Thomas Gobet

On some lattices arising in combinatorial group theory

Thomas Gobet

Institut Denis Poisson, Université de Tours,

Worskhop CORTIPOM, CIRM, July 2023.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Presented monoids

- ► Let S be a finite alphabet {a, b, ...}. Let S* be the free monoid on S, that is, the monoid of words of finite length in S, where product = concatenation.
- Let $\{u_i\}_{i=1}^k$, $\{w_i\}_{i=1}^k$ be two lists of elements of S^* .
- Consider the set-theoretic quotient M of S^* by the equivalence relation $aw_ib \sim au_ib$ whenever $a, b \in S^*$, and $i \in \{1, 2, \ldots, k\}$.
- ► This relation is compatible with the concatenation of words in S*, thus M is still a monoid. It is often denoted M = ⟨S | R⟩, where S is its generating set S, and R denotes the set {w_i = u_i}^k_{i=1} of defining relations. The data ⟨S | R⟩ is a presentation of M.

Example

Let $M_1 = \langle a, b \mid aba = bab \rangle$. In M we have

$$b^2ab = b(bab) = b(aba) = (bab)a = (aba)a = aba^2.$$

On some lattices arising in combinatorial group theory

Thomas Gobet

¢

Word problem in a finitely presented monoid

A monoid M is said to be *finitely presented* if there are S, R as in the previous slide such that M ≅ ⟨S | R⟩.

Definition

A finitely presented monoid M is said to have *solvable word* problem if there is an algorithm allowing one to determine in finite time if any two words $x_1, x_2 \in S^*$ represent the same element of M or not.

Example

Let $M_1 = \langle a, b \mid aba = bab \rangle$. There is a unique defining relation aba = bab, which preserves the length of words. The word problem is thus trivial: given a word $x_1 \in S^*$, look at all possible ways to apply a defining relation to x_1 . It gives a (possible empty) new finite set of words $\{y_1, y_2, \ldots, y_\ell\}$ of the same length. Iterate, until you get no new words. Since the set of words of a given length is finite, it terminates. On some lattices arising in combinatorial group theory

Word problem in a finitely presented monoid, II

On some lattices arising in combinatorial group theory

Thomas Gobet

- ▶ If *M* is equipped with a length function $\lambda : M \longrightarrow \mathbb{Z}_{\geq 0}$ such that $\lambda(ab) = \lambda(a) + \lambda(b)$ and $a \neq 1 \Rightarrow \lambda(a) \neq 0$, then *M* has a solvable word problem.
- In such a monoid, there is no nontrivial invertible element ≠ 1. Moreover, the left-divisibility relation ≤_L defines a partial order on M.
- We will only consider such monoids in this talk (Monoids with "Noetherian divisibility").

Example

Consider $M_4 = \langle x, y \mid xyx = y^2 \rangle$. Then M_4 has Noetherian divisibility, with $\lambda(x) = 1$, $\lambda(y) = 2$.

Word problem in finitely presented groups

On some lattices arising in combinatorial group theory

- The same question can be asked for a finitely presented group G = ⟨S | R⟩. It is defined as a quotient of a free group F(S) on a finite alphabet S by a finite set of relations R, where words lie in (S ∪ S⁻¹)*.
- Determining if two words x₁ and x₂ represent the same element of G or not is equivalent to determining if x₁x₂⁻¹ represents 1 or not. Hence an algorithm to determine if a word represents the identity or not is enough.
- There are groups with unsolvable word problem (Novikov, 1955).

Let $G_1 = \langle a, b \mid aba = bab \rangle$. Since we are in a group, we are allowed to add aa^{-1} , $a^{-1}a$, bb^{-1} , $b^{-1}b$ at any place of a word without changing the corresponding element, or deleting them when they appear. Hence the word problem becomes much harder...

• Claim:
$$ab^2a^{-1} = b^{-1}a^2b$$
.

Proof:

$$ab^{2}a^{-1} = (b^{-1}b)ab^{2}a^{-1} = b^{-1}(bab^{2})a^{-1}$$
$$= b^{-1}(a^{2}ba)a^{-1} = b^{-1}a^{2}b.$$

On some lattices arising in combinatorial group theory

Thomas Gobet

うせん 川田 ふぼう 小田 うんのう

- ► To relate the two words ab²a⁻¹ and b⁻¹a²b using the defining relations of G₁, we needed to increase the length of the words. There are infinitely many words representing the same element, thus the naïve method which we applied in M₁ cannot be applied in G₁.
- In fact, there are many known solutions to the word problem in G₁, but none of them is trivial. Let us explain the philosophy of one of them. Roughly speaking this will be based on
 - Increasing the number of generators,
 - Reducing the solution of the word problem in G₁ to M₁, where it is trivial.

A particular element of M_1 and G_1

Consider the element ∆ = aba = bab ∈ M₁. One observes that its set of left and right divisors coincide, and are given by the set A = {1, a, b, ab, ba, aba = bab}. Hence given x, y ∈ A, there are u, v ∈ A such that xu = yv(= ∆). We thus have

$$y^{-1}x = vu^{-1}$$

► The above property implies that every word in G₁ can be written as a fraction w₁w₂⁻¹, where w_i are positive words in a and b.

Example

Consider the word
$$b^{-1}ab^{-1}a$$
. We have $a(ba) = b(ab)$, hence $b^{-1}a = (ab)(ba)^{-1}$. We thus have $b^{-1}ab^{-1}a = (ab)(ba)^{-1}(ab)(ba)^{-1}$. Now we have $(ba)b = (ab)a$, hence $(ba)^{-1}(ab) = ba^{-1}$, yielding $b^{-1}ab^{-1}a = abba^{-1}(ba)^{-1} = ab^2a^{-2}b^{-1}$.

On some lattices arising in combinatorial group theory

Reducing the word problem in G_1 to the word problem in M_1

Thus, deciding whether b⁻¹ab⁻¹a = 1 is equivalent to deciding whether ab² = ba² in G₁. Note that, this is a priori **not** equivalent to verifying whether ab² = ba² in M₁ or not. But we have:

Theorem (Particular case of a Thm of Garside, 1969)

The natural map $M_1 \longrightarrow G_1$, $a \mapsto a$, $b \mapsto b$ is injective.

- With this theorem, checking whether $ab^2 = ba^2$ becomes trivial. In M_1 (and thus in G_1) we have $ab^2 \neq ba^2$, thus $b^{-1}ab^{-1}a \neq 1$.
- We thus have our algorithm to solve the word problem in G₁: given a word x₁^{±1} · · · x_k^{±1}, where x_i ∈ Div(Δ),
 - Step 1: transform it into a word of the form $y_1^{-1} \cdots y_{\ell}^{-1} y_{\ell+1} \cdots y_k$.
 - Step 2: check whether $y_{\ell}y_{\ell-1}\cdots y_1 = y_{\ell+1}\cdots y_k$ in M_1 or not, where the word problem is trivial.

On some lattices arising in combinatorial group theory

Properties required to solve the word problem

Hence what we need to have is

On some lattices arising in combinatorial group theory

Thomas Gobet

Properties required to solve the word problem

Hence what we need to have is

• A finitely presented group G with a positive presentation $\langle S \mid R \rangle$,

On some lattices arising in combinatorial group theory

Thomas Gobet

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Properties required to solve the word problem

Hence what we need to have is

- A finitely presented group G with a positive presentation $\langle S \mid R \rangle$,
- Injectivity of the natural map $M = \langle S \mid R \rangle \longrightarrow G$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

On some lattices arising in combinatorial group theory

- A finitely presented group G with a positive presentation $\langle S \mid R \rangle$,
- Injectivity of the natural map $M = \langle S \mid R \rangle \longrightarrow G$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Solvability of the word problem in M,

On some lattices arising in combinatorial group theory

- A finitely presented group G with a positive presentation $\langle S \mid R \rangle$,
- Injectivity of the natural map $M = \langle S \mid R \rangle \longrightarrow G$,
- Solvability of the word problem in M,
- \blacktriangleright A particular element $\Delta \in M$ such that
 - 1. its set $\operatorname{Div}_L(\Delta)$ of left-divisors coincides with its set $\operatorname{Div}_R(\Delta)$ of right-divisors, thus simply denoted $\operatorname{Div}(\Delta)$,
 - 2. $|\operatorname{Div}(\Delta)| < \infty$,
 - 3. $\operatorname{Div}(\Delta)$ generates M.

On some lattices arising in combinatorial group theory

Thomas Gobet

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 〇 < 〇</p>

- A finitely presented group G with a positive presentation $\langle S \mid R \rangle$,
- Injectivity of the natural map $M = \langle S \mid R \rangle \longrightarrow G$,
- Solvability of the word problem in M,
- \blacktriangleright A particular element $\Delta \in M$ such that
 - 1. its set $\operatorname{Div}_L(\Delta)$ of left-divisors coincides with its set $\operatorname{Div}_R(\Delta)$ of right-divisors, thus simply denoted $\operatorname{Div}(\Delta)$,
 - 2. $|\operatorname{Div}(\Delta)| < \infty$,
 - 3. $\operatorname{Div}(\Delta)$ generates M.
- ▶ This ensures that we can "reverse" fractions and write every element of G as a fraction in two elements of M, and hence this solves the word problem in G.

On some lattices arising in combinatorial group theory

- A finitely presented group G with a positive presentation $\langle S \mid R \rangle$,
- Injectivity of the natural map $M = \langle S \mid R \rangle \longrightarrow G$,
- Solvability of the word problem in M,
- \blacktriangleright A particular element $\Delta \in M$ such that
 - 1. its set $\operatorname{Div}_L(\Delta)$ of left-divisors coincides with its set $\operatorname{Div}_R(\Delta)$ of right-divisors, thus simply denoted $\operatorname{Div}(\Delta)$,
 - 2. $|\operatorname{Div}(\Delta)| < \infty$,
 - 3. $\operatorname{Div}(\Delta)$ generates M.
- This ensures that we can "reverse" fractions and write every element of G as a fraction in two elements of M, and hence this solves the word problem in G.

Bad news: In practice, the obtained algorithm is very bad, and it does not give a normal form for the elements of G.

On some lattices arising in combinatorial group theory

Further assumptions on M

Since M embeds into G, it is cancellative (ab = ac ⇒ b = c). If in addition we assume that

• The poset (M, \leq_L) is a lattice, where \leq_L is the left-divisibility relation,

Then every fraction $x^{-1}y$ can be reduced into a unique irreducible one $x'^{-1}y'$, by left-killing gcd(x,y). This yields a normal form, but still hard to calculate in practice, in fact:

Under the above assumptions, other normal forms can be defined, which are much quicker to calculate in practice (the Garside normal forms). On some lattices arising in combinatorial group theory

Garside monoids

Definition (Dehornoy-Paris, 1996)

A Garside monoid is a finitely presented monoid $M = \langle S \mid R \rangle$ together with an element $\Delta \in M$, such that

- 1. M is both left- and right-cancellative,
- 2. M has Noetherian divisibility,
- 3. (M,\leq_L) and (M,\leq_R) are lattices,
- 4. The left- and right-divisors of Δ coincide + form a finite set.
- 5. The set $Div(\Delta)$ of divisors of Δ generates M.
- (1) and (3) ensure that $M \hookrightarrow G$, where $G = \langle S \mid R \rangle$.
- (2) ensures that the word problem in M is solvable.
- With (4) and (5), one can define normal forms for elements of G, and they can be calculated using an algorithm which reduces to calculating a sequence of meets and joins in (Div(Δ), ≤_L). Hence the WP is solvable in G.

On some lattices arising in combinatorial group theory

On some lattices arising in combinatorial group theory

Thomas Gobet

<ロ> < 母> < 臣> < 臣> < 臣> 臣 の < で</p>

• $M_1 = \langle a, b \mid aba = bab \rangle$: $\Delta = aba$, as seen before.

On some lattices arising in combinatorial group theory

Thomas Gobet

<ロ> < 母> < 臣> < 臣> < 臣> 臣 の < で</p>

• $M_1 = \langle a, b \mid aba = bab \rangle$: $\Delta = aba$, as seen before.

• $M_2 = \langle a, b, c \mid ab = bc = ca \rangle$: set $\Delta = ab$. Then $\operatorname{Div}_L(\Delta) = \{1, a, b, c, \Delta\} = \operatorname{Div}_R(\Delta)$ and restricting the left-divisibility yields a lattice.

<日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 0 0

On some lattices arising in combinatorial group theory

M₁ = ⟨a, b | aba = bab⟩: Δ = aba, as seen before.
M₂ = ⟨a, b, c | ab = bc = ca⟩: set Δ = ab. Then Div_L(Δ) = {1, a, b, c, Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.
M₃ = ⟨x, y | x² = y³⟩: set Δ = x². Then Div_L(Δ) = {1, x, y, y², Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.

(日) (日) (日) (日) (日) (日) (日) (日)

On some lattices arising in combinatorial group theory

- M₁ = ⟨a, b | aba = bab⟩: Δ = aba, as seen before.
 M₂ = ⟨a, b, c | ab = bc = ca⟩: set Δ = ab. Then Div_L(Δ) = {1, a, b, c, Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.
 M₃ = ⟨x, y | x² = y³⟩: set Δ = x². Then
- $M_3 = \langle x, y \mid x^2 = y^3 \rangle$: set $\Delta = x^2$. Then $\text{Div}_L(\Delta) = \{1, x, y, y^2, \Delta\} = \text{Div}_R(\Delta)$ and restricting the left-divisibility yields a lattice.
- ▶ $M_4 = \langle x, y | xyx = y^2 \rangle$: set $\Delta = y^3$. Then $\operatorname{Div}_L(\Delta) = \{1, x, y, y^2, xy, yx, yxy, y^3\} = \operatorname{Div}_R(\Delta)$, and restricting the left-divisibility yields a lattice.

(日) (日) (日) (日) (日) (日) (日) (日)

On some lattices arising in combinatorial group theory

M₁ = ⟨a, b | aba = bab⟩: Δ = aba, as seen before.
M₂ = ⟨a, b, c | ab = bc = ca⟩: set Δ = ab. Then Div_L(Δ) = {1, a, b, c, Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.
M₃ = ⟨x, y | x² = y³⟩: set Δ = x². Then Div_L(Δ) = {1, x, y, y², Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.
M₄ = ⟨x, y | xyx = y²⟩: set Δ = y³. Then

$$\operatorname{Div}_{L}(\Delta) = \{1, x, y, y^{2}, xy, yx, yxy, y^{3}\} = \operatorname{Div}_{R}(\Delta),$$

and restricting the left-divisibility yields a lattice.

In all these cases, one checks (difficult !) the other defining properties.

On some lattices arising in combinatorial group theory

M₁ = ⟨a, b | aba = bab⟩: Δ = aba, as seen before.
M₂ = ⟨a, b, c | ab = bc = ca⟩: set Δ = ab. Then Div_L(Δ) = {1, a, b, c, Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.
M₃ = ⟨x, y | x² = y³⟩: set Δ = x². Then Div_L(Δ) = {1, x, y, y², Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.

•
$$M_4 = \langle x, y \mid xyx = y^2 \rangle$$
: set $\Delta = y^3$. Then
 $\text{Div}_L(\Delta) = \{1, x, y, y^2, xy, yx, yxy, y^3\} = \text{Div}_R(\Delta)$,
and restricting the left-divisibility yields a lattice.

In all these cases, one checks (difficult !) the other defining properties.

Exercise

Show that $G_1 \cong G_2 \cong G_3 \cong G_4$.

On some lattices arising in combinatorial group theory

Thomas Gobet

・ロット 中国・ 王田・ 王 うくの

- M₁ = ⟨a, b | aba = bab⟩: Δ = aba, as seen before.
 M₂ = ⟨a, b, c | ab = bc = ca⟩: set Δ = ab. Then Div_L(Δ) = {1, a, b, c, Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.
 M₃ = ⟨x, y | x² = y³⟩: set Δ = x². Then Div_L(Δ) = {1, x, y, y², Δ} = Div_R(Δ) and restricting the left-divisibility yields a lattice.
 M = ⟨x, y | x² = x²⟩: set Δ = x³. Then
- $M_4 = \langle x, y \mid xyx = y^2 \rangle$: set $\Delta = y^3$. Then $\operatorname{Div}_L(\Delta) = \{1, x, y, y^2, xy, yx, yxy, y^3\} = \operatorname{Div}_R(\Delta)$, and restricting the left divisibility yields a lattice

and restricting the left-divisibility yields a lattice.

In all these cases, one checks (difficult !) the other defining properties.

Exercise

Show that $G_1 \cong G_2 \cong G_3 \cong G_4$.

This thus yields four different solutions to the word problem in $G_1...$

On some lattices arising in combinatorial group theory

- (Algebraist) Given a group G, can we classify the monoids M yielding a solution to the word problem as explained above ? (classification of Garside structures on a given group. Completely open even for G₁...)
- (Computational group theorist) Among the solutions which the algebraist above classified, which one provides the best algorithm to solve the word problem in a given group G admitting such structures ?
- (Combinatorist) Can I realise my favorite lattice as the lattice of divisors of a Garside element in a Garside monoid ?

Generalization of G_1

- ► The lattice L₁ is the lattice of permutations in 𝔅₃ ordered by the weak Bruhat order.
- ► The lattice L₂ is the lattice of (noncrossing) partitions of {1,2,3}.
- In fact, the group G₁ is the 3-stranded braid group B₃. The *n*-stranded braid group B_n admits the (Garside) presentation with generators σ₁, σ₂, ..., σ_{n-1} and relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \forall i = 1, \dots, n-2,$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ whenever } |i-j| > 1,$$

generalizing the presentation of G_1 . The Garside element is the positive lift Δ of the longest permutation of \mathfrak{S}_n , and the lattice $(\text{Div}(\Delta), \leq_L)$ is isomorphic to the weak Bruhat order on \mathfrak{S}_n . On some lattices arising in combinatorial group theory

Generalizations of G_2 , G_3

► The *n*-strand braid group B_n is also isomorphic to the group with the (Garside) presentation with generators a_{ij}, 1 ≤ i < j ≤ n and relations</p>

$$\begin{split} a_{ij}a_{jk} &= a_{jk}a_{ik} = a_{ik}a_{ij}, \forall 1 \leq i < j < k \leq n, \\ a_{ij}a_{kl} &= a_{kl}a_{ij}, \forall 1 \leq i < j < k < l \leq n \\ \text{or } 1 \leq i < k < l < j \leq n, \end{split}$$

generalizing the presentation of G_2 . The Garside element is $\Delta = a_{1,2}a_{2,3}\cdots a_{n-1,n}$, and the lattice $(\text{Div}(\Delta), \leq_L)$ is isomorphic to the noncrossing partition lattice NC(n) (Birman-Ko-Lee, 1998).

► The presentation of G₃ generalizes to a family of groups G(n,m) = ⟨x,y | xⁿ = y^m⟩ for all n, m ≥ 2, which yields a Garside presentation. When n and m are coprime G(n,m) is a torus knot group. The lattice is of "spindle" type. On some lattices arising in combinatorial group theory

Thomas Gobet

What about G_4 ?

► The lattice L₄ seems a bit more interesting. Is there any nice generalization in the previously introduced framework ?

<日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 0 0

On some lattices arising in combinatorial group theory

What about G_4 ?

► The lattice L₄ seems a bit more interesting. Is there any nice generalization in the previously introduced framework ?

Theorem (G. 2021)

Let $n \ge 1$. The monoid M(n) with generators $\rho_1, \rho_2, \ldots, \rho_n$ and relations

$$\rho_1 \rho_n \rho_i = \rho_{i+1} \rho_n, \forall i = 1, \dots, n-1$$

is a Garside presentation. Note that $M(2) = M_4$. The corresponding group is isomorphic to G(n, n + 1), which is an extension of B_{n+1} (with isomorphism for n = 1, 2). The Garside element is $\Delta_n = \rho_n^{n+1}$.

On some lattices arising in combinatorial group theory

Thomas Gobet

・ロト (四) (日) (日) (日) (日) (日)

What about G_4 ?

► The lattice L₄ seems a bit more interesting. Is there any nice generalization in the previously introduced framework ?

Theorem (G. 2021)

Let $n \ge 1$. The monoid M(n) with generators $\rho_1, \rho_2, \ldots, \rho_n$ and relations

$$\rho_1 \rho_n \rho_i = \rho_{i+1} \rho_n, \forall i = 1, \dots, n-1$$

is a Garside presentation. Note that $M(2) = M_4$. The corresponding group is isomorphic to G(n, n + 1), which is an extension of B_{n+1} (with isomorphism for n = 1, 2). The Garside element is $\Delta_n = \rho_n^{n+1}$.

It does not yield an explicit description of the lattice of divisors of Δ_n, and not even a formula for |Div(Δ_n)|...

On some lattices arising in combinatorial group theory

First step: number of words for the Garside element

- Before understanding how many divisors Δ_n = ρ_nⁿ⁺¹ has, we need to understand how many words in the alphabet {ρ₁, ρ₂,..., ρ_n} represent Δ_n.
- ► A *Schröder tree* is a rooted plane tree in which every inner vertex has at least two children.
- Consider a Schröder tree T on n + 1 leaves. We assign to each vertex v of T (except the root) a label λ(v) ∈ {1,2,...,n} as follows:
 - The vertices are labelled in post-order.
 - If v is a leftmost child of a vertex w of T, then w is the root of a Schröder tree (w, (T₁,...,T_k)) and v is the root of T₁. Then λ(v) is defined to be the number of leaves in the forest T₂,...,T_k.
 - If v is not the leftmost child of a vertex of T, we consider LD(v) the set of its leftmost descendants consisting of the leftmost child of v and its leftmost child, etc. Then the label of v is n = ∑w∈LD(v) λ(w). OBC

On some lattices arising in combinatorial group theory

Thomas Gobet

Figure: Post-order on the vertices of a Schröder tree with $11 + 1 \ensuremath{\mathsf{leaves}}$.

Figure: Labeling of the above Schroeder tree.

イロト イポト イヨト イヨト

= nar

Schroeder trees and words for Δ_n

▶ Define a map Φ from the set T(n + 1) of Schroeder trees on n + 1 leaves to words in {ρ₁, ρ₂,..., ρ_n}, which to a Schroeder tree T assigns the word ρ_{i1}ρ_{i2} ··· ρ_{ik}, where i₁i₂ ··· i_k is the sequence of labels of T, ordered following the post-order convention.

Theorem (Rognerud-G., 2023)

- 1. The map Φ has image in the set $W(\Delta_n)$ of words for ρ_n^{n+1} in M(n),
- 2. The map $\Phi : \mathcal{T}(n+1) \longrightarrow W(\Delta_n)$ is bijective.

Corollary

We have $|W(\Delta_n)| = |\mathcal{T}(n+1)|$, which is equal to the little Schroeder number S(n+1): S(1) = S(2) = 1,

$$S(n) = \frac{3(2n-3)S(n-1) - (n-3)S(n-2)}{n}.$$

On some lattices arising in combinatorial group theory

Number of divisors of Δ

On some lattices arising in combinatorial group theory

Thomas Gobet

• Let $\operatorname{Div}(\Delta_n) := \coprod_{0 \le i \le n+1} D_n^i$, where $D_n^i = \{x \in \operatorname{Div}(\Delta_n) \mid \rho_n^i \le x, \rho_n^{i+1} \le x\}$. Note that $D_n^{n+1} = \rho_n^{n+1}$.

・ロト・西ト・ヨト・日・ ひゃぐ

Number of divisors of Δ

On some lattices arising in combinatorial group theory

Thomas Gobet

► Let
$$\operatorname{Div}(\Delta_n) := \coprod_{0 \le i \le n+1} D_n^i$$
, where
 $D_n^i = \{x \in \operatorname{Div}(\Delta_n) \mid \rho_n^i \le x, \rho_n^{i+1} \le x\}$. Note that
 $D_n^{n+1} = \rho_n^{n+1}$.

Proposition

Let $n \ge 1$. Then we have the following isomorphisms of posets (where subposets of $\text{Div}(\Delta_n)$ are ordered by the restriction of left-divisibility on M(n))

- Every D_n^i is an interval in $\text{Div}(\Delta_n)$,
- $\operatorname{Div}(\Delta_{n-1}) \cong D_n^0$, $\operatorname{Div}(\Delta_0) \cong D_n^{n+1} \cong \{\bullet\}$.
- For all $1 \le i \le n$, $D_n^i \cong \text{Div}(\Delta_{n-i})$.

Thomas Gobet

Corollary

Let $n \geq 2$, and let $A_n := |\mathsf{Div}(\Delta_n)|$. Then

$$A_n = 2A_0 + 2A_{n-1} + \sum_{i=1}^{n-2} A_i.$$
 (1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

It follows that $A_n = F_{2n}$, where F_0, F_1, F_2, \ldots denotes the Fibonacci sequence $1, 2, 3, 5, 8, \ldots$

Thomas Gobet

Thank you for your attention!

・ロト・日本・日本・日本・日本・日本