^{i}$, where $D_{n}^{i}=\left\{x \in \operatorname{Div}\left(\Delta_{n}\right) \mid \rho_{n}^{i} \leq x, \rho_{n}^{i+1} \not \leq x\right\}$. Note that $D_{n}^{n+1}=\rho_{n}^{n+1}$.

Number of divisors of Δ

- Let $\operatorname{Div}\left(\Delta_{n}\right):=\coprod_{0 \leq i \leq n+1} D_{n}^{i}$, where $D_{n}^{i}=\left\{x \in \operatorname{Div}\left(\Delta_{n}\right) \mid \rho_{n}^{i} \leq x, \rho_{n}^{i+1} \not \leq x\right\}$. Note that $D_{n}^{n+1}=\rho_{n}^{n+1}$.

Proposition

Let $n \geq 1$. Then we have the following isomorphisms of posets (where subposets of $\operatorname{Div}\left(\Delta_{n}\right)$ are ordered by the restriction of left-divisibility on $M(n)$)

- Every D_{n}^{i} is an interval in $\operatorname{Div}\left(\Delta_{n}\right)$,
- $\operatorname{Div}\left(\Delta_{n-1}\right) \cong D_{n}^{0}, \operatorname{Div}\left(\Delta_{0}\right) \cong D_{n}^{n+1} \cong\{\bullet\}$.
- For all $1 \leq i \leq n, D_{n}^{i} \cong \operatorname{Div}\left(\Delta_{n-i}\right)$.

Number of divisors of Δ, II

 combinatorial group theory
Corollary

Let $n \geq 2$, and let $A_{n}:=\left|\operatorname{Div}\left(\Delta_{n}\right)\right|$. Then

$$
\begin{equation*}
A_{n}=2 A_{0}+2 A_{n-1}+\sum_{i=1}^{n-2} A_{i} \tag{1}
\end{equation*}
$$

It follows that $A_{n}=F_{2 n}$, where $F_{0}, F_{1}, F_{2}, \ldots$ denotes the Fibonacci sequence $1,2,3,5,8, \ldots$

On some lattices arising in combinatorial group theory

Thomas Gobet

Thank you for your attention!

