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Presented monoids

◮ Let S be a finite alphabet {a, b, ...}. Let S∗ be the free
monoid on S, that is, the monoid of words of finite
length in S, where product = concatenation.

◮ Let {ui}
k
i=1

, {wi}
k
i=1

be two lists of elements of S∗.
◮ Consider the set-theoretic quotient M of S∗ by the

equivalence relation awib ∼ auib whenever a, b ∈ S∗,
and i ∈ {1, 2, . . . , k}.

◮ This relation is compatible with the concatenation of
words in S∗, thus M is still a monoid. It is often
denoted M = 〈S | R〉, where S is its generating set S,
and R denotes the set {wi = ui}

k
i=1 of defining

relations. The data 〈S | R〉 is a presentation of M .

Example

Let M1 = 〈a, b | aba = bab〉. In M we have

b2ab = b(bab) = b(aba) = (bab)a = (aba)a = aba2.
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Word problem in a finitely presented monoid

◮ A monoid M is said to be finitely presented if there are
S,R as in the previous slide such that M ∼= 〈S | R〉.

Definition

A finitely presented monoid M is said to have solvable word
problem if there is an algorithm allowing one to determine in
finite time if any two words x1, x2 ∈ S∗ represent the same
element of M or not.

Example

Let M1 = 〈a, b | aba = bab〉. There is a unique defining
relation aba = bab, which preserves the length of words. The
word problem is thus trivial: given a word x1 ∈ S∗, look at
all possible ways to apply a defining relation to x1. It gives a
(possible empty) new finite set of words {y1, y2, . . . , yℓ} of
the same length. Iterate, until you get no new words. Since
the set of words of a given length is finite, it terminates.
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Word problem in a finitely presented monoid, II

◮ If M is equipped with a length function λ : M −→ Z≥0

such that λ(ab) = λ(a) + λ(b) and a 6= 1 ⇒ λ(a) 6= 0,
then M has a solvable word problem.

◮ In such a monoid, there is no nontrivial invertible
element 6= 1. Moreover, the left-divisibility relation ≤L

defines a partial order on M .

◮ We will only consider such monoids in this talk
(Monoids with ”Noetherian divisibility”).

Example

Consider M4 = 〈x, y | xyx = y2〉. Then M4 has Noetherian
divisibility, with λ(x) = 1, λ(y) = 2.
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Word problem in finitely presented groups

◮ The same question can be asked for a finitely presented
group G = 〈S | R〉. It is defined as a quotient of a free
group F (S) on a finite alphabet S by a finite set of
relations R, where words lie in (S ∪ S−1)∗.

◮ Determining if two words x1 and x2 represent the same
element of G or not is equivalent to determining if
x1x

−1

2
represents 1 or not. Hence an algorithm to

determine if a word represents the identity or not is
enough.

◮ There are groups with unsolvable word problem
(Novikov, 1955).



On some lattices

arising in

combinatorial

group theory

Thomas Gobet

Example

Example

Let G1 = 〈a, b | aba = bab〉. Since we are in a group, we are
allowed to add aa−1, a−1a, bb−1, b−1b at any place of a
word without changing the corresponding element, or
deleting them when they appear. Hence the word problem
becomes much harder...

◮ Claim: ab2a−1 = b−1a2b.

◮ Proof:

ab2a−1 = (b−1b)ab2a−1 = b−1(bab2)a−1

= b−1(a2ba)a−1 = b−1a2b.



On some lattices

arising in

combinatorial

group theory

Thomas Gobet

Difficulties

◮ To relate the two words ab2a−1 and b−1a2b using the
defining relations of G1, we needed to increase the
length of the words. There are infinitely many words
representing the same element, thus the näıve method
which we applied in M1 cannot be applied in G1.

◮ In fact, there are many known solutions to the word
problem in G1, but none of them is trivial. Let us
explain the philosophy of one of them. Roughly
speaking this will be based on
◮ Increasing the number of generators,
◮ Reducing the solution of the word problem in G1 to

M1, where it is trivial.
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A particular element of M1 and G1

◮ Consider the element ∆ = aba = bab ∈ M1. One
observes that its set of left and right divisors coincide,
and are given by the set A = {1, a, b, ab, ba, aba = bab}.
Hence given x, y ∈ A, there are u, v ∈ A such that
xu = yv(= ∆). We thus have

y−1x = vu−1.

◮ The above property implies that every word in G1 can
be written as a fraction w1w

−1
2

, where wi are positive
words in a and b.

Example

Consider the word b−1ab−1a. We have a(ba) = b(ab), hence
b−1a = (ab)(ba)−1. We thus have
b−1ab−1a = (ab)(ba)−1(ab)(ba)−1. Now we have
(ba)b = (ab)a, hence (ba)−1(ab) = ba−1, yielding

b−1ab−1a = abba−1(ba)−1 = ab2a−2b−1.
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Reducing the word problem in G1 to the word

problem in M1

◮ Thus, deciding whether b−1ab−1a = 1 is equivalent to
deciding whether ab2 = ba2 in G1. Note that, this is a
priori not equivalent to verifying whether ab2 = ba2 in
M1 or not. But we have:

Theorem (Particular case of a Thm of Garside, 1969)

The natural map M1 −→ G1, a 7→ a, b 7→ b is injective.

◮ With this theorem, checking whether ab2 = ba2

becomes trivial. In M1 (and thus in G1) we have
ab2 6= ba2, thus b−1ab−1a 6= 1.

◮ We thus have our algorithm to solve the word problem
in G1: given a word x±1

1
· · · x±1

k , where xi ∈ Div(∆),
◮ Step 1: transform it into a word of the form

y−1
1 · · · y−1

ℓ
yℓ+1 · · · yk.

◮ Step 2: check whether yℓyℓ−1 · · · y1 = yℓ+1 · · · yk in M1

or not, where the word problem is trivial.
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Properties required to solve the word problem

Hence what we need to have is
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Hence what we need to have is

◮ A finitely presented group G with a positive
presentation 〈S | R〉,
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Hence what we need to have is

◮ A finitely presented group G with a positive
presentation 〈S | R〉,

◮ Injectivity of the natural map M = 〈S | R〉 −→ G,
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Hence what we need to have is

◮ A finitely presented group G with a positive
presentation 〈S | R〉,

◮ Injectivity of the natural map M = 〈S | R〉 −→ G,

◮ Solvability of the word problem in M ,
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Properties required to solve the word problem

Hence what we need to have is

◮ A finitely presented group G with a positive
presentation 〈S | R〉,

◮ Injectivity of the natural map M = 〈S | R〉 −→ G,

◮ Solvability of the word problem in M ,

◮ A particular element ∆ ∈ M such that

1. its set DivL(∆) of left-divisors coincides with its set
DivR(∆) of right-divisors, thus simply denoted Div(∆),

2. |Div(∆)| < ∞,
3. Div(∆) generates M .
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Properties required to solve the word problem

Hence what we need to have is

◮ A finitely presented group G with a positive
presentation 〈S | R〉,

◮ Injectivity of the natural map M = 〈S | R〉 −→ G,

◮ Solvability of the word problem in M ,

◮ A particular element ∆ ∈ M such that

1. its set DivL(∆) of left-divisors coincides with its set
DivR(∆) of right-divisors, thus simply denoted Div(∆),

2. |Div(∆)| < ∞,
3. Div(∆) generates M .

◮ This ensures that we can ”reverse” fractions and write
every element of G as a fraction in two elements of M ,
and hence this solves the word problem in G.
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Properties required to solve the word problem

Hence what we need to have is

◮ A finitely presented group G with a positive
presentation 〈S | R〉,

◮ Injectivity of the natural map M = 〈S | R〉 −→ G,

◮ Solvability of the word problem in M ,

◮ A particular element ∆ ∈ M such that

1. its set DivL(∆) of left-divisors coincides with its set
DivR(∆) of right-divisors, thus simply denoted Div(∆),

2. |Div(∆)| < ∞,
3. Div(∆) generates M .

◮ This ensures that we can ”reverse” fractions and write
every element of G as a fraction in two elements of M ,
and hence this solves the word problem in G.

Bad news: In practice, the obtained algorithm is very bad,
and it does not give a normal form for the elements of G.
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Further assumptions on M

◮ Since M embeds into G, it is cancellative
(ab = ac ⇒ b = c). If in addition we assume that
◮ The poset (M,≤L) is a lattice, where ≤L is the

left-divisibility relation,

Then every fraction x−1y can be reduced into a unique
irreducible one x′−1y′, by left-killing gcd(x, y). This
yields a normal form, but still hard to calculate in
practice, in fact:

◮ Under the above assumptions, other normal forms can
be defined, which are much quicker to calculate in
practice (the Garside normal forms).
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Garside monoids

Definition (Dehornoy-Paris, 1996)

A Garside monoid is a finitely presented monoid M = 〈S | R〉
together with an element ∆ ∈ M , such that

1. M is both left- and right-cancellative,

2. M has Noetherian divisibility,

3. (M,≤L) and (M,≤R) are lattices,

4. The left- and right-divisors of ∆ coincide + form a finite set.

5. The set Div(∆) of divisors of ∆ generates M .

◮ (1) and (3) ensure that M →֒ G, where G = 〈S | R〉.

◮ (2) ensures that the word problem in M is solvable.

◮ With (4) and (5), one can define normal forms for elements
of G, and they can be calculated using an algorithm which
reduces to calculating a sequence of meets and joins in
(Div(∆),≤L). Hence the WP is solvable in G.
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Examples

◮ M1 = 〈a, b | aba = bab〉: ∆ = aba, as seen before.
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Examples

◮ M1 = 〈a, b | aba = bab〉: ∆ = aba, as seen before.
◮ M2 = 〈a, b, c | ab = bc = ca〉: set ∆ = ab. Then

DivL(∆) = {1, a, b, c,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.
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Examples

◮ M1 = 〈a, b | aba = bab〉: ∆ = aba, as seen before.
◮ M2 = 〈a, b, c | ab = bc = ca〉: set ∆ = ab. Then

DivL(∆) = {1, a, b, c,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.

◮ M3 = 〈x, y | x2 = y3〉: set ∆ = x2. Then
DivL(∆) = {1, x, y, y2,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.
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◮ M3 = 〈x, y | x2 = y3〉: set ∆ = x2. Then
DivL(∆) = {1, x, y, y2,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.

◮ M4 = 〈x, y | xyx = y2〉: set ∆ = y3. Then
DivL(∆) = {1, x, y, y2, xy, yx, yxy, y3} = DivR(∆),
and restricting the left-divisibility yields a lattice.
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◮ M1 = 〈a, b | aba = bab〉: ∆ = aba, as seen before.
◮ M2 = 〈a, b, c | ab = bc = ca〉: set ∆ = ab. Then

DivL(∆) = {1, a, b, c,∆} = DivR(∆) and restricting
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DivL(∆) = {1, x, y, y2,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.

◮ M4 = 〈x, y | xyx = y2〉: set ∆ = y3. Then
DivL(∆) = {1, x, y, y2, xy, yx, yxy, y3} = DivR(∆),
and restricting the left-divisibility yields a lattice.

In all these cases, one checks (difficult !) the other defining
properties.
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◮ M1 = 〈a, b | aba = bab〉: ∆ = aba, as seen before.
◮ M2 = 〈a, b, c | ab = bc = ca〉: set ∆ = ab. Then

DivL(∆) = {1, a, b, c,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.

◮ M3 = 〈x, y | x2 = y3〉: set ∆ = x2. Then
DivL(∆) = {1, x, y, y2,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.

◮ M4 = 〈x, y | xyx = y2〉: set ∆ = y3. Then
DivL(∆) = {1, x, y, y2, xy, yx, yxy, y3} = DivR(∆),
and restricting the left-divisibility yields a lattice.

In all these cases, one checks (difficult !) the other defining
properties.

Exercise

Show that G1
∼= G2

∼= G3
∼= G4.
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Examples

◮ M1 = 〈a, b | aba = bab〉: ∆ = aba, as seen before.
◮ M2 = 〈a, b, c | ab = bc = ca〉: set ∆ = ab. Then

DivL(∆) = {1, a, b, c,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.

◮ M3 = 〈x, y | x2 = y3〉: set ∆ = x2. Then
DivL(∆) = {1, x, y, y2,∆} = DivR(∆) and restricting
the left-divisibility yields a lattice.

◮ M4 = 〈x, y | xyx = y2〉: set ∆ = y3. Then
DivL(∆) = {1, x, y, y2, xy, yx, yxy, y3} = DivR(∆),
and restricting the left-divisibility yields a lattice.

In all these cases, one checks (difficult !) the other defining
properties.

Exercise

Show that G1
∼= G2

∼= G3
∼= G4.

This thus yields four different solutions to the word problem
in G1...
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Questions

◮ (Algebraist) Given a group G, can we classify the
monoids M yielding a solution to the word problem as
explained above ? (classification of Garside structures
on a given group. Completely open even for G1...)

◮ (Computational group theorist) Among the solutions
which the algebraist above classified, which one
provides the best algorithm to solve the word problem
in a given group G admitting such structures ?

◮ (Combinatorist) Can I realise my favorite lattice as the
lattice of divisors of a Garside element in a Garside
monoid ?

◮ ...
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Generalization of G1

◮ The lattice L1 is the lattice of permutations in S3

ordered by the weak Bruhat order.

◮ The lattice L2 is the lattice of (noncrossing) partitions
of {1, 2, 3}.

◮ In fact, the group G1 is the 3-stranded braid group B3.
The n-stranded braid group Bn admits the (Garside)
presentation with generators σ1, σ2, . . . , σn−1 and
relations

σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n− 2,

σiσj = σjσi whenever |i− j| > 1,

generalizing the presentation of G1. The Garside
element is the positive lift ∆ of the longest permutation
of Sn, and the lattice (Div(∆),≤L) is isomorphic to
the weak Bruhat order on Sn.
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Generalizations of G2, G3

◮ The n-strand braid group Bn is also isomorphic to the
group with the (Garside) presentation with generators
aij , 1 ≤ i < j ≤ n and relations

aijajk = ajkaik = aikaij ,∀1 ≤ i < j < k ≤ n,

aijakl = aklaij,∀1 ≤ i < j < k < l ≤ n

or 1 ≤ i < k < l < j ≤ n,

generalizing the presentation of G2. The Garside
element is ∆ = a1,2a2,3 · · · an−1,n, and the lattice
(Div(∆),≤L) is isomorphic to the noncrossing partition
lattice NC(n) (Birman-Ko-Lee, 1998).

◮ The presentation of G3 generalizes to a family of
groups G(n,m) = 〈x, y | xn = ym〉 for all n,m ≥ 2,
which yields a Garside presentation. When n and m are
coprime G(n,m) is a torus knot group. The lattice is of
”spindle” type.
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What about G4 ?

◮ The lattice L4 seems a bit more interesting. Is there
any nice generalization in the previously introduced
framework ?
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What about G4 ?

◮ The lattice L4 seems a bit more interesting. Is there
any nice generalization in the previously introduced
framework ?

Theorem (G. 2021)

Let n ≥ 1. The monoid M(n) with generators ρ1, ρ2, . . . , ρn
and relations

ρ1ρnρi = ρi+1ρn,∀i = 1, . . . , n− 1

is a Garside presentation. Note that M(2) = M4. The
corresponding group is isomorphic to G(n, n + 1), which is
an extension of Bn+1 (with isomorphism for n = 1, 2). The
Garside element is ∆n = ρn+1

n .
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What about G4 ?

◮ The lattice L4 seems a bit more interesting. Is there
any nice generalization in the previously introduced
framework ?

Theorem (G. 2021)

Let n ≥ 1. The monoid M(n) with generators ρ1, ρ2, . . . , ρn
and relations

ρ1ρnρi = ρi+1ρn,∀i = 1, . . . , n− 1

is a Garside presentation. Note that M(2) = M4. The
corresponding group is isomorphic to G(n, n + 1), which is
an extension of Bn+1 (with isomorphism for n = 1, 2). The
Garside element is ∆n = ρn+1

n .

◮ It does not yield an explicit description of the lattice of
divisors of ∆n, and not even a formula for |Div(∆n)|...
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ρ1

ρ2

ρ2ρ1 ρ3

ρ1ρ3 ρ3ρ1

ρ1ρ3ρ1

ρ3ρ2

ρ2ρ1ρ3

ρ3ρ2ρ1

ρ2
3

ρ3ρ1ρ3 ρ2
3
ρ1

(ρ1ρ3)
2 (ρ3ρ1)

2

ρ3
3

ρ3ρ2ρ1ρ3

ρ2
3
ρ1ρ3

(ρ3ρ1)
2ρ3

ρ4
3

Figure: Lattice of divisors of ∆3.
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First step: number of words for the Garside

element

◮ Before understanding how many divisors ∆n = ρn+1
n

has, we need to understand how many words in the
alphabet {ρ1, ρ2, . . . , ρn} represent ∆n.

◮ A Schröder tree is a rooted plane tree in which every
inner vertex has at least two children.

◮ Consider a Schröder tree T on n+ 1 leaves. We assign
to each vertex v of T (except the root) a label
λ(v) ∈ {1, 2, . . . , n} as follows:
◮ The vertices are labelled in post-order.
◮ If v is a leftmost child of a vertex w of T , then w is the

root of a Schröder tree (w, (T1, . . . , Tk)) and v is the
root of T1. Then λ(v) is defined to be the number of
leaves in the forest T2, . . . , Tk.

◮ If v is not the leftmost child of a vertex of T , we
consider LD(v) the set of its leftmost descendants
consisting of the leftmost child of v and its leftmost
child, etc. Then the label of v is n−

∑
w∈LD(v) λ(w).
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Example

20

11

3

1 2

6

4 5

10

7 8 9

12 19

15

13 14

18

16 17

Figure: Post-order on the vertices of a Schröder tree with 11 + 1
leaves.

0

5

5

1 11

10

1 11

9

2 11 11

11 8

2

1 11

10

1 11

Figure: Labeling of the above Schroeder tree.
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Schroeder trees and words for ∆n

◮ Define a map Φ from the set T (n+ 1) of Schroeder
trees on n+ 1 leaves to words in {ρ1, ρ2, . . . , ρn},
which to a Schroeder tree T assigns the word
ρi1ρi2 · · · ρik , where i1i2 · · · ik is the sequence of labels
of T , ordered following the post-order convention.

Theorem (Rognerud-G., 2023)

1. The map Φ has image in the set W (∆n) of words for
ρn+1
n in M(n),

2. The map Φ : T (n+ 1) −→ W (∆n) is bijective.

Corollary

We have |W (∆n)| = |T (n+ 1)|, which is equal to the little
Schroeder number S(n+ 1): S(1) = S(2) = 1,

S(n) =
3(2n − 3)S(n − 1)− (n− 3)S(n − 2)

n
.
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Number of divisors of ∆

◮ Let Div(∆n) :=
∐

0≤i≤n+1
Di

n, where

Di
n = {x ∈ Div(∆n) | ρ

i
n ≤ x, ρi+1

n 6≤ x}. Note that
Dn+1

n = ρn+1
n .
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Number of divisors of ∆

◮ Let Div(∆n) :=
∐

0≤i≤n+1
Di

n, where

Di
n = {x ∈ Div(∆n) | ρ

i
n ≤ x, ρi+1

n 6≤ x}. Note that
Dn+1

n = ρn+1
n .

Proposition

Let n ≥ 1. Then we have the following isomorphisms of
posets (where subposets of Div(∆n) are ordered by the
restriction of left-divisibility on M(n))

◮ Every Di
n is an interval in Div(∆n),

◮ Div(∆n−1) ∼= D0
n, Div(∆0) ∼= Dn+1

n
∼= {•}.

◮ For all 1 ≤ i ≤ n, Di
n
∼= Div(∆n−i).
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Number of divisors of ∆, II

Corollary

Let n ≥ 2, and let An := |Div(∆n)|. Then

An = 2A0 + 2An−1 +

n−2∑

i=1

Ai. (1)

It follows that An = F2n, where F0, F1, F2, . . . denotes the
Fibonacci sequence 1, 2, 3, 5, 8, ...
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Thank you for your
attention!


